UNCLASSIFIED

ON THE FREE FLIGHT MOTION OF MISSILES HAVING SLIGHT CONFIGURATIONAL ASYMMMETRIES

John D. Nicolaides

ABERDEEN PROVING GROUND, MARYLAND

BALITSTIC RESEARCHTABORATORIES
REPORT NO. 858
JUNE 1953
ON THE FRER FLIGHT MOTION OF MISSILES HAVING SLIGHT CONFIGURATTONAL ASYMMETRIES

JOHN D. NICOLAIDES

ION: Reprinted whth a sight change in notation to conform to more modern practicen (May 1958).

Project No. TB3-0108I of The Research And Development Division, Ordnance Vorps

TABLE OF CONTENYS

PAGE
ABSTRACT 5
SMMBOLS 7
INTHONUCTION 11
THEORY 14
Dynamical System 15
Aerodynamic Force and Moment System 19
Aerodynamic Force 19
Aerodymamic Moment 24
Differential Equations of Motion 29
General Differential Equations of Motion 29
Differential Equations of Motion for Constant Axdel Velocity 29
Solution of Pitching and Yawing Motion for Constant Rolling Velocity 31
Epicyclic Motion 34
Non-Rolling Missiles 35
Rolling Missiles 37
Dymamic Stability Oritarion 42
Tricyclic Motion 44
Non-Roliting Missiles 45
Rolling Miaailes 45
Resonance Criterion 47
Orientation of Trim and abymetry 49
Solution for the Transverse Displacement for Constant Rolling Ve.?ocity 51
Pitcninc aru faxing Motion for Varying Rolling Volocity 53
Comanent wh theory 56
ExpeinIMEN'IA PRUGiram 57
Resuits 5^{8}
Motiton 58
Acrotymanic Derivatives 67
ACKNCNDETPTEM 69
REFEREICES 70
APPERDIX A 73
Derivation of Basic Differential Ezuations of Motion 73
APPE:'DIX B 77
Aerodynamic and Ballistic Nomenclature 77
APPENDIX C 85
Redu tion Technique 8

John D. Nicolaides
Bureau of Ordnance
Department of the Navy

ABSTRACT

The theories for the free flight motion of miseiles, as generally conoidered by the aero-dymaiciat and the ballistician, are combined to yield a single theory for the basicaliy mymetrical misaile. The force and moment system contains not only the usual aerodynamic forces and moments but also the effects of silght configurational aymotries and the effects of roliing velocity.

The theory yields the condition for the dymamic stability of both statically stable and staticaly unstable miseiles, and also predicts that the presence of configurational asymetries together with rolling velocity may result in "resonance instabil1ty."

Numerical integrations of the differential equation for the pitching and yawing motion are carried out for three variations in the rolling motion. The results indicate that the rapidity of pasage through the resonance region is a significant. factor affecting the magnitude of the pitch and yaw of the misoile.

Two modele of a simple arrow type miseile having control Burface deflection are gun-launched at supernonic velocity in the Aberdeen Spark Photography Range and the free Ilight pitching and yawing motion and the transverse diaplacement are measured. The tricyclic theory is fitted to the experimental data, The resulta indicate that the theory accurately reprecents the actual motion of the two modele and that the asnociated tetic and dynamic cerodynmic derivatives are accurately determined.

swarors

```
    b fin or wing apan
    c In or wing chord
    C1j aerodynamic derivatives (See Fig. 2)
    \mp@subsup{c}{ij}{}}=\mp@subsup{c}{ij}{}\quad\frac{\rho}{\mp@subsup{\sigma}{m}{\prime}
    d diameter of mlssile body
    I tran*verme moments of inertia
    IX axisi moment of inertia
    k-2}=\frac{m\mp@subsup{c}{}{2}}{2I
    m mase of miseile
    p air density
    V total velocity of misoile in epace
    S reforence area for aerodymamic forces and moments, generally im de
    T total kinetic energy of the misolie
    XYZ orthogunal axiv aystem fixed in miseile and rotating with it
    (See Fig. 2)
X, Y, Z Eerodynamic forces along the }X,X,\mathrm{ and }Z\mathrm{ axes respectively
L, M,N aerodymamic moments about the }X,X,X,and Z axes respectivel
    (See F1g, 2)
u,v,w components of the total linear volocity of the misaile in space
    along the }X,X,Y\mathrm{ and }Z\mathrm{ axes respectively
```


$\tilde{p}, \tilde{q}, \tilde{r}$
$x y z$
Q_{x}, Q_{y}, Q_{z}
Q $8,8,8_{4}$
$\dot{x}, \dot{y}, \dot{z}$ $\dot{\phi}, \dot{\theta}, \dot{\psi}$ $\dot{\Omega}$
$\ddot{\alpha}=\beta \cdot 1 \alpha$
$\bar{\alpha}=\widetilde{\beta} \cdot 1$

$\vec{q}=\dot{q} \cdot 1 \dot{r}$
$\dot{q}=\stackrel{\tilde{q}}{q} \cdot \ddot{i}$
component e of the total angular velocity of the missile in space long the \tilde{X}, \tilde{X}, and \tilde{Z} axe e respectively (Bee Pig. I)
orthogonal axis system fixed in mace (See Fig. 1)
forces along the \tilde{x}, \tilde{y}, and z axes respectively moments about the X, Y, and z axes respectively linear velocities along the x, y, and 2 axes respective $2 y$ angular velocities along the \tilde{x}, \tilde{x}, and a axes respectively $\dot{\theta} \cdot 1 \dot{\psi}$, total anguine velocity of the micelle normal to the axil of mace symmetry
complex angle of attack and yaw
complex angular velocity normal to the mingle
rate of change of complex angle of attack and yaw
rate of change of complex angular velocity normal to the mosul.

INIRODUCTION

Develnpmente of theories for the free flight motion of missiles have, in general, procoeded along two eeparate pathe. The aerom dymaioist ${ }^{2}, 2$ han been primarily concerned with aircraft which, although jacking rointional symetry and essentialiy non-roliling, are acted upon by a linear aerodymanic syatem which ineludes forces and moments due to control surface deflection and lage in the flow. The balletician, 3-1 on the otber band, ban been primarily concorned with rapidiy rolling mymetrical missiles and bas included In his treatment of the motion the important egroscopic and Magnus -ffocta.

In receat yeare, with the advent of the guided misaile, the rocket, supersonic miroraft, and modern ifnad ordnance weapons, the interests of both groups have merged. Although limited extenaion ${ }^{12-24}$ of the theories of both groups bave been undertaken, the essential differences remain.

It is one of the purposes of this paper to unify these approsches for the class of missiles which are basically eymetrical and are only slightly aymmetrionl due to control surface deflection, ving and/or tail incidence, bent body, damaged or malaligned sin, etc.

The necessity for conaldering this union arisee from the failure of the existing theory ${ }^{1-13}$ to represent the free rlight motion of winged and/or finned miesilen and its failure to account for various phenomen which bave been genermily experienced on otatically table miesiles. Some of these phenomena are
(1) that non-rolling atatically stable mianiled generalyy have large dimperaion and that rolling the mienile reduces the diaperaion,
(2) that even for genernily well performing miesiles a few go bermerk ${ }^{15}$ yielding extremely poor diepernion and nometimen tumbing, and
(3) that peouliarities in the free flight motion seem to ocour when the rolling velocity and the pitching velocity appronch colncidence.

The general procedure to be followed nere w1ll be to develop the differential equation of motion for mieeile having basic trigonal or greater configurational symetry ${ }^{16}$ and slight conIfgurational asymmetry. The aerodynamic system will include the forces and momente generaliy considered by both the aerodymamicigt and the balliatician. The important gyroncopic terms resulting from rolling velocity are aluo included. For elmglicity and clarity the differential equations will be solved for the case of conatant axial velocity and constant roling velocity of the misaile. The resultant tricyclic theory for the free flight
pitching and yawing motion of the wiseile and the theory for the displacement of the center of gravity of the misaile will be applied to the experimental data obtained from the free flight motion of gun-launched models tested in the Aberdeen Sparik Photography Range. ${ }^{17-20}$ The static and dynamic aerodynamic derivatives associated will be obtained. Finally, the differential equations of motion will be numerically integrated for the case of varying rolling velocity in order to indicate the motions obtained.

The difficulties generally encountered in the formulation of a theory of free-flight motion may be separated into two groups, dynamical and aerodynamical. Herein the dynamical problem will be appreached by emplojing modified Eulerian axis system and by uaing the Lagrange equation for formulating the banic differential equations of motion. Mathematical aimplificationa are introduced by limiting the angular dioplacements and anguiar velocitien (except roliige) to amall size. This is the familiar dymamical approach to the inear""解motion of a "opinning top" or a "Eyroscopic pendulum" $21, \operatorname{cic}^{2}$. The serodynamical problem will be approached in the manner ad nomenclature of the aerodynamicist. A innear force and moment ryotem is asmmed and the mymotry arguments of the ballistician employed. In general, then, these two baric probleme will be approached separately. Their resolum tions will then be combined and the fundamental differential equations of motion will be obtained.

The differential equations of motion 111 be solved for the case of constant flight velocity and constant roling velocity, and the robulting expreseions for the pitcting and yawing motion and for the transverse diaplacement of a missile will be discusseit In detail. In a later section the aifferential equations of motion W111 be investigated numerically for the case of constant flig'it velocity but varying roliing velocity.

DYNAMTCAL SYETEM

The coordinate syatems illustrated in Fig. 1 will be used in considering the free flight motion of a masile. The xyz system is orthogoral and fixed in space. The $X \underset{Z}{ } \mathrm{Z}$ system is orthogonal and is pitching and yawing but not roiling with the miseile. (The \tilde{X} axis lies along the axis of mass aymetry of the missile and the \hat{Y} axia is constrained to lie in the xy plane). The angular veloaity of the misaile is eiven by the components \tilde{p}, \vec{q}, and \tilde{r} in the $\tilde{X} \tilde{Y} \tilde{Z}$ system.

The coordinates of the dymamical mystem are taken as
(1) $\dot{x}, \dot{y}, \dot{z}$, the components of the innear velocity of the center of gravity of the miseile, and
(2) $\dot{\phi}, \dot{\theta}, \dot{\psi}$, the components of the angular velocity of the misaile about ite center of gravity. (It phould be noted that these componente are in a moving nonorthogonal modified Eulerian axis system.)

