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On the Free Energy and Stability of Nonlinear

Fluids

J. ERNEST DUNN, Department of Engineering Science and
Mechanics, Virginia Polytechnic Institute and State University,

Blacksburg, Virginia 24060

Synopsis

For any incompressible fluid whose stress is a frame indifferent function of the ve­

locity gradient and the material time derivative of the velocity gradient, i.e., for any

Rivlin-Ericksen fluid of complexity 2, we show that thermodynamics implies that the

first normal stress difference of viscometric flows must be nonpositive for small enough

shearings unless a certain very special degeneracy occurs. More precisely, we show

that the Clausius-Duhem inequality, together with the postulate that the Helmholtz

free energy has a minimum in equilibrium, suffices to ensure that, except for a very

special subclass, every Rivlin-Ericksen fluid of complexity 2 hasa negative first normal

stress difference for all small enough shearings in any viscometric flow. Our results

significantly extend a similar analysis given by Dunn and Fosdick in 1974 for those

special Rivlin-Ericksen fluids of complexity 2 known as second grade fluids. In ad­

dition, they direct attention at a new class of complexity 2 fluids that have been little

explored by theorists or experimenters. Furthermore, we study in detail the impli­

cations of our thermodynamic postulates for a certain subclass of these complexity

2 fluids that is more general than either second grade fluids or generalized Newtonian

fluids. We find that for the fluids in this class the first normal stress difference may

change sign as the shearing changes, and we find an interesting linkage between such

sign alterations and potential local instabilities in the flow field. Finally, we examine

the global stability of the rest state for our fluids and show that if the free energy has

a strict, gobal minimum in equilibrium, then our fluids are better behaved than any

Navier-Stokes fluid, since not only does the kinetic energy of any disturbance decay

in mean but so too does a certain positive definite function of the stretching tensor.

INTRODUCTION

In the last 30 years many fluid models have been introduced in an
effort to describe the response of liquids not adequately modeled by
the Navier-Stokes theory of incompressible fluids. While we are
interested here in a much broader class of rna terials, we begin by re­
calling that one of the most oft used of these non-Newtonian fluid
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44 DUNN

models has been the incompressible fluid of second grade, for which

the stress T is given by

(1)

where the constitutively indeterminate spherical stress -pI is due
to incompressibility, A1 and A2 are the first two Rivlin-Ericksen

tensors, and, as indicated, the viscosity Jl and the two normal stress
moduli (111 and (112 may depend on the temperature (). The form (1)

was obtained for a special class of flows (now known as steady, vis­
cometric flows) by Criminale, Ericksen, and Filbey! as the most
general one possible for all Rivlin-Ericksen fluids of differential type
(with IJ-, (111, and (112 depending possibly also on the trace of At). Later,
in work that is often taken as justifying the use of (1) in all flows for
a special class of materials, Coleman and No1l2 showed that for simple
fluids with a certian type of "fading memory," (1) emerges for any flow
after the truncation of terms of order greater than 2 in a flow retar­
dation parameter-just as, they showed, the Navier-Stokes fluid"
emerges after the truncation of terms of order greater than 1.

Over the last 20 years rheologists have collected a rather large body
of experimental data frequently organized, in essence, on the as­
sumption that the liquid within their devices satisfied Eq. (1) exactly,
at least for the particular flow (almost always viscometric) they wish
to study. Under this assumption they have inferred from their data
that for the liquids they study

(111 < 0,

(111 + (112 ,r. O.

(2a)

(2b)

Dunn and Fosdick.s however, studied the thermodynamics and sta­
bility of fluids of second grade, i.e., of materials that satisfy Eq. (1)
in all flows (as does, for instance, the Navier-Stokes fluid"), and found
that for Eq. (1) to be compatible with commonly accepted thermo­
dynamic principles the negation of Eqs. (2) must maintain; that is,

one must have

a1((i) ~ 0,

al(0) + (112(8) = °
(3a)

(3b)

at all temperatures 8. Moreover, Dunn and Fosdick showed that any
second grade fluid satisfying Eq. (3) with constant IJ-, (111, and a2 had

* That is, the form (1) with al '" 0 '" az.
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NONLINEAR FLUIDS 45

pleasant stability properties analogous to those long familiar for

Navier-Stokes fluids and that, further, when u; 0'1,and 0'2are con­
stants, if Eq. (Sa) is violated-a-that is, ifEq. (2a) holds-i-while Eq. (3b)

continues to hold, then in quite arbitrary flows inside fixed, small

enough, rigid containers 0, the mean stretching in the fluid, of IAliz
dv, grows without bound. More recently, Fosdick and Rajagopal"
have shown that for the above class of flows a similar physically un­

realistic response still follows if 0'1 < 0 regardless of whether Eq. (Sb)
is satisfied or not; in particular, they show that whenever Eqs. (2)

holds none of the above flows of the model (1) will ever decay to the
rest state.

We take the above outlined mismatch between theory and exper­
iment as demonstrating that the experimenters are not in fact dealing
with a second grade fluid. The question then arises: To which
mathematical class do the particular liquids of the experimenters

belong? Or, less specifically: Which mathematical classes of ma­

terials admit of the data found by experimenters? What we show
here is that unless a certain very interesting "degeneracy" occurs,
thermodynamics seems to preclude any Rivlin-Ericksen fluid of

complexity 2 (see Section 2) from being compatible with the usual

data of rheologists. That is, barring a certain degeneracy, even if we
replace (1) with the much more general hypothesis that

T = - pI + '1'(0, g, AI, Az), (4)

where g is the temperature gradient and where '1' is an arbitrary, frame
indifferent function, the experimental data that leads to Eqs. (2) will

be incompatible with Eq. (4) if Eq. (4) satisfies the principles of

thermodynamics. To describe this degeneracy and this incompati­
bility more precisely, recall that as a consequence of its frame indif­

ference '1' in Eq. (4) admits at g = 0 of the representation

'1'(0, 0, A}, A2) = 0'01 + J1.A l + 0'1A2+ 0'2AI + 0'3A~ + 0'41AIA2

+ A2AII + 0'51AiA2 + A2Ail + 0'61AIA~ + A~AII + 0'71AiA~ + A~Ail,

where J1. = jj,(O, 0, AI, A2) and 0'; = (dO, 0, AI, A2), i = 0, 1, ... ,7, are
isotropic functions of Al and A2• It thus follows (see ref. 5 for details)
that at g = 0 the viscometric functions J1. u , 1T'l, and ( T ~ for (4) are given
by

J1.U = /-lu(K) = f..L + 2K20'4 + 4K40'6,

(T~ = IT'l(K) = K2[20'1 + 0'2+ 41(2(0'3 + 0'5) + 8K4
0'7],

(T~ = (T~(K) = 1(20'2,

 Redistribution subject to SOR license or copyright; see http://scitation.aip.org/content/sor/journal/jor2/info/about. Downloaded to IP:  128.173.125.76 On: Tue, 11 Mar 2014

