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Abstract. In this paper, we study the fourth moment of the Epstein zeta function ζ(s;Q) associated to a n×n
positive definite symmetric matrix Q (n ≥ 4) on the line Re(s) = n−1

2 . We prove that the integral
∫ T

0 |ζ( n−1
2 +

it;Q)|4dt is evaluated by O(T (log T )4) if Q satisfies some conditions. As an application, we consider the divisor
problem with respect to the coefficients of the Dirichlet series of Epstein zeta functions. Certain estimates for the
error term of the sum of the Dirichlet coefficients are obtained by combining our results and Fomenko’s estimates for

ζ( n−1
2 + it;Q).

1. Introduction

The moments of the Riemann zeta function and other L-functions have been studied
for about one hundred years, from the age of Hardy and Littlewood. In 1918, Hardy and
Littlewood ([2]) proved that ∫ T

1

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2

dt ∼ T log T , (1.1)

and in 1926, Ingham ([8]) showed that∫ T

1

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
4

dt ∼ 1

2π2
T (log T )4 . (1.2)

It is conjectured that ∫ T

1

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2k

dt ∼ CkT (log T )k
2

(1.3)

holds for k ≥ 0 with some positive constant number Ck , but this has not been proved except
for the cases k = 0, 1, 2.

In this paper, we deal with the Epstein zeta function ζ(s;Q), whereQ is a n×n positive
definite symmetric matrix (n ≥ 4) which gives an integer-valued quadratic form. The mean
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square (second moment) of zeta functions of this kind is studied by several mathematicians.
For example, Müller proved that the Epstein zeta function ζ(s;Q) associated to a primitive
positive definite quadratic form in n variables with integral coefficients satisfies∫ T

0

∣∣∣∣ζ
(
n− 1

2
+ it;Q

)∣∣∣∣
2

dt = DQT log T +O(T ) (T → ∞)

when n ≥ 3, and∫ T

0

∣∣∣∣ζ
(

1

2
+ it;Q

)∣∣∣∣
2

dt = AQT (log T )2 +O(T log T ) (T → ∞)

when n = 2, where DQ and AQ are computable constants (see [15]). But as far as the
author knows, little is known about the fourth moment of the Epstein zeta functions. We

consider the fourth moment of ζ(s;Q) on the line Re(s) = n−1
2 . We prove that the integral∫ T

0 |ζ(n−1
2 + it;Q)|4dt is evaluated byO(T (log T )4) when T → ∞ (Theorem 2.5, Theorem

2.6). Further, we apply our results to the divisor problem for the coefficients of the Dirichlet
series of ζ(s;Q), and obtain certain estimates for the error terms of them.

Let us introduce the basic idea of this paper. For a n × n positive definite symmetric
matrix Q, the quadratic form associated to Q is defined by Q[x] = txQx for x ∈ Rn. We
assume that Q[x] ∈ N for any x ∈ Zn\{0}. For k ∈ Z≥0, we define rQ(k) by the number of
x ∈ Zn which satisfies Q[x] = k. Then the Epstein zeta function ζ(s;Q) is expressed by

ζ(s;Q) =
∞∑
k=1

rQ(k)

ks
(1.4)

for Re(s) > n
2 . It is well-known that the corresponding theta series

θ(z;Q) =
∞∑
k=0

rQ(k)e
2πikz

becomes a modular form of weight n2 , which can be written as the sum of an Eisenstein series
and a cusp form. Therefore, ζ(s;Q) decomposes into the sum of the L-function associated
to the Eisenstein series and the L-function associated to the cusp form. Hence to establish
the upper bound for the moments of ζ(s;Q), it suffices to evaluate the moments of these two
L-functions. We can easily prove that the fourth moment of the L-function associated to the

cusp form on the line Re(s) = n−1
2 is evaluated byO(T ) (Lemma 2.1), and our main problem

is to evaluate the moment of L-function associated to the Eisenstein series. For this purpose,
we use the classical results by Hecke ([7]), Malyshev ([13]), and Siegel ([17]). By using
their theorems, we prove that the L-function associated to the Eisenstein series is expressed
by some series consisting of Dirichlet L-functions and thus we can use the theory of the
moments of Dirichlet L-functions.
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As the easiest example, we take Q = I4, the 4 × 4 unit matrix. Then the Epstein zeta
function ζ(s; I4) is expressed by

ζ(s; I4) = 8(1 − 22−2s)ζ(s)ζ(s − 1) . (1.5)

Since the factor (1 − 22−2s)ζ(s) is bounded on the line Re(s) = 3
2 , the fourth moment∫ T

0 |ζ( 3
2 + it; I4)|4dt is evaluated by O(T (log T )4), by using Ingham’s asymptotic formula

(1.2). The general case is more complicated, but the underlying idea is similar.
In section 3, we apply our results to the divisor problem. For a positive integer l (in this

paper, we assume that l ≥ 4), we write

ζ(s;Q)l =
∞∑
k=1

r
(l)
Q (k)

ks

(
Re(s) >

n

2

)
.