The total kinetic energy of the missile in free flight is thus
given by

$$
\begin{equation*}
T=\frac{1}{2} I_{x} \ddot{p}^{2}+\frac{1}{2} I_{y} \ddot{q}^{2} \cdot \frac{1}{2} I_{z^{n}} \tilde{x}^{2} \cdot \frac{1}{2} m \dot{x}^{2} \cdot \frac{1}{2} m \dot{y}^{2}+\frac{1}{2} m \dot{z}^{2} \tag{1}
\end{equation*}
$$

It is assumed that the missile has symmetrical mass distribution,

$$
\begin{equation*}
I_{\hat{Y}}=I_{\tilde{Z}}^{n}=I \tag{2}
\end{equation*}
$$

and from Fig. 1, it is seen that

$$
\begin{align*}
& \check{p}=\dot{\phi}-\dot{\psi} \sin \theta \tag{3}\\
& \ddot{q}=\dot{\theta} \tag{4}\\
& \check{r}=\dot{\psi} \cos \theta \tag{5}
\end{align*}
$$

Thus the total kinetic energy of the missile may be written as

$$
\begin{align*}
I= & \frac{1}{2} I_{x} \dot{\phi}^{2}-I_{x} \dot{\phi} \dot{\psi} \sin \theta \cdot \frac{1}{2} I_{x} \dot{\psi}^{2} \sin ^{2} \theta \cdot \frac{1}{2} I \dot{\theta}^{2}+\frac{1}{2} I \dot{\psi}^{2} \cos ^{2} \dot{\theta} \\
& +\frac{1}{2} m \dot{x}^{2}+\frac{1}{2} m \dot{y}^{2}+\frac{1}{2} m \dot{g}^{2} \tag{6}
\end{align*}
$$

Nov considering the lagrange equation ${ }^{23}$ for this dynamical system

$$
\begin{equation*}
\frac{d}{\partial t}\left(\frac{\partial T}{\partial q_{r}}\right)-\frac{\partial T}{\partial q_{r}}=Q_{r} \tag{7}
\end{equation*}
$$

where $q_{r}=$ coordinates of the dynamical system

$$
(\psi, \theta, \psi, x, y, z)
$$

Q = Generalized Force (ie., force or moment tending to change the particular coordinate).

Perfonming the indicated operations, ecouning that $0, \psi, \dot{\varphi}, \dot{\psi}$ are mail quantities and that thair producte may be neglected, yielde

$$
\begin{align*}
I \ddot{\Omega}-1 I_{X} \dot{\phi} \dot{\Omega} & =Q_{\Omega} \tag{8}\\
\frac{d}{d t}\left(I_{X} \dot{\phi}-I_{X} \dot{\psi} \sin \theta\right) & =Q_{\phi} \tag{9}\\
m \ddot{S} & =Q_{Q} \tag{10}\\
m \ddot{x} & =Q_{x}
\end{align*}
$$

Where complex variablea have been introduced in defining

$$
\begin{align*}
& \dot{\Omega}=\dot{\theta} \cdot 1 \dot{\psi} \quad \text {, total angular velooity of the miesile normal to } \\
& \text { the axis of mand aymetry } \\
& s=y+12 \quad \text {, tranovarse diaplacement of the misaile } \tag{13}
\end{align*}
$$

Eq. . (8) - (1) are then the banic differential equations of motion of the misuile. They may be completed once the Generalized Forces tending to cbange the coordinates of the dynamical mystem are known. Thene Generalized Forces are derived in the following aection from the aerodymamic forces and mowents which act on miasile in free ilight.

Amodrimic maxis and monerr byeria

The coordingte myitem unod in comidering the aerodyrmic foreen and mosente which act on alaile in free 121 ght will be the staving mod.C.A. myeter which is orthogorni and 1 ired to the mienila (1.e., roliling with the Elacile, principie axis). Thin ayctem 10 designted by XY and the componenta of the Linear and angular valoaits are given by u, v, v and p, q, r reapective1y (Bet Mg. 2).

Aerodymenc Force

The total serodymalc force which acte on aisaila in free filipt is agermed to dopend on the limeng velocity of the glesile, the angurer veloolty of the minalle, sccelarmtion, the density of the alr, the velocity of sound, the nise and bhape of the rivelie, und, for the perticular oace under coneldexition here, milut anymetry of the configuration (1.en., ecatrol surface des1eotion, wins andor tail 1ncidence, bent finm, bent body, ote.).

Ansuming that the motion is confined to infinitoaimals and that the depondonce 1s 2inear Jielde

$$
\begin{align*}
& Y=I_{\beta} \beta \cdot Y_{Y} Y \cdot Y_{\dot{\beta}} \dot{\beta} \cdot I_{\dot{r}} \dot{r} \\
& -Y_{p x x} p \alpha+Y_{p q} p q+Y_{p \dot{x}} p \dot{\alpha}+Y_{p q} p \dot{q} \cdot Y_{S_{R}} \delta_{R} \tag{14}\\
& z=z_{\alpha} \alpha \cdot z_{q} q \cdot z_{\dot{\alpha}} \dot{\alpha}+z_{\dot{q}} \dot{q} \\
& -z_{p \beta} p \beta+z_{p r} p r \cdot z_{p \dot{\beta}} p \dot{\beta} \cdot z_{p \dot{r}} \dot{p} \cdot z_{\delta_{g}} \delta E \tag{15}\\
& \text { where } I_{1} \text { and } Z_{1} \text { are the } 8 \text { tability Derivativen. }
\end{align*}
$$

LINEAR VEL. $=\left|\begin{array}{l}u \\ v \\ w\end{array}\right|=V$

$$
\begin{aligned}
& \text { FORCE }=\left[\begin{array}{l}
X=C_{X} \frac{1}{2} \rho V^{2} S \\
Y=C_{Y} \frac{1}{2} \rho V^{2} S \\
Z=C_{Z} \frac{1}{2} \rho V^{2} S
\end{array}\right] \\
& \text { MOMENT }=\left[\begin{array}{l}
L=C_{l} \frac{1}{2} \rho V^{2} S b \\
M=C_{m} \frac{1}{2} \rho V^{2} S c \\
N=C_{n} \frac{1}{2} \rho V^{2} S b
\end{array}\right]
\end{aligned}
$$

FIG. 2 - AERODYNAMIC SYSTEM

Multiplying Eq. (15) by 1 and adding to Eq. (14), and replacing the stability derivatives by the standard nomenclature for the aerodynamic derivatives yields

$$
\begin{aligned}
& \frac{\gamma+1 z}{\frac{1}{2} P v^{2} s} \cdot\left[c_{Y_{\beta}} \cdot 1 c_{Z}\left(\frac{p b}{2 V}\right)\right] \beta+\left[c_{Z_{\alpha}}-1 c_{Y_{p \alpha}}\left(\frac{p b}{2 V}\right)\right] 1 \alpha \\
& \text { - }\left[c_{Y_{p q}}\left(\frac{p b}{\tau V}\right)+1 c_{Z_{q}}\right]\left(\frac{a q}{\partial V}\right)+\left[\begin{array}{lll}
c_{z_{p r}} & \left(\frac{p b}{2 V}\right)-1 & \left.c_{y_{r}}\right] i\left(\frac{b r}{\alpha V}\right)
\end{array}\right. \\
& +\left[c_{Y_{\dot{\beta}}}+1 c_{z_{p \beta}}\left(\frac{p b}{2 v}\right)\right]\left(\frac{p \dot{\beta}}{2 v}\right)+\left[c_{z_{\dot{\alpha}}}-1 c_{y_{p \dot{\alpha}}}\left(\frac{\nu b}{2 v}\right)\right] 1\left(\frac{c \dot{\alpha}}{2 v}\right)
\end{aligned}
$$

$$
\begin{align*}
& +\left[{ }^{c_{X_{S_{R}}} S R}{ }^{R}+1 c_{Z_{S_{E}}} \delta_{E}\right] \tag{lr}
\end{align*}
$$

Here we impose the fundamental assumption that the contribution of the configurational asymmetries is "slight" and thus that not only may it be added linearly but that the basic missile (ie., the configuration of the mingle when $S_{R}-S_{E}=0$) has trigonal or greater rotation symmetry and mirror symmetry. 10, 11, 16

As a renault of this assumption it follows that

AERODYNAMIC

Amagartisexic ${ }^{*}$

BALLISTIC $7,10,11$
$c_{Y_{\beta}} \quad=c_{z_{\alpha}}$
$\Leftrightarrow c_{N}$
$=-x_{N}\left(\frac{2 d}{s}^{2}\right)$
${ }^{-} C_{Y_{p \alpha}}$
${ }^{c_{Z_{p \beta}}}$
(ti) c_{N}
$=K_{F}\left(\frac{4 d}{6 S}\right)$
$c_{Y_{p q}}$
$=c_{p r r}$
(b):
$(\pm) C_{M_{p q}}$
$=x_{x F}\left(\frac{8 d^{4}}{805}\right)$
$-C_{Y_{Y}}\left(\frac{b}{c}\right)=C_{Z_{Q}}$
I $(\pm) c_{N_{q}}$
$=x_{B}\left(\frac{4 d^{6}}{}{ }^{3}\right)$

$$
=x_{I_{N}}\left(\frac{44}{65}{ }^{3}\right)
$$

$$
=-K_{\text {IF }}\left(\frac{\partial d}{b c s}{ }^{4}\right)
$$

$$
=-K_{\text {LXI }}\left(\frac{16 d^{b}}{b \mathrm{~d}}{ }^{5}\right)
$$

$$
=-x_{1 s}\left(\frac{8 d}{e^{2} s}\right)
$$

$$
\begin{aligned}
& C_{Y_{\dot{\beta}}}\left(\frac{b}{c}\right)=c_{Z_{d}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{-C}{ }_{y_{p}} \dot{\alpha} \\
& \text { - } c_{Z_{p} \dot{\beta}} \\
& \text { (b) : } \Leftrightarrow c_{N_{p}} \\
& c_{Y_{p \dot{q}}} \quad=c_{Z_{p \dot{r}}}\left(\frac{b}{c}\right)^{2}:(\bar{f}) c_{N_{p q}} \\
& -C_{Y_{\dot{Y}}}\left(\frac{b}{c}\right)^{2}=c_{Z_{\dot{q}}} \quad \equiv(\bar{f}) c_{N_{q}}
\end{aligned}
$$

The introduction of the new Ballistic nomenclature below this if ne in necemary inge forces and moments depending on "Lags" In the flow (1.e., acceleration effects) are not included in the Ballistic Theory.
** (forces noting manama of co.