14:09:01



46 DUNN

where K is the shear rate or shearing and where J..l = il(8, 0, AI, A2 ) and

a; = Cxi(8, 0, AI. A2) , i = 1,2, ... ,7, are evaluated on a viscometric flow
so that Al = K(N + NT) and A 2 = 2K2N TN with N = a 18> b for per­

pendicular unit vectors a and b. The combination I T ~ - IT~ is called

the "first normal stress difference" and is commonly denoted by N 1*;. .

smce

N 1 = 1T2 - IT~= -/(2[20'1 + 4K2
( 0'3 + (5) + 8K4

0' 7],

the fact that experimenters find N 1 >°for small shearings of their
liquids is easily seen to imply, if their liquid is a complexity 2 fluid,
that 0'1 cannot be positive near (8, g, All A 2 ) = (8,0,0,0). In Section

2, however, we show that (see Theorem 1)

&1(8,0,0,·) = &1(8,0,0, 0) ~ 0 (5)

for any fluid of complexity 2 which both satisfies the "reduced dissi­

pation inequality" (shown in ref. 3 to be a consequence of the Claus­

ius-Duhem inequality) and has a local minimum for its Helmholtz

free energy 'It at the rest state. Thus, thermodynamics tells us that

only those complexity 2 fluids with the "degeneracy" al(l}, 0,0, .) ==

ot may be looked to model at all shearings K those liquids possessing

an everywhere non-negative first normal stress difference. This not

only at once strikes down second grade fluids with their constant

material moduli, but also directs our attention toward a very broad
subclass of complexity 2 fluids that has been little looked at by ex­

perimenters or theorists.

Our results depend on a simple, explicit, and delicate linkage ne­

cessitated by thermodynamics between the response functions for

stress and free energy in any complexity 2 fluid. This linkage, like

its earlier, less general form found in ref. 3, seems to have extremely

interesting physical and mathematical implications. Because of this

and because of the historical interest in the form of (1), in Section 3

we take up in detail the thermodynamics of those complexity 2 fluids

for which

T = -pI + ji(B, A1)A1 + (X1(8, A1)A2 + ch(8, AdAi, (6)

* The "second normal stress difference" N2 is then just <TI'

t As our Eq. (16) makes clear, the Helmholtz free energy f will have a strict minimum

at the rest state if Eq. (5) is strict, while if (;:\(11. 0, 0,,) vanishes, then the necessary

conditions for this minimum devolve onto higher-order derivatives of f with respect

to AI' We do not examine these higher-order conditions in any generality here but

it should be noted that the fluids of Sections 3 and 4 certainly admit the simultaneous
vanishing of (''l(B, 0, 0,,) and minimization off at the rest state.
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NONLINEAR FLUIDS 47

(7)

where jL(., .j, a1(-, '), and a2(',') may be arbitrary isotropic functions

of 0 and AI' Such fluids are easily seen to admit of arbitrary shear

thinning and/or thickening of their viscosity and of normal stress

moduli that, as experiments show, vary greatly with the shear rate K.

More particularly, the class of fluids (6) is broad enough to include

"generalized Newtonian fluids" 6-8 (for which 0'1 == °== 0'2, while /.l is

a nonconstant function of IAd 2 ) which have been used not only as a

special model of non-Newtonian fluid behavior but have also been

used to model dilute suspensions.v-?" Indeed, the data on suspen­

sions reviewed by Jeffrey and Acrivos '? constitutes a compelling case

for a nontrivial dependence of /.l on AI; additionally, while Jeffrey and

Acrivos report data only for u, they suggest that neither 0'1 nor 0'2 need

be zero.

We show that for the model (6) thermodynamics requires &1(0, AI)

to depend on A, only through the magnitude of Al so that a1(O, AI)

= a1({J, IAI 12) . Thus, the measurement of at versus the single pa­

rameter IA1 12 for anyone set of flows suffices to determine the de­

formation dependence of 0'1 in all flows. In particular, viscometric

flows alone suffice to completely determine th(O, Ad. Furthermore,

we show that the global (local) minimization of the Helmholtz free

energy at the rest state is equivalent to

J:Z (Xl(O, ~)d~ ~ °
for z € [0,00) [for z e [0, E), E> 0]. It is particularly noteworthy that

Eq. (7) can be satisfied by functions 0'1(8,.) that change sign on [0, 00)

and/or have at(0,0) = O. In addition, while it is no longer true that

at + 0'2 must vanish, we find that thermodynamics implies for certain

subfamilies of (6) that
.....
a1(O, At) + a2(O, AI) --.0

for certain classes of ever-increasing stretching paths At = At(r),

IA1(-r) ! --. a> as T -+ 00.

In Section 4 we examine the dynamic mechanical stability of the

rest state for the fluids described by Eq. (6) by considering the tem­

poral evolution of flows inside a fixed, rigid container fl to the walls

of which the fluid adheres. Even though our problem is highly non-

* See ref. 10 also for a clear articulation of the point of view that "when we deal with

suspensions, it is not always necessary to acknowledge that they are mixtures of particles

and fluid; instead, it is often possible to regard them as homogeneous fluids ...."
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48 DUNN

linear, we are able to show that if the Helmholtz free energy has a weak
global minimum at the rest state and if certain mild growth conditions
are satisfied by the response functions for u., 0:1, and Cl':2, then the
positive definite functional of the velocity field v given by

c{ 1 riA 1

2

}
E(t) = In Ivl2+2pJo 1 al(O,~)d~ dv

decays to zero as t -+ 00. (Here p is the density of the fluid, a fixed
positive number.) This, our Theorem 3, generalizes an analogous
result in ref. 3 (see Theorem 9, Corollary 2) for second grade fluids and,
like that result, suggests that those fluids of (6) for which (7) is not

an identity are better behaved physically and analytically than
Navier-Stokes fluids since for them not only does lvl decay in mean
but so too does a certain non-negative function of IAll.

Finally, we remark that although we do not examine here the
thermal stability of the fluids (6), the general analysis in Section 4 of
ref. 3 is easily particularized to these fluids.

SECTION 2

For a (homogeneous, incompressible) fluid of complexity 2 the
Helmholtz free energy if;, the (symmetric) Cauchy stress tensor T,
and the heat flux vector q are given by

if; = ~«(), g, L, L),

T = -pI + 1'(0, g, L, L),

q = 4(0, g, L, L),

(8a)

(8b)

(Be)

where () is the (positive) temperature, g := grad O(x, t) is the (spatial)
temperature gradient, L := grad v(x, t) is the (spatial) gradient of the
divergence-free velocity v, L := (dldt) L is the material time derivative

of L, and p is a constitutively indeterminate pressure reflecting the
a priori constraint of incompressibility. If we let IR+ denote the
positive real numbers, V denote a three-dimensional inner product
space, and T, TO, and T ~ denote, respectively, the set of tensors,
traceless tensors, and traceless, symmetric tensors over V, then we
have that (J 6 IR+, g 6 V, L E TO, and L 6 TO.* Thus, the domain
ofthe response f u n c t i o n s ~ , 'I',and q is IR+ X V X TO X TO, on which
we will initially suppose them to be continuously differentiable.