Evaluating the magnitude of the sum
∑
k≤x r

(l)
Q (k) (x → ∞) is called the divisor problem. It

is well-known that the following asymptotic formula holds (see [11], [16]):∑
k≤x

r
(l)
Q (k) = M

(n)
l (x)+Δ

(n)
l (x) (x → ∞) ,

where M(n)
l (x) is the main term, expressed by x

n
2 Pl(log x) with some polynomial Pl of de-

gree l − 1, and Δ(n)l (x) is the error term which becomes o(x
n
2 ). In [16], Sankaranarayanan

showed that the error term Δ
(n)
l (x) is evaluated by O(x

n
2 − 1

l
+ε) for n ≥ 3, l ≥ 2 by using the

order estimate for ζ(n−1
2 + it;Q) and the fact that the mean-square

∫ T
0 |ζ(n−1

2 + it;Q)|2dt is

evaluated by O(T 1+ε) (∀ε > 0) (this fact is proved in [10]). Note that the order estimate for

ζ(n−1
2 + it;Q) above relies on Stirling’s formula for the gamma function and the Phragmén-

Lindelöf principle, which is weaker than Fomenko’s ones. Further, Lü ([11], [12]) obtained

sharper estimates for Δ(n)l (x) for special kinds of Q, whose the “Eisenstein part”of the as-
sociated Epstein zeta functions are expressed by using the Riemann zeta function, like (1.5).
His method relies on the sophisticated theories for the Riemann zeta function, for example,
the order estimate for ζ(s) on the critical line, and the estimate for the twelfth moment of
ζ(s) by Heath-Brown ([6]). We investigate the divisor problem for generalQ (n× n positive
definite symmetric matrix (n ≥ 4) which gives an integer valued quadratic form). Instead of
the theories for the Riemann zeta function above, we use Fomenko’s estimates for the order of
ζ(n−1

2 + it;Q) ([1]), and our theorems for the fourth moment of ζ(s;Q). Certain estimates

for Δ(n)l (x) are obtained (Theorem 3.2).
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2. Fourth moment of the Epstein zeta functions

2.1. Notation and some basic results. Let n be a positive integer and Q be a n× n

positive definite symmetric matrix. The Epstein zeta function associated to Q is defined by

ζ(s;Q) =
∑

x∈Zn\{0}
Q[x]−s

(
Re(s) >

n

2

)
,

where Q[x] := txQx. This function has the meromorphic continuation to the whole s-plane
and satisfies the functional equation

π−sΓ (s)ζ(s;Q) = (detQ)−
1
2πs−

n
2Γ

(n
2

− s
)
ζ

(n
2

− s;Q−1
)
. (2.1)

ζ(s;Q) is holomorphic everywhere except for a simple pole at s = n
2 with residue

π
n
2 /(detQ)

1
2Γ (n2 ). Throughout this paper, we assume thatQ[x] ∈ N for any x ∈ Zn\{0}. Let

rQ(k) be the number of x ∈ Zn which satisfies Q[x] = k. Then ζ(s;Q) has the following
Dirichlet series expansion for Re(s) > n

2 :

ζ(s;Q) =
∞∑
k=1

rQ(k)

ks
.

Hereafter, we assume that n ≥ 4. We consider the theta series corresponding to ζ(s;Q)
defined by

θ(z;Q) =
∞∑
k=0

rQ(k)e
2πikz.

It is well-known that θ(z;Q) is written as the sum of an Eisenstein series and a cusp form:

θ(z;Q) = E(z)+ S(z) , (2.2)

where

E(z) =
∞∑
k=0

e(k)e2πikz

is the Eisenstein series and

S(z) =
∞∑
k=1

s(k)e2πikz

is the cusp form. Moreover, it is known that the coefficient s(k) of S(z) is evaluated by

s(k) 	 k
n
4 − 1

2 +ε (2.3)
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if n is even, and

s(k) 	 k
n
4 − 1

4 +ε (2.4)

if n is odd, where ε is always an arbitrary positive number in this paper.