Because of these equalities of the nerodymmic derivative for the clam of conilgurutions having basic gymatry, an Aerobalifetic nomenclature 24 is convenient and is introduced as indicated wove,

$$
\begin{align*}
& \underset{\alpha}{\infty} \cdot \tilde{\beta} \cdot 1 \underset{\alpha}{\alpha} \\
& \frac{n}{q}=\dot{q}+1 \dot{m} \\
& \ddot{\alpha}=\stackrel{m}{\dot{\alpha}} \cdot 1 \dot{\dot{\alpha}} \tag{18}\\
& \stackrel{\omega}{\dot{\theta}}=\dot{q} \cdot 1 \dot{m}
\end{align*}
$$

Substituting Eq. (17) - (18) into Eq. (16) yields

$$
\begin{align*}
& \frac{\gamma+12}{\frac{1}{2} p V^{2} s} \cdot\left[c_{N_{\alpha}}+1 c_{N_{p \alpha}}\left(\frac{p b}{2 v}\right)\right] \frac{\alpha}{\alpha} \cdot\left[c_{N_{p q}}\left(\frac{p b}{2 v}\right)+1 c_{N_{Q}}\right]\left(\frac{q Q}{2 V}\right) \\
& +\left[c_{N_{\dot{\alpha}}} \cdot 1 c_{N_{p \dot{\alpha}}}\left(\frac{p b}{2 V}\right)\right]\left(\frac{q}{2 V}\right)^{2 \rightarrow \dot{\alpha}}+\left[c_{N_{p \dot{q}}}\left(\frac{p b}{2 V}\right) \cdot 1 c_{N_{\dot{q}}}\left(\frac{c}{2 V}\right)^{2 \vec{q}}+c_{N_{S}} S_{-}\right. \tag{29}
\end{align*}
$$

Where

$$
(a) C_{N_{S_{2}}} S_{2}=C_{Y_{S_{R}}} S_{R} \cdot 1 C_{Z_{\delta_{E}}} \delta_{E} \quad \text { and } C_{N_{S_{2}}} \quad \text { is real. }
$$

Since ald the term, except the last, are independent of the roll orientation of the coordinate seem and since the plant term represents an asymmetry which is fixed in the missile and thus rolling wit, the missile, the total normal force may be expressed in terms of the original dymameal XYZ system which was not rolling with the missile as

$$
\begin{align*}
& =\frac{1}{2} \rho v^{2}\left[c_{N} \quad \cdot 1\left(\frac{p b}{2 v}\right) c_{N_{p \alpha}}\right] \tag{21}\\
& b=\frac{1}{2} \rho v^{2} s\left[c_{N_{p q}}\left(\frac{p b}{2 V}\right)+1 c_{N}\right]\left(\frac{c}{2 V}\right) \tag{2c}
\end{align*}
$$

$d=\frac{1}{2} \rho v^{2} s\left[C_{N_{p \dot{q}}}\left(\frac{(\mathrm{gb}}{2 \eta}\right)+1 \mathrm{C}_{\mathrm{N}_{\dot{q}}}\right]\left(\frac{\mathrm{c}}{2 V}\right)^{2}$
$e=\frac{1}{2} \rho v^{2} s\left[c_{N_{d_{\varepsilon}}}\right]$

The Ceneralized Force, Q_{a}, which is tending to move the minaile in the yz plane is the almation of all the forces acting in thie plane. This includes not oniy the merodymanic forcea but aleo the gravitational force, thrunt malmisgment forces, and any othera that might beeting. Hovever, in order to mphasize the effects of configurational maymetries and to keep the treatment as elementary as possible, the Generalized Force will be asoumed to inolude onily the aurodymamic forcen. (It abould be noted, bowever, that the addition of the gravitationml force, ${ }^{10}$ the tharust mala. 11 goment forces and mase malaligment forces ${ }^{25}$ present no fundamental aleficulties.)

Since $\tilde{Y}+1 \tilde{Z}$ iles in the $\tilde{X} \tilde{Z}$ plane which han been avoumed to make a amall angle $W 1$ th the yz plane (1.e., Ω ansumed umajl), then $\tilde{Y} \cdot 1 \tilde{Z}$ may be taicen us equal to $Q_{B}, \quad Q_{8}=\tilde{y} \cdot 1 \tilde{z}$

Aerodymam 10 Moment

The spacification of the merodynamic moment aoting normal to the wibsile in free filght proceedm in the same manner as the apecification of the normal aerodynamic force. Accordingly M and N are assumed to be inear function of $\alpha, \beta, q, r, \dot{\alpha}, \dot{\beta}, \dot{q}, \dot{r}, \delta_{n}$ and $\delta_{\mathbb{E}}$ as

$$
\begin{align*}
M & =M_{\alpha} \alpha+M_{q} q+M_{\dot{\alpha}} \dot{\alpha}+M_{q} q \\
& +M_{p \beta} \beta p+M_{p r} p r+M_{p \dot{\beta}} p \dot{\beta}+M_{p \dot{r}} p \dot{r}+M_{\delta_{E}} \delta_{E} \tag{23}\\
N & =N_{\beta} \beta+N_{r} r+N_{j} \dot{\beta}+N_{\dot{r}} \dot{r} \\
& +N_{p \alpha} p \alpha+N_{p q} p q+N_{p \dot{\alpha}} p \dot{\alpha}+N_{p \dot{q}} p \dot{q}+N_{\delta_{R}} \delta R
\end{align*}
$$

(24)

Multiplying Eq. (24) by 1 and adding to Eq. (23), and replacing the stability derivatives by the aerodynamic derivatives yield a
$\frac{\mu+1 N}{\frac{1}{2} p v^{2} s}=\left[c_{m} c_{p \beta}\left(\frac{p b}{2 V}\right) c+1 c_{n} b\right] \beta\left[c_{n} c_{p \alpha}\left(\frac{p v}{2 v}\right) b-1 c_{m_{\alpha}} c\right] 1 \alpha$.

$$
\left[c_{m_{i}} c+1 c_{n_{p q}}\left(\frac{p b}{2 v}\right) b\right]\left(\frac{q}{2 v}\right)^{2} \dot{q} \cdot\left[c_{n_{i}} b-1 c_{m_{p r}}\left(\frac{p b}{2 v}\right) c\right] 1\left(\frac{b}{2 v}\right)^{2} r
$$

$$
\left[11 c_{n \delta_{R}} b \delta_{R}-1 \quad c_{m_{\delta}} \quad \text { a } 1 \delta_{E}\right]
$$

However, from symmetry conalderations it follow that

$$
\begin{aligned}
& \cdot\left[\begin{array}{lll}
c_{m q} & c+1 & c_{n_{p q}}\left(\frac{p b}{2 v}\right) b
\end{array}\right]\left(\frac{c q}{2 v}\right)+\left[c_{n_{r}} b-1^{c} m_{p r}\left(\frac{p b}{2 v}\right) c\right] 1\left(\frac{b r}{2 V}\right)
\end{aligned}
$$

$=-\quad K_{T}\left(\frac{4 d}{a+5}\right)$
$c_{m_{\alpha}}=-c_{n(1)} \quad:(\pm) c_{M}$
$=\quad k_{11}\left(\frac{c_{00}}{c s}\right)$
$c_{w_{q}}=c_{n_{Y}}(-):(\because) c_{M_{q}}$
$=\cdot x_{11}\left(\frac{4 a^{4}}{a^{2}}\right)$

$=-\quad K_{K T}\left(\frac{0 d^{5}}{b 0}\right)$

$$
\begin{align*}
& c_{m_{p \beta}\left(\frac{b}{o}\right)}=c_{n_{p \alpha}} \frac{b}{0} \quad \pm(\pm) c_{N_{p}} \\
& \left.=\quad K_{2 \pi}\left(\frac{8,0^{5}}{8}\right)_{y}\right) \tag{iir}\\
& c_{u_{i \alpha}}=-c_{n}(*)^{\circ}=(5) c_{n_{2 \alpha}} \\
& =-\quad k_{L i}\left(\frac{4 d^{4}}{e^{2} s}\right)
\end{align*}
$$

$$
\begin{aligned}
& =\quad x_{L i}\left(\frac{8 a^{5}}{3 / j}\right)
\end{aligned}
$$

Thu the aerodynamic moment becomes
$M+1 \mathrm{~N}=\mathrm{A} \vec{\alpha} \cdot \mathrm{B} \overrightarrow{\underline{6}}+\mathrm{C} \vec{\alpha}+\mathrm{D} \overrightarrow{\dot{q}} \cdot \mathrm{~K} \vec{\delta}_{\Sigma}$ where

$$
\begin{aligned}
& A=\frac{1}{2} \rho V^{2} s \text { e }\left[C_{M_{p \alpha}}\left(\frac{p \mathrm{~b}}{2 V}\right)-1 C_{M_{\alpha}}\right] \\
& B=\frac{i}{2} \rho v^{2} s c\left[C_{M}-10_{M q}\left(\frac{p b}{2 V}\right)\right]\left(\frac{c}{2 v}\right)
\end{aligned}
$$

$$
\begin{aligned}
& D=\frac{1}{2} \rho V^{2} B \text { © }\left[C_{q}-1 C_{M_{q}}\left(\frac{p b}{2 V}\right)\right]\left(\frac{c}{2 V}\right)^{2} \\
& \text { : } \frac{1}{2} \rho v^{2}-\text { c }\left[1 G_{s_{2}}\right]
\end{aligned}
$$

and

$$
\begin{equation*}
\text { (o) } 1 c_{N} \delta_{2} \quad c \delta_{2}=2 c_{n_{\delta_{R}}} \quad b \dot{\delta}_{R}-1 c_{m_{S}} \quad c ; \delta_{E} \tag{29}
\end{equation*}
$$

This aerodynamic moment written in terms of the non-roling system is given by

Since the moment normal to the missile's $8 \ldots 18, Q_{\Omega}$ is ass med to contain only the aerodynamic moments and since $\because \because \because 1 \hat{N}$ is equal to Q_{Ω} we have

$$
\begin{equation*}
Q_{\Omega}=\tilde{n}+1 \tilde{N} \tag{31}
\end{equation*}
$$

General Differential Equations of Motion

With the specifications of the aerodynamic forces and momente acting on the miseile in free flight in terms of the Generalized Forces, the differential equations of motion may be completied as

I $\dot{\Omega}=1 I_{x} \dot{\phi} \dot{\Omega}=A \stackrel{n}{\alpha} \cdot B \ddot{\vec{q}}+c \stackrel{\sim}{\dot{\alpha}} \cdot D \stackrel{n}{\dot{q}} \cdot E S_{r_{0}} e^{1 \int p d t}$
$\frac{d}{d t}\left(I_{X} \dot{\phi}-I_{X} \dot{\psi} \sin \theta\right)=Q_{\phi}$

$m \ddot{x}=Q_{x}$
and under the basic assumption of amall angles and slowiy changing angles It is seen frac Bge. (4), (5), (12), and (18) that $\vec{q}=\dot{\Omega}$. Differential Equation of Motion For Constant Axial Velooity

When Q_{x} is zero, it followe from Eq. (35) and the assumption of small angles that the axial velocity of the miselle is a constant. The sum of the three small angles, namely, (a) the angle between the missile's axis and the total velocity, (b) the angle between the total velocity and the fixed axis, and (c) the angle between the fixed x axis and the misaile's axis, is zero.