• That L and, hence. L must be in TO is a consequence of incompressibility since the
trace of L is just the divergence of v.
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NONLINEAR FLUIDS 49

It is a consequence (for details see ref. 3, especially Theorem 1) of

the Clausius-Duhem inequality that if;, 1',and q may not be prescribed
arbitrarily but, rather, must be such that (i) ;p is independent of g and

L, and (ii) ~ , 1', and q must jointly satisfy the reduced dissipation

inequality; that is, first

1J; = i« L),

and second

'/. «() L). L - 1'«() L L). L _ 4(0, g, L, L) •g < °P'YL , , g, , fJ - ,

(9a)

(9b)

for all (fJ, g, L, L) E ffi+ X V X TO X TO, where p is the constant, uni­

form density of the fluid, "." denotes an inner product operation," and

if;L E TO denotes the partial derivative of ~ with respect to L. Equa­

tions (8) and (9) are the starting point of the current work.

We see that if we set g = L =°in Eq. (9b) then p ~ d ( ) , 0)· L::5°for
all t, E TO and hence

if;dO, 0) = 0. (10)

Ifwe now return to Eq. (9b), setg = 0, and replace L with xL, we find

that

h(x) == pif;dfJ, xL) . L - 1'(8, 0, xL, L). (xL) ::5 0

for any real number x. But by Eq. (10) we see that h(O) = °so the

function h has a local maximum at°and, therefore, h'(O) = °while

h"(O) ::5 0, i.e.,

Pif;LL((J, 0) . (L @ L) = 1'(0,0,0, L) . L, (lIa)

and

l / 2 P ~ L L L < ( ) , 0) . (L @ L ® L) ::5 1'dfJ, 0, 0, L)[L] . L, (lIb)

where we have supposed that if;(8,.) and 1'(0,0,., L) are, respectively,

three times and two times continuously differentiablet and where @

denotes the tensor product operation.

When taken together Eqs. (10) and (Lla) are particularly inter-

• If trt-) denotes the trace operator on T, then we have A· BE trAB T for all A and

B, where B T is the transpose of B. Also, we then set IA I E (A • A) 1/2 for the norm of

any tensor A.
t A more delicate analysis of Eqs. (9) reveals that Eqs. (11) in fact hold if 1'(8, 0,.,

L) is just continuously differentiable and if fd6, .) is twice differentiable at O. See
also Corollary 1 of Theorem 1 in ref. 3.
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50 DUNN

esting: Eq. (10) asserts that a state of local rest (i.e., L =0) provides

a stationary point for the Helmholtz free energy .J;(O, .),while Eq. (lIa)

shows that the character of this stationary point (maximum, mini­
mum, or saddle) for the free energy is completely governed by the

response function for the stress through the form

T(O, 0,0, L) . L, (12)

assuming that this form does not vanish identically. Moreover, Eq.

(Ll.a) also tells us that the form (12) must be linear in L.
In addition to the thermodynamic restrictions, Eqs. (10) and (11a),

which were established in ref. 3, there are also certain restrictions
placed upon the response functions f, 1', and q by the principle of

frame indifference.f In particular and as is well known," the function
1'(8,0, " .) must be of the form

1'(8,0, L, L) =1'(8,0, AI, A2) = aol + J,LAI

+ a lA 2 + a2Ar + a3A §+ a4lAI A2 + A2AII
+ a51AyA2 + A2Aii + a6IAIA~+ A~Atl + a71AiA~ + A~Ail, (13)

where Al and A2 are, respectively, the first two Rivlin-Ericksen

tensors and are given by

Al = L + LT, (14a)

A2 = Al + AlL + LTAl =L + LT + AlL + L TAl, (14b)

and where CXi = ai (8,0, At. A2) , i = 0, 1, ... ,7, and J,L = ji(O, 0, AI, A 2)

are isotropic functions of the symmetric tensors Al and A2.* Note

that, by Eq. (14a), Al is just twice the stretching tensor of classical
hydrodynamics. Note also that since Land t, are traceless, it follows

from Eqs. (14) that trA2 = trAy and that, therefore, for each Al E T?
the domain of 1'(0, 0, AI,') [and, hence, of ji(O, 0, AI,') and ai(8, 0,
At. .)) is T~ + (1/3)(trAr)l. We further note that if we adopt the usual
normalization that l' be traceless then, by Eq. (Bb), the negative mean

stress and the "hydrostatic" pressure p will coincide and moreover,
by Eq. (13), ao will then by uniquely determined by the ai, i = 1, 2,

... ,7.

* We remark that additional terms must be added to the right-hand side of Eq, (13)

to obtain the general, frame indifferent representation of 1'(0, g, L, 1'.)when g "'"O. See,

in particular, the study by Wang. l1 We also note that the problem of determining the

continuity and smoothness of the functions Ii and 0<; in terms of the continuity and

smoothness of l' (and so, of 1') is currently unsolved. Here we adopt the usual practice

of postulating whatever degree of smoothness we require of jl and the ai. In fact, with

the exception of Eq. (11b), it suffices for our analyses that they be continuous.
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NONLINEAR FLUIDS 51

If we now couple the thermodynamic restriction in Eq. (lla) with
the consequence of Eq. (13) of frame indifference, we obtain

Theorem 1: For any fluid of complexity 2 the response functions

al and a3 of the representation (13) must satisfy

alee, 0, 0, A2) = al(lI, 0, 0, 0),

a3(B, 0, 0, A 2) = 0,

(15a)

(15b)

for all tensors A 2 6 T2, the domain oraice, 0,0, .). Furthermore, the
Helmholtz free energy must satisfy

Pif;LLCB, 0) • (L 0 L) = l!2al(O, 0, 0, O)(L + LT) . (L + LT) (16)

for any two tensors Land L in TO. A fortiori, no saddle point be­

havior is possible for ~((},.) at °unless al(O, 0, 0, 0) =0, while if;(O,.)

a local minimum (maximum) at °implies that aI(e, 0, 0, 0) ~

0(:50)-this minimum (maximum) being strict on TZ if al(O, 0, 0, 0)

> O(<0).

If one adopts the standard thermodynamic belief that the Helm­
holtz free energy should be a minimum in equilibrium (i.e., when L
= 0), our theorem then tells us that it is impossible for al(e, 0, 0, .) =

alee, 0, 0, 0) to ever be negative for any realistic fluid of complexity
2. Furthermore, it is then clear from our discussion in the Intro­

duction that if the first normal stress difference N 1 is to be positive
for all small enough shearings then the only possible behavior for al

is aI(8, 0, 0,,) =' O. By Eq. (16), ~(8,.) will then be extremely flat at
the stationary point L = 0.