2.2. The fourth moment of ζ(s;Q) on the line Re(s) = n−1
2 . We want to establish

some upper bound for the magnitude of the integral∫ T

0

∣∣∣∣ζ
(
n− 1

2
+ it;Q

)∣∣∣∣
4

dt

when T → ∞. Since ζ(s;Q) is expressed by

ζ(s;Q) = Ê(s)+ Ŝ(s) , (2.5)

where Ê(s) and Ŝ(s) are defined by

Ê(s) =
∞∑
k=1

e(k)

ks
, Ŝ(s) =

∞∑
k=1

s(k)

ks

for Re(s) > n
2 and analytically continued to the whole s-plane, it is enough to evaluate the

two integrals ∫ T

0

∣∣∣∣Ê
(
n− 1

2
+ it

)∣∣∣∣
4

dt ,

∫ T

0

∣∣∣∣Ŝ
(
n− 1

2
+ it

)∣∣∣∣
4

dt .

Firstly, the following lemma gives an upper bound for the integral
∫ T

0 |Ŝ( n−1
2 + it)|4dt .

LEMMA 2.1. When T → ∞, we have∫ T

0

∣∣∣∣Ŝ
(
n− 1

2
+ it

)∣∣∣∣
4

dt = O(T ) . (2.6)

PROOF. If n ≥ 6, by the estimates (2.3), (2.4), the series
∑∞
k=1

s(k)
ks

converges abso-

lutely on the line Re(s) = n−1
2 . Therefore, the estimate (2.6) trivially holds. In case of n = 4

or 5, the line Re(s) = n−1
2 is so to say the “absolute convergence line”, that is, it is assured

that the Dirichlet series for Ŝ(s) converges absolutely for Re(s) > n−1
2 by the estimates (2.3),

(2.4), but not on the line Re(s) = n−1
2 . To prove (2.6), we use a classical method. Assume

that

s(k) = O(kα+ε)

holds. Then the Dirichlet series

Ŝ(s) =
∞∑
k=1

s(k)

ks
(2.7)
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converges absolutely for Re(s) > α + 1. If n = 4, α = 1
2 and if n = 5, α = 1. Firstly, as

an easy consequence of the functional equation of the Hecke L-functions of cusp forms, the

estimate Ŝ(σ + it) 	 |t|μ(σ) (|t| → ∞) holds for some μ(σ) < ∞. Put

Ŝ(s)2 =
∞∑
k=1

s(2)(k)

ks
(Re(s) > α + 1) .

By using the Mellin inversion formula

e−x = 1

2πi

∫ c+i∞

c−i∞
Γ (s)x−sds (c > 0, x > 0) ,

for δ > 0,

∞∑
k=1

s(2)(k)

ks
e−δk = 1

2πi

∫ α+2+i∞

α+2−i∞
Γ (z− s)Ŝ(z)2δs−zdz (2.8)

holds when Re(s) < α + 2. We take a real number β which satisfies α < β < α + 1, and
assume that s satisfies

max

{
α + 1

2
, β

}
< Re(s) < β + 1 .

We move the path of integral to the line Re(s) = β. The pole of integrant between the lines

Re(s) = α + 2, Re(s) = β is z = s, and the residue is Ŝ(s)2. Therefore, by Cauchy’s residue
theorem, we have

Ŝ(s)2 =
∞∑
k=1

s(2)(k)

ks
e−δk

− 1

2πi

∫ β+i∞

β−i∞
Γ (z− s)Ŝ(z)2δs−zdz .

(2.9)

We put

S1 =
∞∑
k=1

s(2)(k)

ks
e−δk ,

S2 = 1

2πi

∫ β+i∞

β−i∞
Γ (z− s)Ŝ(z)2δs−zdz .
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Firstly,

∫ T

0
|S1|2dt =

∫ T

0

( ∞∑
k=1

s(2)(k)

kσ+it e
−δk

)( ∞∑
l=1

s(2)(l)

lσ−it e
−δl

)
dt

= T

∞∑
k=1

s(2)(k)2

k2σ
e−2δk

+O

(∑∑
l<k

s(2)(k)s(2)(l)e−(k+l)δ

(kl)σ log ( k
l
)

)
.

(2.10)

Since s(2)(k) is evaluated by

s(2)(k) = O(kα+ε) ,

the second term of the right hand side of (2.10) is evaluated byO(δ2σ−2α−2−ε) when δ → +0
(see [18], p117). Therefore,

∫ T

0
|S1|2dt = T

∞∑
k=1

s(2)(k)2

k2σ
e−2δk +O(δ2σ−2α−2−ε) . (2.11)

Note that the series
∑∞
k=1

s(2)(k)2

k2σ converges for σ > α + 1
2 . Next, by using the Cauchy-

Schwarz inequality, we have

S2 	 δσ−β
∫ β+i∞

β−i∞
|Γ (z− s)||Ŝ(z)|2dz

	 δσ−β
(∫ ∞

−∞
|Γ (β + iv − s)|dv

∫ ∞

−∞
|Γ (β + iv − s)||Ŝ(β + iv)|4dv

) 1
2

	 δσ−β
(∫ ∞

−∞
|Γ (β + iv − s)||Ŝ(β + iv)|4dv

) 1
2

.