Differentiating thio sum yielda

$$
\begin{equation*}
s=v(-1 \dot{\Omega}+\stackrel{\ddot{\alpha}}{\dot{\alpha}}) \tag{37}
\end{equation*}
$$

Neglecting products of the aerodynamic derivatives in comparison with the dertvatives themselves, Eqs. (32), (34) and (37) may be corimined to
yield the differential equation for the pitching and yawing motion.

$$
\begin{align*}
& \text { where } \hat{c}_{i_{j}}=c_{i_{j}}\left(\frac{\rho \overline{2 m}}{2 m}\right) \quad k^{-2}=\frac{\frac{m c^{2}}{2 I}}{} \tag{39}
\end{align*}
$$

Egg. (33) and (38) will then be considered in the following section. First, the solution will be given for the case of constant rolling velocity (1.e., of $: 0$) and, then, in a later section the case of varying rolling velocity will be numerically investigated.

SOLUTION OF PITCHING AND YAWING MOTION FOR COMSTANI ROLLING VELOCITY

When Qp is zero, it follow from Eq. (33) and the assumption of mall angles that the rolling velocity of the missile is a constant. For this case the general solution of the differential equation for the pitching and yawing motion, Eq. (38), is given by

$$
\begin{equation*}
\underset{\alpha}{\alpha}=x_{1} e^{\phi} 1 t+K_{2} e^{\phi} t+x_{3} e^{\phi_{3} t} \tag{40}
\end{equation*}
$$

where

$$
x_{1} \cdot \frac{\tilde{\dot{\alpha}}_{0}-\phi_{2} \vec{\alpha}_{0}+k_{3}\left(\phi_{2}-\phi_{3}\right)}{\phi_{1}-\phi_{2}} \quad \frac{\hat{\dot{\alpha}}_{0}-\phi_{1} \vec{\alpha}_{0}+k_{3}\left(\phi_{2}-\phi_{3}\right)}{\phi_{2}-\phi_{1}}
$$

$$
\begin{equation*}
x_{3}=\frac{\frac{v^{2}}{2}\left\{1\left(\frac{2 c}{b}\right)\left(\frac{p b}{2 v}\right)\left(1-\frac{I_{x}}{I}\right) \hat{c}_{N_{S_{2}}}-2_{k}{ }^{-2} \hat{c}_{M_{S}}\right\} \delta_{x_{e}}}{\left(\phi_{3}-\phi_{1}\right)\left(\phi_{3}-\phi_{2}\right)} \tag{43}
\end{equation*}
$$

$$
\phi_{1,2}=\frac{v}{2 c}\left\{\hat{c}_{N_{\alpha}}+k^{-2}\left(\hat{c}_{M_{q}}+\hat{c}_{M_{\alpha}}\right)+1\left(\frac{p b}{2 v}\right)\left[k^{-2}\left(\hat{c}_{M_{p \alpha}}-\hat{c}_{M_{p q}}\right)+\hat{c}_{N_{p \alpha}}+\left(\frac{2 c}{b}\right) \frac{1}{1}\right]\right\}
$$

$$
\begin{align*}
& \pm \frac{v}{2 c}\left\{\left\{\hat{C}_{N_{\alpha}}+k^{-2}\left(\hat{C}_{M_{q}}+\hat{C}_{M_{\alpha}}\right)+1\left(\frac{p b}{2 V}\right)\left[k^{-2}\left(\hat{C}_{M_{p-\alpha}}-\hat{C}_{M_{p q}}\right)+\hat{C}_{N_{p \alpha}}\left(\frac{2 c}{b}\right) \frac{I_{\alpha}}{I}\right]\right\}=\right. \\
& \left.-4\left\{-2 k^{-2} \hat{c}_{N_{N_{\alpha}}}^{-1}+\left(\frac{p b}{2 V}\right)\left[\quad-\left(\frac{p b}{2 V}\right)\left(\frac{2 c}{b}\right) \frac{I_{x}}{I} \hat{c}_{N_{p \alpha}}+1\left(\frac{2 c}{b}\right) \frac{I_{x}}{I} \hat{c}_{N_{\alpha}}-12 k^{-2} \hat{c}_{c_{10 c k}}\right]\right]^{7 / 2}\right\}^{1 / 2} \\
& \phi_{3}=1 p \tag{45}
\end{align*}
$$

A physical representation of this solution is given by noting that the motion is "tricylic"; that is to say, the free flight pitching and yawing motion of missiles' having alight configurational asymmetry may be represented by the motion'traced out by three rotating vectors. (Bee Fig. 3). Rewriting Eq. (40) as

$$
\begin{equation*}
\underset{\alpha}{\infty} \cdot \kappa_{1} \cdot\left(\lambda_{2}+1 \omega_{1}\right) t+k_{2} e^{\left(\lambda_{2}+1 \omega_{2}\right) t} \cdot k_{3} e^{\text {apt }} \tag{46}
\end{equation*}
$$

where λ_{1} and λ_{2} are the real parts and ω_{1} and ω_{2} are the imaginary parts of $\varnothing_{1,2}$. It in noted that the real parts, λ_{1} and $\lambda_{2 \prime}$ cause the K_{1} and K_{2} vectors to damp or expand and that the imaginary parts, ω_{2} and ω_{2}, cause the vectors to rotate. Since ip is pure imaginary, the K_{3} arm. does not change in size but rotates at a constant angular velocity equal to the steady rolling velocity of the misaile.

Before considering the effect e of configurational symmetries it in helpful to review the free flight pitching and yawing motions obtained for the case of no configurational asymmetries.

FIG. 3-TRICYCLIC PITCHING AND YAWING

Bolcylic Motion

When the asymmetry is set equal to zero, $\delta_{\varepsilon_{0}}=0$, the solution, Eq. (40), reduce n to the epicylic form. ${ }^{3-11}$

$$
\begin{array}{r}
\stackrel{\sim}{\alpha}=x_{1} \phi_{1} t \quad x_{2} \phi_{2} t \\
x_{1}=\frac{\stackrel{n}{\dot{\alpha}}_{0}-\phi_{2} \bar{\alpha}_{0}}{\phi_{1}-\phi_{2}} \\
x_{2}=\frac{{\frac{n}{\alpha_{0}}-\phi_{1} \bar{\alpha}_{0}}_{\phi_{2}-\phi_{1}}^{\phi_{1,2}}}{\text { see Eq. (44) }}
\end{array}
$$

This solution, like the original, Eq. (40), applies to both statically stable and statically unusable missiles (ice., to missiles whose center of pressure of the normal force due to angle of attack and yaw is aft of center of gravity of the mimaile ($-C_{M_{\alpha}}$) and to missiles whose center of pressure in forward of the center of gravity ($+\mathrm{C}_{\mathrm{M}_{\alpha}}$).

Non-Rolling Mingles. For the case of no rolling velocity ($p=0$) the constants are given by
I. Statically stable Missiles ($-q_{M_{\alpha}}$)

$$
\begin{align*}
& \lambda_{1,2}=\frac{v}{2 c}\left\{\hat{c}_{N_{\alpha}}+k^{-2}\left(\hat{c}_{M_{q}}+\hat{c}_{M_{\alpha}}\right)\right\} \tag{50}\\
& \text { a) } \tag{51}\\
& 1,2= \pm \frac{v}{2 c}\left\{-8 k^{-2} \hat{c}_{M_{\alpha}}\right\} \frac{1}{2}
\end{align*}
$$

II. Statically Uneatable Missile ($+\mathrm{C}_{\mathrm{X}_{\alpha}}$)

$$
\begin{align*}
& \lambda_{1,2}=\frac{v}{2 c}\left\{\hat{c}_{N_{\alpha}}+x^{-2}\left(\hat{c}_{M_{Q}}+\hat{c}_{M_{\alpha}}\right) \pm 8 x^{-2} \hat{c}_{M_{\alpha}}\right\} \frac{1}{2} \tag{52}\\
& \hat{a}_{1,2}=0 \tag{53}
\end{align*}
$$

For the statically stable missile the vectors K_{2} and K_{2}, rotate in opposite directions with equal velocity, and thu the pitching and yawing motion is given by lines, ellipses, or circles (See Fig. 4).

The general condition for dynamic stability (1.0., the requirement that the motion repeat itself or damp out) is that $\lambda_{1,2} \leqslant 0$. For the case of the statically eatable non-roliling missile thill dynamic stability condition reduces to

$$
\left.\left|\begin{array}{ll}
\hat{\mathrm{c}}_{N_{\alpha}} & +x^{-2} \tag{54}\\
\hat{\mathrm{c}}_{M_{Q}}
\end{array}\right| \geq 1 \mathbf{x}^{-2} \quad \hat{\mathrm{c}}_{\mathrm{M}_{\alpha}} \right\rvert\,
$$

ane $\hat{C}_{N_{\alpha}}$ and $\hat{\mathrm{C}}_{M_{q}}$ are negative and $\hat{\mathrm{C}}_{\mathrm{M}_{\alpha}}$ is positive.

For the statically unsalable missile the K_{2} and K_{2} vectors do not rotate and therefore the motion is a line. The motion ia, however,
 and thus one of the arm is will damp and the other expand.