Proof: Ifwe put L = Oin Eqs. (13) and (14) we find that

t(8, 0, 0, L) = aol + aI(L + LT) + 0:'3CL + LT)2 (17)

for any L 6 TO and where now ai =ai(e, 0, 0, L + L T) for i =0, 1, and
3. It thus follows that the form (12) is given by

1'(8, 0, 0, L). L = 1/2al(O, 0, 0, L + LT)(L + LT). (L + LT)

+ 1!2a3(O, 0, 0, L + LT)(L + LT)2. (L + LT) (18)

for any Land L in TO, and, as we have seen, this expression must be
linear in L. In particular then we must have 1'(0,0,0, xL).L =x1'(B,

0,0, L).L for any number x, i.e.,
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52 DUNN

al(O, 0,0, xN)xN· M + a3(0, 0, 0, xN)x 2N2. M

= xlal(O, 0, 0, N)N . M + aJCO, 0, 0, N)N2. M}

for any number x and any two tensors M and N in T~. Equivalently,
we see that

al«J, 0, 0, xN)N . M + a3(O, 0, 0, xN)xP· M

=al(O, 0, 0, N)N· M + a3(0, 0, 0, N)P· M (19)

for any number x ~ 0, for any two tensors Nand M in T~, and where
P = P(N2) == N2 - lf3(trN2)l is the projection of N2 E T; onto T ~ .

Now select any NET? for which N is not parallel to P(N2); that
is, by the lemma below, select any NET?, with three distinct eigen­
values and let

We see that

P(N2) . M = !PI2N. P - (N· P)p· P =°
and

N. M = IPI 21NI2 - (N· P)2 > 0,

where the inequality is just the Cauchy-Schwarz inequality for the
nonparallel tensors Nand P. Ifwe enter these choices for Nand M
into Eq. (19) we thus find that

al(O, 0, 0, xN) = al(O, 0, 0, N)

for any number x ~ °and for any N E T~ with three distinct eigen­
values. But any element N E T~ may be reached as a limit of a se­
quence in T~, each term of which has three distinct eigenvalues and
so, by the continuity of at(O. 0, a. '), we have shown that

(20)

for any number x ~ 0 and any tensor N E T~. Upon letting x-+-o

and again invoking continuity, we see that Eq. (15a) holds.
If we now return to Eq. (19) and use Eq. (20) and take M =

P(N2)( ~ °if N ~ 0) we find that

x adO, 0, 0, x N) = (x3(0, 0, 0, N)

for all x -,;6. °and for all N E T~ - [O] which, since (x3(0, 0, 0, .) is con­
tinuous at 0, can only hold if Eq. (15b) holds.
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To finish the proof we merely note that Eq. (18) has now become

1'(8,0,0, L)·L = (1/2)al (8,0,0, O)(L + L T).(L + LT) which, by Eq.
(lla), means Eq. (16) holds. •

Lemma: Let N be any tensor in T ~ and let P = P(N2) =0 N2 ­

(l/3)(trN2)1 be the projection of N2 onto Tr; then Nand P(N2) are

parallel if and only if at least two eigenvalues of N are equal.

Proof: The result is trivial for N = 0 so we first suppose that N rf

oand is parallel to P(N2). In this case P(N2) = AN for some number

Aand thus N2 - (1/3)(trN2)1 = AN or, in terms ofthe eigenvalues ni,

i = 1,2,3, of N,

n; - 1/3trN2 = Ani.

We thus find that n; - nJ = A(ni - nj) for any i and j and that,
therefore,

n; + nj = A

foranyi and j with n, rf nj. Now suppose that, say, nl rf n3andnl

rf n2, then nl + n3 = A = nl + n2 so n3 = n2 and two eigenvalues of
N are equal.

If, on the other hand, N E Tr has two equal eigenvalues, then N

must be of the form

N = nla ® a + b ® bl- 2nc ® c,

for three orthonormal eigenvectors a, b, and c and for some number

n. Thus,

and

P(N2) = N2 - 1/3(trN2)1

= n 21a ell> a + b ® b} + 4n2c
@ c - 2n 21

= -n2la ® a + h @ b] + 2n zc ® c

=-nN,

and P(NZ) and N are parallel as claimed. •

In Section 3 we shall see that the reduced dissipation inequality,

Eq. (9b), implies further restrictions on the forms of;P and l' for a

certain subclass of complexity 2 fluids. Before turning to these ad­
ditional restrictions we collect some simple observations that follow

from our general analysis above.
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First, we recall that in addition to the representation formula (13)

for the stress, the principle of frame indifference also implies" that
the response function ;"'(0,.) is of the form

(21)

where Al is as in Eq. (14a) and where ;j;(0, .) is an isotropic tensor

function on T~. As a consequence of Eqs, (13), (16), and (21), Eqs.

(10) and (11) become the assertions that

fAl(8,0) = 0,

pfAIAl(O, 0) . (AI ® AI) = lfzT(O, 0, 0, AI) . Al

= l/Z(xl(O, 0,0, O)Al· AI,

pfAtAIAt(f), 0) . (AI e Al e AI) .:5 TA1(f), 0, 0, AI)[AI] . AI,

for all Al and Al in T~.

Second, if we apply the identity h(l) - h(O) = f6h'(~)d~ to the

function h ( ~ ) =1'(0, 0, ~L, L).L, we find that the stress power at g =
0,1'(8,0, L, L).L, satisfies

1'(8,0, L, L) . L = 1'(8,0,0, L) . L + 1:1 Tdf), 0, ~L, L)[L] . Ld~

=p;"'Lde, 0) . (L ® L) + ji,(O, 0, L, L)[L e L],

where we have used Eq. (Lla) and where we have defined the "vis­

cosity tensor"

jL(O, 0, L, L)[A e B] = J:l1'dO, 0, ~L, L)[A] • Bd~

for A and B in TO. We note that by Eq. (llb)

jL(8, 0, 0, O,)[L e L] 2:: °V- L E TO.

SECTION 3

In terms of the representation (13), we now consider fluids of

complexity 2 for which, at g = 0, i"i't =0 for i 2:: 3 and 'ii, aD, ab and (xz

depend only on°and AI. i.e.,

1'(8,0, L, L) =1'(0,0, AI, Az) = aol + JLAI + alAz + azAr, (22)

where JL = jl(O, 0, AI, Az) = ~«(}, AI) and at = at(O, 0, AI. A z) = ai«(},
AI), i = 0, 1, 2 [note that tr1' = O==> ao = -(1/3)(&1 + a2)trAY]. Fur-
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(23a)

thermore, in addition to the continuity of f1 and ai, i =0, 1, 2, we now

only require that the Helmholtz free energy it- be once continuously

differentiable. This subclass of complexity 2 fluids thus admits of

the arbitrary dependence of JL, at. and a2 on the stretching (1/2)At.

and so clearly contains all "generalized Newtonian fluids" as well as

all fluids of second grade. Moreover, as was found in ref. 3 for second

grade fluids, we will shortly find that all those complexity 2 fluids

satisfying Eq. (22) have the property that al(8, Ad determines it-(fJ,

AI) up to a function of temperature alone.