Therefore, ∫ T

0
|S2|2dt 	 δ2σ−2β

∫ T

0

∫ ∞

−∞
|Γ (β + iv − s)||Ŝ(β + iv)|4dvdt . (2.12)

The contribution of the integral in |v| ≥ 2T is evaluated by

	 δ2σ−2β
∫ T

0

∫
|v|≥2T

e−C1|v−t ||v|C2dvdt

	 δ2σ−2β
∫ T

0
e−C3T dt 	 δ2σ−2β.
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Here, C1, C2, C3 are some positive constants. The remaining part is evaluated by

	 δ2σ−2β
∫ 2T

−2T
|Ŝ(β + iv)|4

∫ T

0
|Γ (β + iv − s)|dtdv

	 δ2σ−2β
∫ 2T

−2T
|Ŝ(β + iv)|4dv

	 δ2σ−2βT 4μ(β)+1.

Therefore, ∫ T

0
|S2|2dt 	 δ2σ−2βT 4μ(β)+1 . (2.13)

By combining (2.11) and (2.13), we have∫ T

0
|Ŝ(s)|4dt 	

∫ T

0
|S1|2dt +

∫ T

0
|S2|2dt

	 O(T )+O(δ2σ−2α−2−ε)+O(δ2σ−2βT 4μ(β)+1) .

(2.14)

We put

δ = T
− 4μ(β)+1

2α−2β+2 .

Then (2.14) becomes ∫ T

0
|Ŝ(s)|4dt 	 O(T )+O(T

(α+1−σ)(4μ(β)+1)
α−β+1 +ε

) . (2.15)

The second term of the right hand side of (2.15) becomes o(T ) if σ = Re(s) satisfies

σ > α + 1 − α − β + 1

4μ(β)+ 1
.

In particular, the left hand side of (2.15) becomesO(T ) for σ = α + 1. �

Our main problem is to evaluate the integral
∫ T

0 |Ê( n−1
2 + it)|4dt . For this purpose, we

use the relations between the L-function associated to the Eisenstein series and the Dirichlet
L-functions. Before stating our main theorems, we prepare three lemmas. The first lemma is
the estimate for the fourth moment of Dirichlet L-functions (for example, see [5]):

LEMMA 2.2. When T → ∞, we have

∑
χ(modq)

∫ T

0

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣
4

dt 	 qT (log qT )4 . (2.16)

Here,
∑
χ(mod q) denotes the sum over all Dirichlet characters modulo q .
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The second lemma is the estimates for the order of Dirichlet L-functions on the critical
line by Heath-Brown ([3], [4]):

LEMMA 2.3. LetL(s, χ) be a DirichletL-function associated to a Dirichlet character
modulo q . Then, when t → ∞, the following estimates hold:

L

(
1

2
+ it, χ

)
	 q

1
2 t

1
6 log (qt) , (2.17)

L

(
1

2
+ it, χ

)
	 (qt)

3
16 +ε . (2.18)

The third lemma is a simple inequality, used to evaluate the fourth moment of Ê(s) in
case of n is odd and n ≥ 7.

LEMMA 2.4. For x1, . . . , xm ≥ 0, we have

x
1
4
1 + · · · + x

1
4
m ≤ m

3
4 (x1 + · · · + xm)

1
4 . (2.19)

PROOF. The inequality (2.19) is equivalent to

x
1
4
1 + · · · + x

1
4
m

m
≤

(
x1 + · · · + xm

m

) 1
4

which directly follows from the convexity of the function f (x) = x
1
4 . �

THEOREM 2.5. Assume that n is even and n ≥ 4, or n is odd and n ≥ 7. Then, when
T → ∞, the following estimate holds:∫ T

0

∣∣∣∣ζ
(
n− 1

2
+ it;Q

)∣∣∣∣
4

dt = O(T (log T )4) . (2.20)

PROOF. Firstly, we assume that n is even and n ≥ 4. Then, the Eisenstein series E(z)

is a modular form of weight n2 and level N , where N is a positive integer such that NA−1

becomes an integral matrix for A = 2Q (see [9]). According to Hecke ([7], Theorem 44), the

series Ê(s) is expressed by some linear combination of the form

(t1t2)
−sL(s, χ1)L

(
s − n

2
+ 1, χ2

)
,

where t1, t2 are positive divisors of level N and χ1, χ2 are Dirichlet characters modulo N
t1