Rolling Maize. The motion and the effects of the aerodynamic derivatives on the stability of the rolling mianile are more readily discussed if the radical in Ego. (44) is approximated by a binomial expand aton ${ }^{10}$ and is

$$
\begin{equation*}
\left|\left(\frac{2 c}{b}\right) \frac{I_{x}}{I}\right| \gg k^{-2}\left(q_{M_{p \alpha}}-\hat{c}_{M_{p q}}\right)++\hat{c}_{N_{p \alpha}} \tag{55}
\end{equation*}
$$

Accordingly, the real and imaginary parts of $\phi 1,2$ are given by

$$
\begin{aligned}
& \lambda 1,2=\frac{V}{2}\left\{\hat{C}_{N} \quad x^{-2}\left(\hat{c}_{M}+\hat{c}_{M}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& I\left[-8 x^{-2} \hat{G}_{M_{\alpha}}+\left(\frac{D}{i V}\right)^{2}\left(\frac{2 c}{b}\right)^{2}\left(\frac{x^{\prime}}{I}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

subject, however, to the condition that

$$
\begin{equation*}
\left(\frac{\partial b}{2 V}\right)^{2}\left(\frac{2 c}{b}\right)^{2}\left(\frac{I_{1}}{T}\right)^{2}-8 x^{-2} C_{M}>0 \tag{58}
\end{equation*}
$$

For the statically stable missile $1 t$ is seen from $\mathbb{E q}$. (5) that the two vectors rotate in the opposite direction, win the non-roling case, but that the difference in their rotational velocities depends on the rolling velocity of the micelle. For mall rolling velocity of the missile, the pitching and yawing motion is given by lowly rotating ellipses. As the rolling velocity increases the motion becomes flowerlike and fInally for large rolling velocity we have motion characteristic of the fact pinning gyroscopic pendulum. 21 (see Fig. 5)

For the itationily unstable missile it is seen from Iq. (57) that the vectors rotate in the ane direction (which is also the same direction an the rolling) and thus give the familiar motion characteristic of a "top". 21 (Bee Fig. 6).

The effects of the various aerodynamic derivatives on the dynamic stability of a missile are more readily seen by writing Eq. (56) in the form*

$$
\lambda_{1,2}=\frac{v}{2 c}\left\{\hat{C}_{N_{\alpha}}(2+\tau)+k^{-2} \hat{C}_{M_{q}}(1 \pm \tau)+x^{-2} c_{M_{\dot{\alpha}}}(1 \pm \tau) \pm \frac{I k^{-2\left(\frac{2 p}{q}\right) \tau_{1}}}{I_{x}} \hat{c}_{M_{p \alpha \alpha}}\right.
$$

(59)
where $t=1,2=\frac{\left(\frac{(D)}{2 V}\right)^{2}\left(\frac{2 c}{5}\right)^{2}}{\left(\frac{I}{I}\right)^{2}}=$ (atability factor of the bal-

$$
\begin{equation*}
\sqrt{2-\frac{1}{5}} \quad 8 x^{-2}{\hat{C_{M}}}_{\alpha} \tag{60}
\end{equation*}
$$

11atician) ${ }^{7}$.
Ranges of values for the ability factor for the various types of morales are given in Table I.

Statically Stable Missiles

$$
\begin{array}{ll}
s<0 & \tau<1 \\
s>0 & \tau>1 \\
s=0 & \tau=0
\end{array}
$$

Statically Unstable Misallies $\quad s>0 \gamma>1$
Non-Rolling Missiles
Neutrally Stable Roping Missiles $\quad S=\infty \quad \tau^{\prime}=1$
TABLE' I
Value a of B in the range $0<E<1$ may not be conoldered when using
Eq. (59) due to the condition imposed by Eq. (58).
*Eq. (57) in similar form is given by

$$
\begin{aligned}
& \text { form is given by } \\
& (A), 2 \cdot \frac{V}{2 c}\left\{\left(\frac{p b}{2 V}\right)\left(\frac{2 c}{h 1}, 1 \pm \frac{1}{2}\right)\right\}
\end{aligned}
$$

For ataticuily eatable rolling mineilen it in seen from Iq. (59) that $\widehat{C}_{N_{\alpha}}$ and $\mathcal{C}_{M_{q}}$ tend to make the motion dynamically stable, whereas $\widehat{C}_{M_{\alpha}}$ and $\widehat{c}_{M_{p \alpha}}$ (the Magnum moment coefficient is generally taken as positive for the statically stable missile) have the opposite effect. $\widehat{C}_{M_{p \alpha}}$ tender to undamp the fast rotating vector (nutation) and damp the slower rotating vector (precession). since the size of the $\hat{C}_{\text {Pa }}$ term slow ny increase with rolling velocity, there might be limiting rolling velocity beyond which the missile cannot be dynamically stable. ${ }^{25}$

For the statically unstable missile the affects of the aerodymanc derivatives on the dynamic stability are not as ample. from $\mathbb{E q}$. (59) it is seen that $\hat{C}_{X_{\alpha}}$ tends to undump the nutation and drip the procession, Whereas $\hat{C}_{M_{Q}}, \hat{C}^{M_{M_{\alpha}}}$, and $\widehat{C}_{M_{p \alpha}}$ (here the ign of $\widehat{C}_{M_{p \alpha}}$ is taken as ergative, however, positive values are not uncommon) tend to damp the nutation and undamp the precession.

Dromic Stability Criterion

The criterion for dynamic stability is that

$$
\begin{equation*}
\lambda_{1,2} \leqslant 0 \tag{62}
\end{equation*}
$$

or that

$$
\hat{c}_{N_{\alpha}}+k^{-2}\left({\hat{C_{M}}}_{q}+\hat{C}_{M_{\alpha}}\right) \geqslant \operatorname{REAL}\left\{\left[\hat{C}_{N_{\alpha}}+k^{-2}\left(\hat{C}_{M_{q}}+{\hat{C_{M}}}_{\alpha}\right)+1\left(\frac{p b}{\partial V}\right)\left(\frac{2 c}{b}\right)\left(\frac{I_{x}}{I}\right)\right]^{2}\right.
$$

$$
\begin{equation*}
\left.+\left[8 k^{-2} \hat{c}_{M_{\alpha}}-4 i\left(\frac{2 c}{b}\right)\left(\frac{I x}{I}\right) \hat{c}_{N_{\alpha}}+18 k^{-2} c_{M_{p \alpha}}\right]\right\}^{1 / 2} \tag{63}
\end{equation*}
$$

Extracting the real part of the radical, this criterion may be replaced by two conditions:
(1) when ${ }^{10,26,27}$

$$
\begin{equation*}
-\hat{C}_{N_{\alpha}}-k^{-2}\left(\hat{C}_{M_{q}} \cdot \hat{C}_{M_{\alpha}}\right)>0 \tag{64}
\end{equation*}
$$

then

$$
\left(\frac{p b}{2 V}\right)^{2}\left(\frac{2 c}{b}\right)^{2}\left(\frac{I_{x}}{I}\right)^{2}-8 k^{-2} \hat{C}_{M_{\alpha}} \geqslant \frac{\left(\frac{p b}{2 V}\right)^{2}\left(\frac{2 c}{b}\right)^{2}\left(\frac{I}{I}\right)^{2}\left\{2\left[-\hat{C}_{N_{\alpha}}+k^{-2}\left(\frac{b}{c}\right) \frac{I}{I_{x}} \hat{C}_{M_{D q}}\right]+k^{-2}\left(\hat{C}_{M_{q}}+\hat{C}_{M_{\alpha}}\right)+\hat{C}_{N_{\alpha}}\right\}^{2}}{\left[\hat{C}_{N_{\alpha}}+k^{-2}\left(c_{M_{q}}+\hat{C}_{M_{\alpha}}\right)\right]^{2}}
$$

(2) when 27

$$
\begin{equation*}
-\hat{C}_{N_{\alpha}}-k^{-2}\left(\hat{C}_{M_{q}}+\hat{C}_{M_{\alpha}}\right)=0 \tag{60}
\end{equation*}
$$

then

$$
\begin{equation*}
\left(\frac{p b}{2 V}\right)^{2}\left(\frac{2 c}{b}\right)^{2}\left(\frac{I_{x}}{I}\right)^{2}-8 k^{-2} \hat{C}_{M_{\alpha}} \geqslant 0 \tag{67}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{p b}{\partial v}\right)\left(\frac{2 c}{b}\right)\left(\frac{I_{x}}{I}\right)\left\{2\left[-\hat{c}_{N_{\alpha}}+x^{-2}\left(\frac{b}{c}\right) \frac{I}{I_{x}}{\hat{C_{M}}}_{p \alpha}\right]+\hat{C}_{N_{\alpha}}+x^{-2}\left({\hat{C_{M}}}_{q}+{\hat{C_{M}}}_{\alpha}\right)\right\}=0 \tag{68}
\end{equation*}
$$

For the case when

$$
\begin{equation*}
-\hat{c}_{N_{\alpha}}-k^{-2}\left(\hat{c}_{M_{q}} \cdot \hat{c}_{M_{\alpha}}\right)<0 \tag{69}
\end{equation*}
$$

no dymamic stability is poesible.
It shouli be noted thet although for this case of constant filght velocity and constant rolling velocity these conditions must be satisfied, for the case of varying rolling velocity and ilight velocity dynamic instability may be and in tolerated in some deaigns for hort durations.

Tricycile Motion

The presence of slight configurational asymetries has been shown to produce tricyrcic motion which differs from the epicyclic motion only in the addition of a third term and a modification in the initial aize of the nutational and precessional vectorn. Therefore, the remarks of the previous paragraph on the dynamic stability and the contribution of the aerodymamac coefificients to the motion stili epply. It remains, however, to conaider the effect of thie additional third vector.

For the dymalcally otable miseile after the nutational and preceseional arms bave damped the third vector is seen to represent the steady atate pitching and yawing of the miseile.

Non-Rolling Minsilog. For the statioaliy and dynamically mbie nonrolling misaile, the size of the third vector in given by

$$
\begin{equation*}
K_{3_{0}}=+\left(\frac{\hat{c}_{M_{L}}^{-1}}{\partial_{M_{\alpha}}}\right)^{\delta_{\Sigma_{0}}} \tag{70}
\end{equation*}
$$

Which it the familiar expression for the oteady ntate "trim" of an airm craft due to elevator deflection. ${ }^{1,2}$ This non-rolling trim angle and the angle of effective control urface deflection lie in the mame plane (1.e., K_{3} and $S_{\varepsilon_{0}}$ are parallel). The transient pitching and yawing motion is therafore given by elilpsos, lines, or circles whose centers are displaced from the origin by this angle of trim. (See Fig. 7) The case of the staticaligy unstable non-roling misaile is handied by the theory but is hardiy worth discussion since the motion is generajly dynamically unstable. (See Eq. (52).)