Ifwe substitute Eq. (22) into the reduced dissipation inequality Eq.

(9b) and use Eq. (14) we find that

- • - 2 - •
P1/!Al(fJ, Ad· Al - lf2l.u(e, AI)trAI+ al((l, AdAI . Al

+ [alee, AI) + (x2(O, AI)]trAil ::; °
for all Al and Al in T~ and where we have used Eq. (21). Since this

inequality is linear in Al we conclude that it can hold if and only if

both

pfAl({)' AI) • Al = 1!2~1({)' AI)AI . Al

for any Al and Al in T~ and

;1(fJ, AI)trAr + lai.({), AI) + a2(8, AI)}trAi ~ 0 (23b)

for any Al in T~. The implications of Eq. (23a) form the content of

Theorem 2: The response functions if; and al satisfy Eq. (23a) if

and only if for all Al E T~

(24a)

(24b)

A fortiori, u», .) has a local (global) minimum at Al = 0 if and only

if

.1: z al(8, ~)d~ ~ 0 (24c)

for all Z E [0,0),0> 0(0 = co). This minimum is strict if Eq. (24c)

is strict for Z ~ o.

* cr. Eq. (5.13) of ref. 3.
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We see then that thermodynamics permits &1 and if; to depend on
only the magnitude of Al and that, moreover, the dependence of if; on

IAll is completely determined by that of al' The result of (24c) is
particularly interesting since it tells us that for the fluids considered

here al may indeed take on negative values and still have a free energy
which is a minimum in equilibrium-it is not necessary that al itself

always be positive, only the integral of al (8, .) need be positive. We
also note that (24c) implies that

(25)

while if (25) is strict, then (24c) is also strict on some interval (0, E),

f > O.

So little is known about the deformation response of the free energy for nonclassical

fluids, it is perhaps of interest to note yet another simple consequence of Eq. (24b).

Let MET? - 101 be a point where f(lJ, .) has a local minimum (maximum); thus {Jt(0.

M) :s ('=~_) ij;(IJ, AI) for all Al near M and, by Eq. (24b), this means that J3'a(O, ~)d~:s
(~) nad6, O d ~ for all z in some neighborhood of m = IMI2 "" O.

Equivalently,

for all z near to m, while h (m) = 0; therefore h'(m) = 0 and h n (rn) ~ (:S) 0, i.e.,

Furthermore, if <t) holds with a strict inequality then ~ ( o , .)will indeed have a strict

local minimum (maximum) at any tensor M E TZ with 1M 12 = m "" O. Thus, for each

fixed 0, the places where the graph of al(0, ~) crosses the ~ axis determine the nonzero

tensors for which f(O,.) is stationary and if (). al ~ 0 at such a crossing then the

stationary value of f(O,.) is a minimum (maximum) for an increasing (decreasing)

crossing. This suggests that the fluids examined here admit of a mechanism for the

successive interlacing of locally stable and locally unstable classes of stretchings (1/2)

Al and, if Eq. (24c) holds for all Z E [0, "'), the first such class on nonzero stretchings

will necessarily be locally unstable, i.e., will render flO, .) a local maximum. Interesting

possible connections with the problem of turbulence are thus brought to mind but we

do not pursue these matters here.

Proof: We begin the proof of Theorem 2 by showing that if;(8, AI)

can depend on A, only through lAd. To do this let Moand Ml be any

two tensors in r?with IMol = IM11; we will show that if;(6, Mo) = ;jJ(fJ,

Md. Indeed, since Moand Mllie on the same sphere in r? (of radius
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IMoIand centered at 0) and since this sphere is pathwise connected,*
there exists a continuously differentiable path M(T) in T~ such that

M(O) = Mo, M(l) = MI, and IM(T) I = IMol for all T E [0,1].* For
such a path we see, by Eq. (23a), that

d - - .
dT t[O, M(T)] = ~Al[O, M(T)]' M(T)

= %a1[0, M(T)]M(T)' M(T)

= !&tlO, M(T)] ~ I M(T)l2
4 dT

= 0,

since IM(T)I is constant and whereM(T) == (d/dT)M(T). Weconclude

then that ~ [ O , M(T)] is constant so, as claimed,

~ ( O , Mo) = v,,(O, M 1) (26)

for any two tensors Moand M 1 in T~ with IMol = IMd.
It follows from Eq. (26) that if we select any tensor G in T~ with IG I

= 1 and if we define

f(O, m) == if;(O, m 1/ 2G ) (27a)

for m E [0,(0), then

~ ( { ) , M) = v,,(8, IMIG) =f(O, IMI2) (27b)

for all MET? Furthermore, it is clear that the function ~ ( 8 , .) is
continuously differentiable everywhere with the possible exception

of 0 and, indeed,

Omf«(J, m) = !f2m- 1/2if;Al(O, m 1/ 2G) · G

for all m > O. Thus, by Eq. (23a) we have that for m > 0

* Let m;e;Cillel, 'Y-nosum, bethe spectral representation ofM')', l' = 0, 1, where both

the orthonormal bases leI. e~, eJfare right-handed. Let Q( r) be an orthogonal tensor

function that rotates let e~, eRI into leL e~, e~l, i.e., Q(.) is smooth on [0, 1] with Q(O)

= 1 andQ(I)e? = e},i = 1,2,3. Thuse.fr] ssQ(T)e?,i = 1,2,3,will define an ortho­

normal basis. Since Moand M 1 are tracless we see that ~ t = l m] = 0, 'Y= 0, 1, and hence

each eigentriad ImI, m~, m:lllies in the plane II = l(x, y, z)lx + y + z = 01 in IR3.
Furthermore, since IMol = IMd, we also see that

3 3

I: (m?)2 = I: (mf)2,
i=l i·l

i.e., the triads ImI, m~, m:ll also lie on the same circle ('j in the plane n. Since this circle

is certainly pathwise connected, there are smooth functions mi(r) on [0, 1], i = 1,2,

3, such thatmj(O) = m~, fflj(l) = mL and Iml(T), m2( T), m3(r)\ E @ () II. The desired

path M(T) connecting Mo to M1 may now be taken to be M(r) = mi(r)ei(T) 0 e,(r).
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- - 1
2m l/2o

mJ/;(O, m) = J/;Al(O, m l/2G)· G = 2p al(O, ml/2G)(m l/2G) . G

or, equivalently,

O m ~ ( 8 , m) = l:..- ch(8, ml/ZG) V m E (0, <Xl).
4p

Therefore, by the continuity of alee, '), we see that l i m m _ o o m ~ ( O , m)

exists [and equals (1/4p)al(O, OlJ and so, by a standard mean value

type of argument, we know that "'(6, .) is differentiable from the right

at 0 [with o m ~ ( O , 0) = (1/4p)al(6, 0»).*
If we now combine Eq. (23a) with Eq. (27b) we find that