, N
t2

,

respectively. We write

Ê(s) =
L∑
l=1

cl(t1,l t2,l)
−sL(s, χ1,l)L

(
s − n

2
+ 1, χ2,l

)
.
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Then∫ T

0

∣∣∣∣Ê
(
n− 1

2
+ it

)∣∣∣∣
4

dt 	
L∑
l=1

∫ T

0

∣∣∣∣L
(
n− 1

2
+ it, χ1,l

)
L

(
1

2
+ it, χ2,l

)∣∣∣∣
4

dt

	
L∑
l=1

∫ T

0

∣∣∣∣L
(

1

2
+ it, χ2,l

)∣∣∣∣
4

dt

(2.21)

since L(n−1
2 + it, χ1,l) is bounded with respect to t . Moreover, by the estimate (2.16), each

integral
∫ T

0 |L( 1
2 + it, χ2,l)|4dt is evaluated by O(T (log T )4). Therefore, the statement of

theorem is proved in this case.
Next, we assume that n is odd and n ≥ 7. The following argument is a straightforward

adaption of the technique of Fomenko in his treatment of pointwise bounds for ζ(n−1
2 +it;Q)

(see [1]). In this case, the Fourier coefficient of the Eisenstein series E(z) has the following
expression (see [13]):

e(k) = π
n
2

(detQ)
1
2Γ (n2 )

k
n
2 −1H(Q; k) ,

where

H(Q; k) =
∞∑
q=1

{ ∑′

h(modq)

q−nS(hQ; q)e−2πi kh
q

}

is a singular series,
∑′ means the sum over a reduced residue system, and

S(Q; q) =
q−1∑

x1,...,xn=0

e
2πiQ(x1,...,xn)

q

is a Gaussian sum. Therefore, the associated Dirichlet series is given by

Ê(s) = π
n
2

(detQ)
1
2Γ (n2 )

∞∑
k=1

1

ks− n
2 +1

∑
q=1

∑′

h(modq)

q−nS(hQ; q)e−2πi kh
q

for Re(s) > n
2 . Let (k, q) = d , k = k1d , q = q1d , (k1, q1) = 1 and k1 = k2q1+l, (q1, l) = 1.

Then the right hand side becomes

π
n
2

(detQ)
1
2Γ (n2 )

∞∑
d=1

1

ds− n
2 +1

∑
q1=1

∑′

h(mod q1d)

(q1d)
−nS(hQ; q1d)

·
∑′

l(modq1)

e
− 2πihl

q1d
∑

k1≡l(modq1)

1

k
s− n

2 +1
1

.
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By using the well-known identity

∑
χ(mod q1)

χ(l)χ(k) =
{
φ(q1) (k ≡ l (mod q1))

0 (otherwise),

we have ∑
k1≡l(modq1)

1

k
s− n

2 +1
1

= 1

φ(q1)

∑
χ(modq1)

χ(l)

∞∑
k1=1

χ(k1)

k
s− n

2 +1
1

= 1

φ(q1)

∑
χ(modq1)

χ(l)L

(
s − n

2
+ 1, χ

)

for Re(s) > n
2 . Therefore,

Ê(s) = π
n
2

(detQ)
1
2Γ (n2 )

∞∑
d=1

1

ds− n
2 +1

∑
q1=1

∑′

h(mod q1d)

S(hQ; q1d)

(q1d)n

·
∑′

l(modq1)

e
− 2πihl

q1
1

φ(q1)

∑
χ(modq1)

χ(l)L

(
s − n

2
+ 1, χ

) (2.22)

holds for Re(s) > n
2 . It is known that the following estimate holds (see [13]):

S(hQ; q) 	 q
n
2 ,

where the constant occuring in 	 depends only onQ, not on h. Therefore, the absolute value
of the right hand side of (2.22) is estimated by

	
∞∑
d=1

1

dσ− n
2 +1

∞∑
q1=1

φ(q1d)
(q1d)

n
2

(q1d)n
· φ(q1)

1

φ(q1)

∑
χ(modq1)

∣∣∣∣L
(
s − n

2
+ 1, χ

)∣∣∣∣
	

∞∑
d=1

1

dσ

∞∑
q1=1

1

q
n
2 −1

1

∑
χ(modq1)

∣∣∣∣L
(
s − n

2
+ 1, χ

)∣∣∣∣ .
(2.23)

By the estimate (2.18), the right hand side of (2.23) converges on the line Re(s) = n−1
2 , hence

Ê(s) is continued analytically to some domain containing the line Re(s) = n−1
2 by (2.22) and

the estimate ∣∣∣∣Ê
(
n− 1

2
+ it

)∣∣∣∣ 	
∞∑
q1=1

1

q
n
2 −1

1

∑
χ(modq1)

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣ (2.24)
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holds. By applying Minkowski’s inequality to (2.24), we have

( ∫ T

0

∣∣∣∣Ê
(
n− 1

2
+ it

)∣∣∣∣
4

dt

) 1
4

	
∞∑
q1=1

1

q
n
2 −1

1

∑
χ(mod q1)

( ∫ T

0

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣
4

dt

) 1
4

.