Rolling Missiles. The addition of rolling velocity produces profound changes in the nature and size of the pitching and yawing motion. The aize of the third vector as effected by the roling velocity is best seen by conuidering the ratio of the rolling trim to the non-rojilng trim.

This ratio is called the "magnification factor" and typical values an a function of rolling velocity are given in Fig. 8 which were calculated for the otaticaily and dynmicaliy stable missile used in the expeximental tests to be reported in a later section. From $\mathrm{Eq} .(7 \mathrm{~N})$ and Irom Fig. 8 it is apparent that a resonance phenomenon appears poasible if the roling velocity approaches the rotational velocity of either the nutation vector or the precession vector. However, for atatically stable missiles it has been shown that the precesional vector and the nutational vector rotate in different directions and thus only an equality of the angular velocity of the nutation vector and the rolling velocity may be conoldered. Bince for the thetionlly unstable misaile both the nutational vector and the precesisional vector rotate In the same direction as the roil, resonance with both should be conidered.

Resonance Critarion. Substituting $a_{1}=p$ or $)_{2}=\mathrm{pinto} \mathrm{Eq} .(5)$ and oolving for $\hat{C}_{N_{\alpha}}$ yields

$$
\begin{equation*}
\widehat{c}_{M_{\alpha}}=\frac{I_{p}^{2}}{V^{2} M} \quad\left(\frac{I_{x}}{I}-1\right) \tag{72}
\end{equation*}
$$

For the staticaliy atable missile (i.e., $\widehat{\varsigma}_{M_{x}}<0$), a necesaary condition for resonance is given by

$$
\begin{equation*}
\frac{I_{x}}{I}<1 \tag{73}
\end{equation*}
$$

which 18 generally satisfied for all types of misailes. However, for the atatically unstable miasile (1.e., $\bar{C}_{M_{x}}>0$), the necessary condition for resonance is given by

$$
\begin{equation*}
\frac{I_{x}}{I}>1 \tag{74}
\end{equation*}
$$

which is virtually imposeible to satisfy in a practicel design. As a

FIG. 8 - magnification factor for test masile.
result of these condition it is eon that, in general, resonance can oniy occur for the case of the statically stable misoile and, then, only when the angular velocity of the nutational vector equals the roliling velocity of the miesile.

The size of the rolling trim at resonance depends on the rate of damping $\left(\lambda_{1,2}\right)$. If the damping is zero, the size of the rolling trim is infinite. However, since most misailes are dymmionily stable the size of the rolling trim is fiaite. For missiles with good dymaic atability magnification factors of 10 are not unusund. For miasiles of marginal dymaic atability, valuen from 50 to 100 are quite powitble.

The effect of this resonance phenmenon is to produce large anglea of pitch and yaw with the result that the basic assumptions of the theory may no longer be valid and instability may recult from causes not considered. For thi reason atability considerationa muet inciude "resonmee inatability"25 as well an otatic and dymamic tability.

Oriantation of Trim and Anymetry. The addition of rolling velocity not only affect the size of the roling trim but also the angular orientation between the plane cn-4-4nting the effective control surface deflection and the plane containing the trim (i.e., the angle between K_{3} and $S_{c_{0}}$). This anele 1s given by

$$
\begin{equation*}
\gamma=\tan ^{-1}\left(\frac{\text { Imag. } K_{3}}{\text { Real } K_{3}}\right) \cdot \tan { }^{-1}\left(\frac{\text { Inag. } \delta_{5}}{\text { Real } \delta_{c}}\right) \tag{75}
\end{equation*}
$$

and typical valuea are given in Fig. 9 for the particular missile previoundy mentioned.

FIG. 9-ANGULAR ORUENTATION OF TRM AND
ASYMNETRY.

The motion of the center of gravity of the missile may now be conidered. The displacement of the missile in the x direction bar already bean assumed to be one of constant velocity. Thus, the problem reduces to solving the differential equation of motion for the transverse displacement of the missile which is given by Fig. (34). The function, a ($\left.^{(}\right)$is known from Eq. (40), and the function, $\frac{\operatorname{q}}{\boldsymbol{q}}(t)$, may be obtained from Eq. (36) and Eq. (37) an

$$
\begin{equation*}
\bar{q}_{0}^{\infty}(t) \cdot \frac{18}{v}-1 \stackrel{\infty}{\infty}(t) \tag{76}
\end{equation*}
$$

Where $\stackrel{m}{\gtrless}$ (t) is obtained by differentiating Eq. (40). Substituting these functions into Eq. (34) and solving gives the solution for the transverse displacement of themiselide,

where k_{4} and k_{5} are functions of the initial conditions of fight.
This solution for the transverse displacement is oe en to be a tricycle motion plus a lInear term and a constant. The constant term depends upon the selection of the coordinate system. For the cage where the origin is the muzzle of the gun or launcher and the x axis lies alone the center ide
of the gun or lannoher, the conetant of the linear term, k_{4}, in called the "jwang angle" 26 and the term itself represents the line about which the oncillatory motion (1.e., ewerving motion) takes place.

For the case of the non-rolling minsile the solution for the transverve displacement reduces to

$$
\begin{align*}
s & =\left[\frac{a \cdot\left(c-1 b-1 d \phi_{1}\right) \phi_{1}}{m-1 b / v}\right]\left[\frac{k_{1}}{\phi_{1}^{2}}\right] \phi_{1}^{t}+\left[\frac{a \cdot\left(a-1 b-1 d \phi_{2}\right) \phi_{2}}{m-1 b / v}\right]\left[\alpha_{2}^{k_{2}} \phi_{2}^{2} \phi_{2}^{t}\right. \\
& +\left[\frac{a+\left(S_{L} / k_{3}\right)}{m-1 b / v}\right] k_{3} t^{2}+k_{4} t+k_{5} \tag{78}
\end{align*}
$$

Pitching and Yawing Motion for Varying Rolling Velocity
In the previous section the solution of the differential equation of motion for missile having alight configurational acymetyy and flying at constant axial velocity and constant rolling velooity was given. The purpose of thin section is to investigate" the fred flight motion for the case of varying rolling velocity and constant axial velocity.
*The author 10 indebted to Dr. M. Lotkin for the numerical integrations hand computed by the Numerical Analysis Section, BRL. A promising new technique is diwouseed in Ref. 29.

In the design and construotion of mont fin-atabilised miselies, partiouIariy ordnance wapons (1.e., bombe, mortare, basookas, rookete, finned artillexy hells, eto.), configurational asymetrien are precent due to varioum canes, ome of which are manufacturing innccuracien, damage in bandiags, damage in launohing and intentional daeignt. Thone neymetrian, besides produciag amie of incidence $\left(S_{R}, S_{F}\right)$, have un equal probability of producing differential angle of inoidence $\left(\delta_{A}\right)$. This differential angle of incidence causes varying rolilng velooity which for mont deden atmerte at mero and approachen ateady mtate value whioh is dotormined by an equality of the roll moment due to differential angle of incidence and the roll moment due to rolling velocity. 19,20

$$
\begin{equation*}
\theta_{D} \cdot L_{S_{A}} \delta A+L_{p} p \tag{79}
\end{equation*}
$$

The difforential equation of pitohing and yawing motion, 8i. (38) has been intecrated numericaliy for the following rolling motiona :
(1) zero rolling velocity to eteady etnte rolling velooity equal to the nutation rate
(2) zero rolilng velocity to atendy etme rolling velocity equil to 1.5 nutation rate
(3) zero rolling velooity to steady atate rolling veloeity equal to 5 nutation rate

The rewulting pitching and yawing motions are plottod in Figw, 10, 11, and 12 for the miselic used in the experimental tests. It is eoen from the figures that the aped of paseage through the resonance region has a profound influence on the magnitude of the pitching and yruing motion. Canting the fins, for example, is a standard practioc in many ordnanoe devigns.

COMOMNT ON THEORY

In a umpary, the eulution for the free flight motiona of miselle having alight oonfigurational anymetrien and flying me conatant vulooity, aximl and roding, indioater that:
(1) The pitohing and ymwing motion is Trioyolio.
(2) the tranoveree dieplacoment is Iriojolie, plum a dinuar temm and a conatant. (For the ease of ero rolilng velooity the third armi is roplmoed by quadratio texm.)
(3) The preocmion and nutation veatorm rotabe and charge mate as In the Eployolic ouse.
(4) The rotation and ohange in wite of the naw third vector, orim, ariaing from the asymetry dupand primarily on the rolising velooity of the mimalle.
(5) The ateady atate molulion for the pitohins and yuwins motion in divan hy the third veotor which is rotating at the rolising volooity of the miesill. Au a renult, ohe eteady etate roll orientation of the wisulie * o the inatantancoul giane of piteh and yaw is constant.
(6) For etationiny atable iniwiles the free flight motionn resonate When the roling velooity of the misalle and the nutation rate appromoh coino1denow.
(7) The alze of the motion at resonanoe are limituat ondy by the decree of dynamio mtablility of the misedie.

The above charmoteriation of the molutions for the free flight motione mppear to form a baly for autinfaotory explanation for the three phenomenn
mentioned in the INIRODUCTION. The effect of the roling velocity on the diapersion of the missile is apparent from conaideration of Eq. (T7) and Eq. (78). When the roling velocity of the missile is zero, large dispersion may reault from the quadratic term; however, when roll is introduced, the yuadratic term disappears and the dispersion may be reduced, provided, of course, that the resonance region i* svoided, It is this resonance condition that appears to provide an explanation for the second and third phenomena mentioned, ance the large anglew of sitack and yau and the resultant trankverse displacement, predicted by the theory whon the roli rate and nutation rate are coincident, tend to bear out the observed phenomena.

Although the Tricyolic theory mpenra to contain the aceds for anisfactory explanation of the observed physical phenonena, no general acceptance may be expected until the ability of the theory to represent accurate experimental data of free filght motion has been thorughiy inventigated.

Accoraingly, a program bas been initiated in the Spark Fhotography ${ }^{17-20,33}$ Ranges to obtain the required accurate free flight data. The general yrogram consists of an investigation of motions over a large range of roling velocities and includes a detailed investigation of the resonance region. However, only the results for the small roling velocity case are now avalable and are given in the following section.