112a.I(O, M)M· M: = p~Al«()' M)· 1\1 = pi)m~«(), IMIZ)2M. 1\1

for any two tensors M and M: in TJ. Clearly then al«(), M) = 4pi)m~«(),
IMIZ) for every M E T~ and so al(e, M) depends on M only through

IMI. Thus, with

al«(), m) =: (XI«(), ml/ZG), m e [0, <Xl),

we have shown that

l.- al(8, IMIZ) = i)m~{e, IMI2) = l.-al{8, M) V M E TZ
4p 4p

which, with Eq. (27b), establishes Eq. (24). •

By Theorem 2 all that remains of the reduced dissipation inequality

is the restriction in Eq. (23b), i.e., that for every Al E n
;t(0, AI)trAi + PI(e, IAII Z) + &z(8, AI)}trAr ~ 0, (28)

where we have used Eq. (24a). Now 11(8, A l) and &z{(), AI) are iso­

tropic functions of A l and therefore we may use standard represen­

tation theorems- to write 11(8, AI) = /ice, IAllz, trAy) and ~ 2 ( 8 , AI) =

az(O, IAII2, trAr). Thus, the inequality (28) takes the form

fi(O, IAd z, trAr)IA112

+ pI(O,IAI12) + azUJ, IA l lz, trAr)}trAy ~ 0 (29)

for Al E T2.

* One can show that differentiability of\fW•.) at 0 is equivalent to the existence of

!fAtA,(O,0) and that, indeed, ()mlj,W, 0) = (1/2){h,A,(O, 0)· (G 181 G). This is a special

case of a more general result obtained in ref. 3 that a continuity assumption on the stress

(here, on all yields a differentiability condition on a derivative of the free energy [here,

on ~Al(8, .)].
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To analyze (29) we need a result of Fosdick and Rajagopal? who
showed that

for any tensor Al in T? * Moreover, since trAy is a continuous
function of AI, it follows* that on each sphere IAll = const, trAy
ranges over the entire interval [-(1/yI6)IAl I3, (l/yI6)IAI 13]. Wesee
then that the domain of"ji(O,',') andaz(O,',') is the closed wedge in
]Rz given by

W = {(X,Y)IX ~ 0, - ~x3JZ ~ Y -s ~x3J2},

and that now the inequality (29) may be put in the form

/i(8,x,y)x + {al(O,x) +az(O,x,Y)}Y ~ 0 (30)

for all (x, y) E W.
Ifwe sety = 0 in (30) we find straightaway that/i(O, x, 0) ~ 0 for all

x ~ 0, i.e., since trAy= 3 det Al (by the Cayley-Hamilton theorem for
Al E T?), we have that

for every Al in T? with at least one eigenvalue equal to zero. Next,
replace yin (30) with -y to find

Pl(O, x) + a2(O, x, -Y)IY .::s "ji(B, x, -y)x (31)

for all (x, y) E W. Thus, ifa2(B, x, y)y s a2(8, x, -y)y on W (see
below), then the inequalities (30) and (31) together imply that

-/i(8, x, y)x ~ lal(8, x) + a2UJ, x, y)}y .::s "ji(8, x, -y)x

on Wand so, in particular,

-/i(8, x, Iy i) < - (8 ) + - (8 ) < "ji(8, x, - IyP (32)
Iyj/x _al ,x a2 ,x,y - Iyl/x

for all (x,y) in W with x 7"" 0 7"" y. Thus,if(x,y) = [X(T),y(r)] is any

* The estimate is sharp since equality results if Ai = 1/y'6 (3e ® e - 1), lei = 1.
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curve in W for which

DUNN

IY(T)I-. cc as T _ cc *
X(T) ,

and if ji[8, X(T), ± IY(T)1l stays bounded on such curves, then
al[8, X(T)] + az[O, X(T), y(T)] - 0 as 7 - "", i.e.,

al[O,A l(7)] + ;Xz[8, A1(7)] = adO, IAl(7)12]

+az[O, IA1(7)1 Z, trAN7)]-' 0

as T -.. 00 for all stretching paths A1(·): [0,00) - T~ for which

jtrAr(T)I t

A
Z( ) - 00 as T - 00.

tr 1 T

Lastly, we observe that in the special case when "ji(O, x, y) and
a2(O, X, y) are independent ofy the estimate (32) automatically holds
and we may take Iyl = (1/v6")x 3

/
z to find that

- v'6"ji(Oil~tI2) 5; al({J, IAd Z) + az(O, IAd Z) 5; v ' 6 j i ( e i l ~ 1 1 2 ) ,t

for alllA1 1 7"'= °and where now Jt = ji(B, IA1 I
Z) is always non-negative.

In particular, we see that if the viscosity f.' is bounded then {Xl + (Xz

-OasIAll-oo.
The condition thata2((:1, x,y)y $ a2(1I, x, -y)y on W is equivalent to a2(1I,x,y) s

a2({I,x, -y) on Wfory ~ O. To interpret this let x = IAlj2andy = trA¥ = 3 dst A,

for A I .6 T~ so that y ~ 0 if and only if exactly two eigenvalues of Al are non positive.

Since ld8, AI) = a2(1I, IAd 2, trAY), we see that we are requiring that ~ 2 ( 1 I , AI) $

~h(6, - AI) for every Al 6 T2 with exactly two nonpositive eigenvalues, i.e., each uni­

axial elongation Al is to yield a value of a2 no larger than that yielded by the uniaxial

contraction -AI.

SECTION 4: ASYMPTOTIC MECHANICAL STABILITY

Suppose we now enclose one of the fluids of Section 3 in a rigid
container Q which, up to time t = 0, we shake in an arbitrary fashion
and then hold fixed for all t ~ O. Assuming that the Helmholtz free

• Note that since IyI/x $ 0/v'6) xl/2 for (x, Y) 6 W, x 'l"- 0, this limit condition
means that x (T) - 00 with T and that Iy(T) I must grow with T at a rate larger than x (T)

and less than or equal to (1/v'6)x 3/2(T ) .

t Note that this is satisfied by all non constant straight line paths Al (T) = A + TB,
A and Bin T ~ .