(2.25)

By applying the inequality (2.19) to the sum in χ(mod q1) and using the estimate (2.16), the
right hand side of (2.25) is evaluated by

≤
∞∑
q1=1

1

q
n
2 −1

1

φ(q1)
3
4

( ∑
χ(mod q1)

∫ T

0

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣
4

dt

) 1
4

	
∞∑
q1=1

1

q
n
2 −1

1

q
3
4
1 (q1T (log q1T ))

1
4

	
( ∞∑
q1=1

1

q
n
2 −2−ε

1

)
T

1
4 log T .

The series
∑∞
q1=1

1

q
n
2 −2−ε

1

converges when n > 6. Therefore, the estimate

(∫ T

0

∣∣∣∣Ê
(
n− 1

2
+ it

)∣∣∣∣
4

dt

) 1
4

	 T
1
4 logT

holds when n ≥ 7, hence the statement of theorem is proved. �

Next, we consider the case of n = 5. In this case, we cannot use the method we used
in the proof of Theorem 2.5, since the right hand side of (2.23) may not converge on the line
Re(s) = 2 if n = 5. We use another formula proved by Siegel ([17]).

THEOREM 2.6. Let Q be a 5 × 5 positive definite symmetric integral matrix which
satisfies detQ = 1. Then, when T → ∞, we have∫ T

0
|ζ(2 + it;Q)|4dt = O(T (log T )4) . (2.26)

PROOF. Assume thatQ satisfies the conditions of theorem. In this case, Siegel showed

that Ê(s) has the following expression (see [17], Theorem 12):

Ê(s) = 2πs
Γ ( 5

2 − s)

Γ ( 5
2 )

{
ψ(s) + ψ

(
5

2
− s

)}
(2.27)
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for 1 < Re(s) < 3
2 , where

ψ(s) =2s−
5
2

{
cos

π

4
(2s − 5)

∑
a,b b≡1(mod 4)

χb(a)a
s− 5

2 b−s

+ cos
π

4
(2s + 5)

∑
a,b b≡3(mod 4)

χb(a)a
s− 5

2 b−s
} (2.28)

and χb(a) = ( a
b
) denoting the Legendre-Jacobi symbol. For fixed b, we have

∑
a

χb(a)a
s− 5

2 = L

(
5

2
− s, χb

)

for Re(s) < 3
2 . Therefore,

∑
a,b b≡j (mod 4)

χb(a)a
s− 5

2 b−s =
∑

b≡j (mod 4)

b−sL
(

5

2
− s, χb

)
(2.29)

(j = 1, 3) holds for Re(s) < 3
2 . By using the estimate (2.17), the series of the right hand side

of (2.29) converges absolutely on Re(s) = 2, so the left hand side of (2.29) can be continued
analytically to some domain containing the line Re(s) = 2 by (2.29). Therefore, ψ(s) can be
continued analytically to some domain containing the line Re(s) = 2 by

ψ(s) =2s−
5
2

{
cos

π

4
(2s − 5)

∑
b≡1(mod 4)

b−sL
(

5

2
− s, χb

)

+ cos
π

4
(2s + 5)

∑
b≡3(mod 4)

b−sL
(

5

2
− s, χb

)}
.

(2.30)

On the other hand, for fixed a,∑
b, b≡j (mod 4)

χb(a)b
−s

= 1

φ(4)

∑
χ(mod 4)

χ(j)

∞∑
b=1

χ(b)χb(a)b
−s

= 1

φ(4)

∑
χ(mod 4)

χ(j)L(s, χ̃a,χ )

(j = 1, 3) holds for Re(s) > 1, where

χ̃a,χ (b) = χ(b)χb(a) = χ(b)

(
a

b

)
. (2.31)
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Note that χ̃a,χ is a Dirichlet character modulo 4a. Therefore, we have proved that the identity

ψ(s) = 2s− 5
2

φ(4)

{
cos

π

4
(2s − 5)

∞∑
a=1

as−
5
2

∑
χ(mod 4)

χ(1)L(s, χ̃a,χ )

+ cos
π

4
(2s + 5)

∞∑
a=1

as−
5
2

∑
χ(mod 4)

χ(3)L(s, χ̃a,χ )

} (2.32)

holds for 1 < Re(s) < 3
2 , where χ̃a,χ is a Dirichlet character modulo 4a. By using the

estimate (2.17) again, the right hand side of (2.32) converges absolutely at s = 1
2 + it , so

ψ(s) can be continued analytically to some domain containing the line Re(s) = 1
2 by (2.32).