EXPERIMENJAL PROCRAM

The purposes of the present preliminary experimental program are (1) to investigate the ability of the tricylic theory to represent the actual riree flight motion of missiles having slight configurational asymetry, and
(2) to determine the static and dymamic aerodynamic force and moment derivatives which are associated with the motion. In order to obtain the required free flight data two models were tested in the Aherdeen Syark Photography Range. ${ }^{17-20}$ (See Fig. 23)

The models employed in the tests had a aimple arrow configuration with a cone-cylinder body of fineness ratio of 10 and with cruciformed single wedge rectangular fins of anpect ratio 3 and 8% thickness. One set of fins had an angle of incidence of $.3^{\circ}$ and the other set of fins had no incidence. (see Fig, 24). The modele vere launched from apecial railed gun which enables launching of wiaged and/or finned miasiles. (See Fig. 15)

RESULIE

Motion

The experimental dat for the pitching and yawing motion and also for the transurse diaplacement of the model. as obtained from the hadowgraphe (Fig. 16) taken in the Range are given by the pointa in Figs. 17, 18, 19, and 20. In these ame figures are plotted the theoretical curves of the tricycilc motion (Eqs. (40) and (77) which were "fitted" to the experimental data by the reduction tecimaque.**30,32 The "fit" of the theory to the experimental data* in given by the Probable Error in Table II

FThe Method of Differential Corrections is used to "fit" Eqs. (40) and (77) to
the experimental data. The author is indebted to Mr. C. B. Muryhy, Mathematician, B.R.L., for programing the reduction technique for automatie conputa-
tion by the Bell Relay Computer, and also for auggesting the irciusion of the $\stackrel{\ddot{q}}{\dot{q}}$ terms in Eqg. (23) and (27).
** See Appendix C.

FIG. 14 - MODEL DESIGN.

Nexser

FIG. 17- EXPERIMENTAL AND THEORETICAL FREE FLIGHT PITCHING AND YAWING MOTION. (RD. 2950)

FIG. 18 - EXPERIMENTAL AND THEORETICAL
FIG. 18 - EREE FLIGHT PITCHING AND YAWING MOTION: (RD. 2951)

FIG. 19-EXPERIMENTAL AND THEORETICAL FREE FLIGHT TRANSVERSE DISPLAGEMENT. (RD. 2950)

FIG. 20-EXPERIMENTAL AND THEORETICAL FREE FLIGHT TRANSVERSE DIS PLACEMENT. (RD. 2951)

ROUSD	2950	2951
PIICH AND YAN P.E.	$2.5 \mathrm{MIN}$.	2.0 MIN.
TWRANSVIKREE DISP. P.E.	.020 IN.	$.02 \mathrm{HIN}$.

TABLE II

Thus, since the Probable Errors of the rasiduals is of the oame order of magnitude as the estimated error in measurement in the Range (Fig. 23) the tricycila theory of pitching and yowing motion and traneverse dieplacment may be considered to accurately represent the actual fre flight pitching and yawing motions of these model.

Aerodyanic Derivativen
The values for the aerodynamic derivatives as obtained from the conatanta of the motion are given in rable III together with their probable error an outained from the least quares fit of the theory to the experimental data.

ROUND	2950	2951
${ }^{C} M_{\alpha}$	- 22.6	-22.0
P.E.	0.22\%	0.21\%
$\mathrm{CM}_{\mathrm{M}}+\mathrm{CM}_{\alpha}$	-304	-298
P. E.	3.4%	3.2\%
${ }^{G_{M}} \delta_{\Sigma}$	19.8	19.9
P.E.	1.9\%	1.6\%

TABLE III

It is noted that the valuen for the moment derivatives due to angle of attack and yaw, $\mathrm{C}_{M_{\alpha}}$, as obtained from the motions of each of the identical missiles differ by 2.6%, that the values for the num ${ }^{\circ}$ the moment derivative due to pitehing and yawing velocity and the moment derivative due to rate of change of the angle of attack and yaw, $G_{M_{Q}}+C_{M_{\alpha}}$, for the mieniles differ by 2.0%, and that the values for the moment derivative due to control murface deflection (abymetry), $C_{M_{\delta_{\mathcal{L}}}}$, differ by 0.5%. Although the sample in amali, the reaulte suggest good reproducibility of the atatic and dymaife aerodynamic derivativea 8 obtained from the Spark Photography Range technique.

ACKNOWLEDCOMENTI

The author wishes to acknowledge the helpful uggestion and friendly criticisms received from members of the Exterior Bajliatice Laboratory and especially from Mr. L. C. MacAlliuter who also helped with the experimental program.

Rumpucm

```
\(I_{\text {Durand, }}\) W. F., Aerodypanie Thengy, Vol. V, Durant Reprinting Covmittee, 2943
\({ }^{2}\) Perixins, C. D., and Elage, Ros., Alrplane Partormana istability and Controd,
    John Wiley Sone, Inco, 1949
\(3_{\text {Fowlar, R. B., Gallop, B. O., Loox, C. N. H., and Hichmond, H. W., The }}\)
```



```
    Purt II, Phil. Trane. Roy. 800., Iondon, 1921.
Scrane, 0., Lahrbugin der Balliatik, J. Bpringor, Bariln, 1925, p. 358
GNoulton, F. R., New methodm in beterior Bellifition, Univereity of Chinago
    prese, Chiengo, 19a6, chap. 6.
    \(7_{\text {Kent, }}\) R. H, An Momentary Treatment of the Motion of a spinning projectile
    About rit genter or dravity, 8.i.L. No. 85,1937 , and revinion with meshane,
    E. Ji, B.R.L. NO. 459, 1944 .
\({ }^{8}\) Kent, R. A., Notee for a Course on Exterior Bmillution given at John Hopkins
    Univeralty, 1وh.
    \(9^{\text {Nielsen, }}\) K. L., and Synge, J. L., On The Motion of a Spinning Sheli, Quarterly
    of Applied Mathematict, Vol. [V, No. 3, Oatober, 1946.
    10Kelly, J. I., and MoShane, F. J., On Mhe Motion of a, irojectile with Small
    or Elowly Changine Yaw, B.R.L. No. 446, 1944.
\({ }^{11}\) Kelly, J. L., MaShane, E.J., and Reno, F., A Foythooring Text on Exterior
    Balliptics, Denver Prese, 2953
    12millipa, W. H., Eirfect of gtaady Rolliny on Longitudinal eni Directional
    Stability, N.A.C.A. T.N. 1627, June, 1948.
23Rosmer, J. B., Ncuton, R. R., and Grose, G. L., Mathematical Theory of
    Rorket Flight, McGraw-Hill Book Company, Ine., 1947.
```

14 prendergast, B., and Kelly, J. I., Becond Report of Contract No. W 18m001 RRD. 590 Unpubisished.
${ }^{15}$ Zaroodny, B. S., On the Mechaniam of Dispersion and Short Ranzes of Mortar Fire (Reatricted), B.R.L. No. 668, 1948.
${ }^{16}$ Maple, C. G., and Synge, J. L., Aerodyiamic Symmetry of profectiles, Quarterly of Applied Mathematios, VCi، VI, No. 4, January, 1949.

17Charters: A.C., and Thomas, R. N., The Aercdymmic Performance of Small Spheres from Subsonic to Eugh Superionic Velooities, Joumal of the Aeronautical Bciences, Vol. 12, No. 4, October, 2945.

18 Charters, A.C., Some Ballistic Contributions to Aerodynamice, Journal of the Aeronautical Sciencen, Vo!. 14, No. 3, March, 1947.

15 Bolz, R. F., and Nicolaider, J. D., A Method of Determining Some Aerodynamic Coefficients from supersonic Free-Flipht pests of y Roling Minalio Journal of the Aeronautical Sciences, Vo1. 17. No. 10, October 1950, and B.R.L. No. 711, 1949.
${ }^{20}$ Nicolaides, J. D., and Bulv, R. E., on the Pure Roliling Motion of Winged and/or Firned Micailes in Varying Superbonic Flipht, B.R.L. Report No. 799, 195k, and J.A.8., Vol. 20, No. 3, March, 1953.
$21_{\text {Webster, }}$ A. G., The Dynamics of Particles and of Rigid, Elastic, and Fluid Bodien, Lefpzig: B. G. Teubner, 1904. (New York: Stechert-Enfnex, 1920).
$22_{\text {Timoshenko, }}$ S., and Young, D. H., Advanced Dynamice, McGraw-hill Book Company, Inc., 1948.
${ }^{23}$ Whittaker, E. T., A Treatise on the Aralytical Dynamics of Particles and Rigid Bodies, Dover Prblication, New York, 1944.
${ }^{24}$ Nicolaides, J. D., Variation of the Aerodynimic Force and Moment Coefficients with Reference Position, B.R.I. IN No. 746, 1952.
${ }^{25}$ Rankin, R. A., The Methematical Theory of the Motion of Rotated and Unrotated Rocketis, Phil. Trans. of the Poyal Society of London, No. 837, Vol. 241, March 1949.

26
Bciz, R. F., Dynamic Btability of a Miesile in Roliling Flight Journal of the Aeronautical geiencen, Vol. 19, No. 6, thene 1932.

27 Nurphy, C. H., On Dynamic Stability Criteria of the Kelly-McSinne Linearized Theory of motion, B.R.L. No. 853, 1953.

26
Zaroodny, 8. S.; On Jump Die to Muzzle Disturbances, F.R.L. Report No. 703, June, 1949.

29
Murphy, C. H., Analogue Corputer Dotermination oi Certain Aerodymamic Coefficients, B.R.L. Report No. 807, 1952.
${ }^{30}$ Turetsky, R. A., Reduction of Spark Data, B.R.L. No. 684, 1948.
${ }^{31}$ Scarborough, J. B., Numerical Mathematical Analysia, The Johns Hopking Fress, 1930.

32
Kcpal, 2., Kavanagh, K. E., and Rodier, N. K., A Manual of Reduction of Spinner Hocket Shadowgramb, M.I.T. TN NC, 4, Cambridge, $1 \Omega^{\prime}+9$.