I This is bound on 011 + a2, should be compared with the bound (4.15c) ofref. 12 for
third grade fluids.
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[vfx, t)12 and

energy has a weak global minimum at the rest state, we now formulate

rather mild hypotheses on the response functions for Jl, al, and C<'2
sufficient to ensure the decay to zero as t -+ 00 of the positive definite
functional of the velocity field v(·, .) given by

E(t):= L {Iv(x, t)1 2 + 2~ 1: IAl(:X,tj1

2

(X1(B, ~)d~}dV, (33)

where, by Eq. (14a), A1(x, t) == grad v(x, t) + grad v(x, t)T. Thus,
even though the stress-deformaton response of our fluid is highly
nonlinear, we see that its rest state is strongly stable in that any initial
disturbance necessarily evolves over time in such a way that both

J:
IA!lx,tjI2

(X1(B, ~)d~
o

tend in mean to zero. Like the less involved analyses presented in
ref. 3 for second grade fluids, the results here suggest that those fluids
of Section 3 for which the free energy has a strict global minimum in
equilibrium are much better behaved physically and analytically than
Navier-Stokes fluids since not only does Ivl 2 decay in mean but so
also does the function of grad v, fJAl I2(X1(B, ~)d~. However, unlike
Corollary 2 of Theorem 9 of ref. 3, our results do not yield the expo­
nential decay of the functional E (t) as t --+ 00.

Before starting the analysis we eliminate the temperature Bfrom
our considerations-it will then appear as essentially a parameter-by
either supposing that the temperature field is uniform over Q and
constant in time for all t ;::: 0, or by supposing that for all B, L, L, and
g,

l'(e, g, L, L) = C<'ol + JlA I + C<'IA2 + C<'2AY,

where jJ. = Il(B, AI) and Cti = ai (B, AI)' i = 0, 1, 2, with 00&1(£), A l ) :=0.
In either case all of the results and restrictions of Section 3 will then
apply to the response functions of the fluid throughout its motion in
Q on [0, (0) and (see below) we will have that (dldt) fJAl l

2 (XI(B, Od~

= (XI(B, IA112)IAd
2 for all t ;::: O.

Now, throughout its motion in the rigid container Q, the fluid must
satisfy the balance of linear momentum, i.e.,

div T + ph = pv, (34)

where b = b(x, t) is the specific body force per unit mass acting
throughout the fluid. So, if we form the scalar product of Eq. (34)
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with v, integrate over Q, use the divergence theorem and conservation

of mass, we find the familiar power theorem:

!i f .!.plvI2dv+ f T • L d v = f v.Tnda+ f pv.bdv.
dt In 2 In Jon In

Therefore, if for t ~ 0 we suppose that the fluid adheres to the sta­

tionary walls of the container Q and that b is derivable from a po­

tential, then we have that

!i f 1:. plvl 2 dv + fT. L dv = 0 ¥ t ~ 0. (35)
dt JfI. 2 JfI.

We see next that, by Eqs. (22) and (14) the stress power is given by

T • L = (1/2) T . Al = (1/2)!J.l.IAl I2 + alAi' Ai + (al + a2)trA~I.
Therefore, since here al = al((l, Ai), we may apply Eq. (24a) ofThe­

orem 2 to write

(36)

since, as discussed above, ooatfJ '= °for the process we are considering.
If we substitute Eq. (36) into Eq. (35) and use conservation of mass

and the fact that p is constant we see that

!i c {I vl 2 + 1- c IA1I
2

al(e, ~ ) d ~ } dv
dtJa 2pJo

+ f .!.1p:IAl I2+ (al + a2)trMldv = ° (37a)
Jap

for all t ~ 0, i.e.,

!!. E(t) = - f .!.{~IAlI2 + (al + a2)trA~ldv .:5: 0, (37b)
dt Jap

where we have used the definition Eq. (33) and the thermodynamic

inequality (23b) and where, by (24c) of Theorem 2, E(t) is a positive

definite functional of the velocity field if the Helmholtz free energy

as a weak global minimum at equilibrium.

By (37b) we see that the functional E(t) is nonincreasing on [0, co ]

and indeed, by Eq. (23b), can only cease decreasing if the non-negative

form J.l.IAl I2 + (al + a2)trA~ vanishes throughout Q. This suggests
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that if we can hound .uIAd2 + (al + (2)trA1 away from zero in an
appropriate fashion then we will ensure that the energy dissipation
throughout the fluid is extensive enough for E(t) -- 0 as t -+ co. In
fact, for our fluids we have

Theorem 3: Let v(',·) be the velocity field of any flow which takes

place inside a stationary rigid container Q under the action of a

conservative body force field with vex, t) IXE ilf! = 0 for all t ~ O.
Suppose that the Helmholtz free energy has a global minimum in

equilibrium, that the response functions ;1, th, and &2 are such

that

0::5 q,(iAl I2) ::5 Jr(O,AdIA l I2

+ 1&1(0, AI) + ih(o, AlHtrAt -If Al E T~ (38)

for some continuous, convex function c/>('): [0, co) -+ [0, co) which

vanishes only at 0 and, lastly, suppose that ih[O, A l (· , .)] =

lil[O,IAl(·, .)1 2] is bounded above on Q X [0, (0), where Ajf-,») =grad
v(',·) + grad v(', .) T. Then, with E(t) as in Eq. (33), we have

E(t) -Oas t -- 00.

The condition thatad8, IAl(·, .)12] be bounded above on Q X [0,00)

will be satisifed if either al(0,x ), x ~ 0, is bounded above (a material
restriction) or if IAl(x, t)12, (x, t) 6 Q X [0, 00), is bounded (a flow
restriction). To analyze the restriction (38), consider the function

O(B, x) = inf ljL(O, x, y)x + [alee, x) + a2(B, x, y)]yl,
YEI(x)

where lex) = lYllyl ::5 (l/y'6) X 3/ 2} and jL(O, " '), alee, " '),
anda2(O,',.),definedonthewedge w= U x ~ o l x l XI(x),areas in (29)

and (30). It may be shown that 0(0, .) is continuous as well as, by (30),
non-negative and it is easily seen that (38) is equivalent to the re­
quirement that

0::5 c/>(x)::5 b(B, x) V x 6[0, co) (39)

for some continuous, convex function ¢(.) which vanishes only at O.
Setting aside the dependence of 0((J, x) on the valuets) of°taken on
in the process-and to do this is essentially to impose a uniformity
requirement-what (39) asserts is that the non-negative function 0(')

=0(0, .) is minorizable by a continuous, non-negative, convex function
that vanishes only at O. This is a fairly mild requirement on b(·); in­
deed, (39) necessitates that (i) o(x) = 0 only if x = 0, and that (ii) for
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N E (0, co) there exists aN> 0 such that aNX :S o(x)for all x E IN, co]

(see lemma A.I of the Appendix). The first of these conditions is just
a strengthening of the thermodynamic requirement (30) while the
second condition is, in essence, a growth requirement at co on 0(.), i.e.,
o(x) must go to infinity with x at least as fast as some straight line GNX,

aN> O. Moreover, it may be shown that the above two conditions
also suffice for 0(-) to satisfy (39). For Theorem 3 we now have the
following:

Proof: By Eqs. (37b) and (38), we see that

_!!- E(t) =! r lJLIAl l2+ (al + a2)trMldu
dt p JQ

~! r ¢(IAI 12)du
p In

~ ; 4 > ( ~ J:IAIIZdU), (40)

where the final inequality follows from Jensen's inequality-" for the
convex function ¢(.) and V denotes the volume of Q.