Therefore, by combining these results, the L-function Ê(s) has the following expression on
the line Re(s) = 2:

Ê(2 + it)

= 2
1
2 +itπ2+it Γ (

1
2 − it)

Γ ( 5
2 )

{
cos

π

4
(−1 + 2it)

∑
b≡1(mod 4)

b−2−itL
(

1

2
− it, χb

)

+ cos
π

4
(9 + 2it)

∑
b≡3(mod 4)

b−2−itL
(

1

2
− it, χb

)}

+ 2−2−itπ2+it Γ (
1
2 − it)

Γ ( 5
2 )

{
cos

π

4
(−4 − 2it)

∞∑
a=1

a−2−it ∑
χ(mod 4)

χ(1)L

(
1

2
− it, χ̃a,χ

)

+ cos
π

4
(6 − 2it)

∞∑
a=1

a−2−it ∑
χ(mod 4)

χ(3)L

(
1

2
− it, χ̃a,χ

)}
.

(2.33)

Note that Γ ( 1
2 − it)cosπ4 (· ± 2it) (4 terms) are bounded when t → ∞. By applying

Minkowski’s inequality, we have(∫ T

0
|Ê(2 + it)|4dt

) 1
4

	
∑

b≡1(mod 4)

b−2
( ∫ T

0

∣∣∣∣L
(

1

2
− it, χb

)∣∣∣∣
4

dt

) 1
4

+
∑

b≡3(mod 4)

b−2
( ∫ T

0

∣∣∣∣L
(

1

2
− it, χb

)∣∣∣∣
4

dt

) 1
4
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+
∞∑
a=1

a−2
( ∫ T

0

∣∣∣∣L
(

1

2
− it, χ̃a,χ

)∣∣∣∣
4

dt

) 1
4

	
∑

b≡1,3(mod 4)

b−2(bT (log bT )4)
1
4 +

∞∑
a=1

a−2(aT (log aT )4)
1
4

	 T
1
4 log T .

Therefore, since ∫ T

0
|Ê(2 + it)|4dt 	 T (logT )4 ,

we obtain the estimate (2.26). �

REMARK 2.7. Assume that Q satisfies the conditions of Theorem 2.6. By applying
the estimate (2.17) to the identity (2.33), the estimate

|Ê(2 + it)| 	 |t| 1
6 (|t| → ∞)

holds. Since the Dirichlet series associated to the cusp form satisfies

|Ŝ(2 + it)| = O(|t|ε) (|t| → ∞) ,

the Epstein zeta function associated to Q satisfies

|ζ(2 + it;Q)| 	 |t| 1
6 (|t| → ∞) . (2.34)

3. Application to the divisor problem

In this section, we evaluate the sum of the coefficients of Dirichlet series of ζ(s;Q)l ,
where l ≥ 4 is a positive integer. For l ∈ N, write

ζ(s;Q)l =
∞∑
k=1

r
(l)
Q (k)

ks

for Re(s) > n
2 . It is known that the following asymptotic formula holds (see [11], [16]):∑

k≤x
r
(l)
Q (k) = M

(n)
l (x)+Δ

(n)
l (x) (x → ∞) ,

where M(n)
l (x) is called the main term, expressed by x

n
2 Pl(log x) with a polynomial Pl of

degree l − 1, andΔ(n)l (x) is called the error term which becomes o(x
n
2 ) in general. Our main

problem is to evaluate the error term Δ
(n)
l (x) as small as possible. The following lemma is

due to Fomenko ([1]), which plays a fundamental role in the proof of our theorem:
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LEMMA 3.1. LetQ be a n×n positive definite matrix which defines an integer valued
quadratic form. Then the estimate∣∣∣∣ζ

(
n− 1

2
+ it;Q

)∣∣∣∣ 	 |t|αn+ε (|t| → ∞) (3.1)

holds, where

αn =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

9

56
(n ≥ 4, even) ,

1

6
(n ≥ 9, odd) ,

3

16
(n = 7) .

(3.2)

By combining this lemma and our theorems in Section 2, we obtain the following esti-

mates for the error term Δ
(n)
l (x):

THEOREM 3.2. Let Q be a n × n positive definite symmetric matrix which satisfies
Q[x] ∈ N for any x ∈ Zn\{0}. If n = 5, we assume that Q is integral and detQ = 1. Then,
for l ≥ 4, the following asymptotic formula holds when x → ∞:

∑
k≤x

r
(l)
Q (k) = M

(n)
l (x)+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O

(
x
n
2 − 28

9l+20 +ε) (n ≥ 4, even) ,

O
(
x
n
2 − 3

l+2 +ε) (n ≥ 9, odd or n = 5) ,

O
(
x
n
2 − 8

3l+4 +ε) (n = 7) .

(3.3)

Here, M(n)
l (x) is expressed by x

n
2Pl(log x) with a polynomial Pl of degree l − 1.

PROOF. We start from Perron’s formula (see [16])

∑
k≤x

r
(l)
Q (k) = 1

2πi

∫ n
2 +ε+iT

n
2 +ε−iT

ζ(s;Q)l x
s

s
ds +O

(
x
n
2 +ε

T

)
+O(xε) .

We move the path of integral to the parallel segment with Re(s) = n−1
2 . Then,

∑
k≤x

r
(l)
Q (k) = 1

2πi

{∫ n−1
2 +iT

n−1
2 −iT

+
∫ n

2 +ε+iT
n−1

2 +iT
+

∫ n−1
2 −iT

n
2 +ε−iT

}
ζ(s;Q)l x

s

s
ds

+ Res

[
ζ(s;Q)l x

s

s
, s = n

2

]
+O

(
x
n
2 +ε

T

)
+O(xε) .

(3.4)

We put

I1 := 1

2πi

∫ n−1
2 +iT

n−1
2 −iT

ζ(s;Q)l x
s

s
ds ,
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I2 := 1

2πi

∫ n
2 +ε+iT

n−1
2 +iT

ζ(s;Q)l x
s

s
ds ,

I3 := 1

2πi

∫ n−1
2 −iT

n
2 +ε−iT

ζ(s;Q)l x
s

s
ds ,

M
(n)
l (x) := Res

[
ζ(s;Q)l x

s

s
, s = n

2

]
.

Firstly, since ζ(s;Q)l xs
s

has a pole of order l at s = n
2 , M(n)

l (x) is expressed by

M
(n)
l (x) = x

n
2 Pl(log x) (3.5)

with some polynomial Pl of degree l − 1. Next, we evaluate three integrals Ii (i = 1, 2, 3).
Assume that the estimate∣∣∣∣ζ

(
n− 1

2
+ it;Q

)∣∣∣∣ 	 |t|αn+ε (|t| → ∞)

holds. Then, by using Theorem 2.5 or Theorem 2.6, |I1| is evaluated by

|I1| 	 x
n−1

2

∫ T

−T

∣∣∣∣ζ
(
n− 1

2
+ it;Q

)∣∣∣∣
l−4 ∣∣∣∣ζ

(
n− 1

2
+ it;Q

)∣∣∣∣
4
dt

t

	 x
n−1

2 T (l−4)αn+ε
∫ T

−T

∣∣∣∣ζ
(
n− 1

2
+ it;Q

)∣∣∣∣
4
dt

t

	 x
n−1

2 T (l−4)αn+ε .

(3.6)

By Phragmén-Lindelöf principle,

|ζ(σ ± iT ;Q)| 	 T −2αn(σ− n
2 )+ε

holds for n−1
2 ≤ σ ≤ n

2 . Therefore, |I2| + |I3| is evaluated by

|I2| + |I3| 	
∫ n

2 +ε
n−1

2

T −2lαn(σ− n
2 )+ε x

σ

T
dσ

=
∫ n

2 +ε
n−1

2

(
x

T 2lαn

)σ
T nlαn−1+εdσ

	 x
n−1

2 T lαn−1+ε + x
n
2 +εT −1+ε .

(3.7)
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By inserting (3.5), (3.6), (3.7) into (3.4), we have∑
k≤x

r
(l)
Q (k) =M(n)

l (x)+O(x
n−1

2 T (l−4)αn+ε)+O(x
n−1

2 T lαn−1+ε)

+O(x
n
2 +εT −1+ε)+O(xε) .

(3.8)

We put

T = x
1

2(l−4)αn+2 .

Then (3.8) becomes∑
k≤x

r
(l)
Q (k) = M

(n)
l (x)+O

(
x
n
2 − 1

2(l−4)αn+2 +ε) +O
(
x
n
2 − 1−2αn

(l−4)αn+1 +ε)
. (3.9)

Finally, by inserting the values given in Lemma 3.1 or (2.34) into αn, we obtain the result. �
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