Next, note that for any positive number N

1: IAliz du = N 1: IAdz du + (1- N) J: IAdzdu

~ 2N r Ivl2 du + (1 - N) r IAliz du,
c In In

since f 01 grad viz du = (1!2)jnlgrad v + grad vTlzdu for any smooth
vector field v vanishing on 00 with div v = 0 throughout Q and since,
by Poincare's inequality, f 01 V 1

2 do :S c f 01 grad v 1
2 du for any smooth

vector field v vanishing on 00, where c = c(Q) is a positive constant
depending only on the domain 0. Thus, we see that

r IAl12 du ~ 2N r {IVI2 + 1 - N c1AdZ}dV
In c In 2N

2N
~ -E(t), (41)

c

where for the final inequality we require, since E(t) is as in Eq. (33),
that
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which will surely hold if

J:

1Al 12 I-N J:IAlI21-N
a(O, ~)d~:::; --pcIAtl 2 = --pc df

o NoN

In particular then, the estimate (41) will hold if

I-N
a l ( O , ~ ) .s----;:;- pc v ~ E [0, suplAl 12(".)

which, since [(lIN) - 1] ! CD as N \. 0, will surely be the case for
an appropriate choice of N = Nt > °given our hypothesis that
alIO, IAI12(.,.)] is bounded on Q X (0,00).

Now 4>(') is convex, non-negative, and vanishes at 0; it thus follows
(see lemma A.l of the Appendix) that cjJ (.) is monotone nondecreasing
and therefore, by the estimate (41),

rP (b J: IArl 2 dV) ~ rP [2~t E(t)] v t ~ 0, (42)

where we have used the fact that E(t) E [0, (0) for all times t, since the
Helmholtz free energy has a weak global minimum in equilibrium.
If we combine the estimates (40) and (42) we reach the differential
inequality

d V [
2N

t l-E(t)+-cjJ -E(t) ' : : ; O v t ~ O ,
dt p Vc

which governs the evolution of the functional E(t) throughout the
flow. The theorem now follows at once if we set f(·)

(VIp)eJ>[(2Nt/Vc)(.)] and apply lemma A.2 of the Appendix. •

The support of the Research Initiation Fund of the Engineering Science and Me­
chanics Department, Virginia Polytechnic Institute and State University, is gratefully

acknowledged.

APPENDIX

For completeness we include here the following two useful lemmas.
The first consists of some simple and well-known observations about
convex functions; the second concerns the behavior at infinity en­
forced on any non-negative function E(t) satisfying a rather simple
and common differential inequality.

Lemma A.l: Let f('):[O, 00) --- lR be convex with f(O) = O. Then

z-l fez) is a monotone nondecreasing function of z on (0, 00).
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If, in addition, f(·) is non-negative then f(·) is also monotone

non-decreasing on [0, (0).

Proof: The convexity of f(·) means that flap + (1 - a)q] ~ af(p)

+ (1 - a)f(q) for all a E [0,1] and for all p and q in [0, (0). Ifwe take

q = 0 we find thatf(ap) ~ af(p) since f(O) = O. Thus, for 0 ~ Zl <
Z2 < co, we may take p = Z2 and a = ZdZ2 to find that

Zl
f(zl) ::s - f(z2),

Z2

which gives the first half of the lemma and also gives, if f(·) is non­

negative, the second half since then (ZIiZ2)fCZ2) ::s fCZ2). •

As a consequence of lemma A.I we see that for any e > 0, fez )/Z ::s
fCd/£ for all z in (0, E), i.e., fez) ::s kz, k '= f(E)/E, for all Z E [0, d. This

means that continuous, non-negative, convex functions f(·) on [0, (0)

which vanish only at asatisfy the hypotheses of

Lemma A.2: Let E(·):[O, (0) - [0, (0) be smooth and satisfy the

differential inequality

d
dt E(t) + fIE(t)] ::s 0 ¥ t ~ 0,

where fH:[O, eo ] -+ [0,(0) is continuous, vanishes only at 0, and meets

fez) ~ kz» on some interval [0, E), £ > 0, with k > 0 and p 2:: 1.

Then,

E(t)-O as t--C)).

Proof: Since (d/dt)E(t) .s -fIE(t)] -s 0, the non-negative function

E(t) is monotone nonincreasing and possesses a limit as t - «>.

Furthermore, it is thus clear that if E(t i) = 0 for any finite tt, then

E(·) will vanish for all later times and the lemma holds trivially. We

thus suppose that E (t) > 0 for all r e ]0, 00) and therefore our differ­

ential inequality takes the form

(d/dt)E(t) < -1

f[ECt)] - •

Equivalently,

d
dt FIE(t)] .:5 -1,

and therefore, for all t ~ 0,

F[E(t)] s F[E(O)] - t, (Al)
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where F(·):(O, Q» -- IR is defined by

c: d~
F(z) == J20 fW

for Zo any fixed value in (0, (0).

Since {(.) is continuous and positive on (0, (0), we see that F(zo) =

0, F(z) > 0 ifz > Zo, and F(z) < 0 if z < Zo;moreover, F(·) is smooth

and strictly monotone increasing on (0, 00). Furthermore, it also

happens thatF(z) ~ -00 asz ~ 0; indeed, sincef(z) ~ kzP on [0, E),we

see that

i< d ~ (" d ~
J, k ~ P s J2 !(n V Z E (O;«),

and therefore, for z E (0, E), we have the estimate

t: d ~ i' d ~ 5 z d ~
F(z) = J 20 {(O = 20 {w + e {(O

. d t

s F(E) + 52

- <,

={k(:'~Ppl ~ ;;:l -k(~'-:Pl ifp > 1

lnz IDE.
-k+F(f) -I: lfp = 1.

Clearly then for p ~ I we have that F(z) ~ - 00 as z ~ 0. It follows then

that the range of FH is of the form (-00, a), where a E (0,001.

Since F(.) is continuous and strictly increasing on (0, (0), it possesses

a continuous and strictly increasing inverse F-I (.) whose domain is,

of course, the range of F(·), (-00, d). Thus, the functional inequality

(AI) yields

o s E(t) s F-I[F(E(O) - t)] V t z t, (A2)

where t E [0,00) is the unique time t when F[E(O)I- t = 0, since from

this time onward F[E(t)] and F[E(O)] - t are, by (AI), surely in the

domain of F-l (.). The lemma now follows upon letting t -- 00 in (A2)

since F-l (x) - 0 as x - -00. •

As the proof of lemma A.2 makes clear the hypothesis that {(z) ~

kz» on [0, E)for some k > 0 andp ~ I may be replaced with any con­

dition on f(·) that ensures

i
2 d~

20 { ( ~ ) ~ -00
as z ~ o.
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