33 Rogers, W. K., The Transonic Free Flight Bange, B.R.L. No. 849, 1953.

APPENDIX A
 Derivation of Basic Differential Equations of Motion

The derivation of the basic differential equations of motion by employing the total kinetic energy of the missile (Eq, 6) and the Lagrange equation (Eq. 7) on each of the coordinates of the dynamical system $(\phi, \theta, \psi, *, \xi$ and z) is given below:
(1) For θ : The Lagrange equation for θ is given by

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial \theta}\right)-\frac{\partial T}{\partial \theta}=Q_{0} \tag{IN}
\end{equation*}
$$

Substituting the expression for the total kinetic energy of the missile (Eq. 6) and performing the indicated operations yields.
$\frac{d}{d t}[I \dot{\theta}]-\left[-I_{x} \dot{\phi} \dot{\psi} \cos \theta+I_{x} \dot{\psi}^{2} \sin \theta \cos \theta-I \dot{\psi}^{2} \cos \theta \sin \theta\right]=Q_{\theta}$
Now assuming that $\theta, \psi, \dot{\theta}$, and $\dot{\psi}$ are mall and that their
squares and products may be neglected yields,

$$
\begin{equation*}
I^{\dot{\theta}}+I_{x} \dot{q} \dot{\psi}=Q_{\theta} \tag{BA}
\end{equation*}
$$

(2) For Ψ : The Lagrange equation for ψ is given by

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial I}{\partial \psi}\right)-\frac{\partial T}{\partial \psi}-Q_{\psi} \tag{LA}
\end{equation*}
$$

Substituting Eq. 6 and differentiating yields

$$
\begin{equation*}
\frac{d}{d t}\left[-I_{x} \dot{\phi} \sin \theta+I_{x} \sin ^{2} \quad \theta \dot{\psi}+I \cos ^{2} \theta \dot{\psi}\right]-[0]=Q_{\psi} \tag{5A}
\end{equation*}
$$

or

$$
\begin{align*}
& -I_{x} \dot{\phi} \cos \theta \dot{\theta}-I_{x} \sin \left\{\ddot{\phi}+I_{x} \operatorname{sjn}^{2} \theta \ddot{\psi}+I_{x} \dot{\psi} 2 \sin \theta \cos \theta \dot{\theta}\right. \\
& \quad+I \cos ^{2} \theta \ddot{\psi}-I \dot{\psi} 2 \cos \theta \sin \theta \dot{\theta}=Q_{\psi} \tag{Ga}
\end{align*}
$$

assuming that $\theta, \psi, \dot{\theta}, \dot{\psi}$, and $\ddot{\phi}$ are mall quantities $y+e l d s$

$$
\begin{equation*}
J \ddot{\psi}-I_{x} \dot{\phi} \dot{\theta}-Q_{\psi} \tag{Ti}
\end{equation*}
$$

(3) For ϕ : The Lagrange equation for ϕ is given by

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \phi}\right)-\frac{\partial T}{\partial \phi}-Q_{\phi}
$$

Substituting Eq. 6 and differentiating yields

$$
\begin{equation*}
\frac{d}{d t}\left[I_{x} \ddot{\phi}-I_{x}^{\dot{y}} \sin \theta\right] \quad=q_{\phi} \tag{gA}
\end{equation*}
$$

(4) Far x : The Lagrange equation for $x 13$ given by

$$
\begin{equation*}
\frac{d}{d t} \quad \frac{\partial T}{\partial x}-\frac{\partial T}{\partial x}=Q_{x} \tag{101}
\end{equation*}
$$

Substituting Eq. 6 and differentiating yields

$$
\begin{equation*}
\frac{d}{d t}[m \dot{x}]-[0]=\theta_{x} \tag{111A}
\end{equation*}
$$

or

$$
\begin{equation*}
m \ddot{x} \quad Q_{x} \tag{12A}
\end{equation*}
$$

(5) For y : 'The Lagrange Equate' in for y is given by

$$
\begin{equation*}
d d^{d}\left(\frac{\partial T}{\partial Y}\right)-\frac{\partial T}{\partial y}=Q_{y} \tag{13A}
\end{equation*}
$$

Substituting Eq. 6 and differentiating yields

$$
\frac{d}{d t}[m \ddot{y}]-[0]=Q_{y}
$$

or

$$
\begin{equation*}
m \ddot{y}=Q_{y} \tag{15A}
\end{equation*}
$$

(6). For z : The Lagrange equation for z is given by

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T}{\partial}\right)=\frac{\partial T}{\partial L}=Q_{2} \tag{161}
\end{equation*}
$$

Substituting Eq. 6 and differentiating Fields

$$
\frac{d}{d t}\left[\begin{array}{ll}
\mathrm{m} & 8 \tag{17A}
\end{array}\right]-[0]-Q_{2}
$$

(18A)
0

$$
m \ddot{z}-Q_{\varepsilon}
$$

Now multiplying Eq. (7A) by 1 and adding to Eq. ($3 A$) yields

$$
\begin{equation*}
I(\ddot{\theta}+1 \ddot{\psi})-1 I_{x} \dot{\phi}(\dot{\theta}+i \ddot{\psi})=\theta_{\theta}+1 \theta_{\psi} \tag{19A}
\end{equation*}
$$

Introducing complex variables by defining

$$
\begin{align*}
& \dot{\Omega}=\dot{i}+1 \dot{\psi} \tag{20A}\\
& \Omega=\ddot{\theta}+1 \dot{\psi} \tag{2LA}
\end{align*}
$$

and substituting into Eq. (1,9A) yields

$$
\begin{array}{|l|l|}
\hline \ddot{\Omega}+1 I_{x} & \dot{\phi} \dot{\Omega}-q_{\Omega} \tag{22A}\\
\hline
\end{array}
$$

Also multiplying Eq. (18A) by 1 and adding to Eq. (15A) wields

$$
\begin{equation*}
m(\ddot{y}+1 \ddot{\ddot{y}})=a_{y}+1 \theta_{8} \tag{23A}
\end{equation*}
$$

defining

$$
\begin{align*}
& s=y+1 z \\
& \dot{s}=\dot{y}+1 \dot{z} \tag{25A}\\
& \ddot{s}=\ddot{y}+1 \ddot{z}
\end{align*}
$$

(cha)

appendix b

Aerodynamic and Ballistic Nomenclature

The aerodynamic forces and moments in both the Aerodynamic nomenclature" and the Ballistic nomenclature, and also in the Aero-Bellistic nomenclature (for missiles possessing trigonal or greater rotational symmetry and mirror symmetry) are given in Table I.

The relation between the Ballistic J's and the Aeromalif otic Cis are given in Table II.

From the definitions and relations of Tables I and II, some of the basic equations of the report may bo combated to Ballistic form.

The constants of the Aerodynamic force, Eq. (21), and the aerodynamic moment, Eq . (27), in Ballistic nomenclature are given by:

FORCE CONSTANTS
$a-K_{N} \rho u^{2} d^{2}+1 K_{\rho} \rho$ ин d^{3}
$b=K_{x F} \rho \infty d^{4}+1 K_{0} \rho u d^{3}$
$0 \cdot K_{L N} \rho u d^{3}-1 K_{I F} \rho \omega d^{4}$

e- $H_{N_{\varepsilon}} p u^{2} d^{2}$

[^0]AERODYNMMIC

$$
\begin{aligned}
& y_{\beta} \beta=C_{y_{\beta}} \beta \bar{q} \delta \\
& Y_{p a} p a=C_{Y_{p a}}\left(\frac{p b}{2 v}\right) \propto \bar{q} s \\
& Y_{r} r=c_{Y_{r}}\left(\frac{r b}{\bar{q}}\right) \bar{q} s \\
& Y_{p q} p q=C_{Y_{p q}}\left(\frac{p b}{2 b}\right)\left(\frac{q q}{q \vee}\right) \bar{q} s \\
& y_{\beta} \dot{\beta}=c_{y_{\dot{\beta}}}\left(\frac{\dot{B}}{\dot{\gamma}}\right) \bar{q} s \\
& Y_{p_{\dot{\alpha}}} p \dot{c}=C_{Y_{p \dot{a}}}\left(\frac{p b}{2 v}\right)\left(\frac{\dot{a}}{2 v}\right) \bar{q} s
\end{aligned}
$$

$$
\begin{aligned}
& Y_{p \dot{q}} p \dot{q}=c_{Y_{p \dot{q}}}\left(\frac{p b}{2 \eta}\right)\left(\frac{\dot{q}}{2 v}\right)\left(\frac{c}{2 v}\right) \bar{q} s \\
& Y_{\delta_{R}} \delta_{R}=C_{Y_{\delta_{R}}} \delta_{R} \bar{q} S \\
& z_{\alpha} \alpha=c_{z_{\alpha}} a \bar{q} \overline{3} \\
& z_{p \beta} p \beta=C_{p \beta}\left(\frac{p b}{\psi}\right) \beta \bar{q} s \\
& z_{q} q=\bar{Z}_{q}\left(\frac{g}{q}\right) \bar{q} 8 \\
& z_{p r} p r=c_{\chi_{p r}}\left(\frac{p b}{2 v}\right)\left(\frac{p b}{2 \psi}\right) \bar{q} s
\end{aligned}
$$

$$
\begin{aligned}
& z_{\dot{q}} \dot{q}=\mathrm{C}_{\dot{q}}\left(\frac{\dot{q}}{2 v}\right)\left(\frac{0}{2 v}\right) \bar{q} s
\end{aligned}
$$

'JALLA I

AHRODYNMIC FOROES

BALITSTIOS

$$
N=-K_{V_{N}} u^{2} d^{2} \zeta
$$

$$
L S=-1 K_{L S} \rho d^{4} \dot{\eta}
$$

$$
\begin{aligned}
& L X F=-K_{L X F} \rho \frac{\omega}{u} d^{5} \dot{\eta} \\
& N_{E}=K_{N_{E}} \rho u^{2} d^{2} \delta_{\varepsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \text { AERO - BAYLISTIC } \\
& \mathrm{N}_{3} \check{\sim}-\mathrm{C}_{\mathrm{N}_{3}} \zeta \text { a } \mathrm{S} \\
& N_{p g} p \zeta-1 q_{p a}\left(\frac{p b}{\nabla V}\right) \zeta \text { a } s \\
& N_{n} \eta=1 c_{N_{q}}\left(\frac{n}{2 f}\right) \text { a } s \\
& N_{p \eta^{p}} \eta=o_{N_{p_{q}}}\left(\frac{p v}{2 V}\right)\left(\frac{r_{2 v}}{2 v}\right) a s
\end{aligned}
$$

$$
\begin{aligned}
& N_{p j} p \zeta=1 c_{N_{p \dot{a}}}\left(\frac{\mathrm{pb}}{2 \mathrm{~V}}\right)\left(\frac{\gamma \mathrm{c}}{\mathrm{c}}\right) \bar{a} s
\end{aligned}
$$

$$
\begin{aligned}
& { }^{N_{8}}{ }^{8} \varepsilon \cdot{ }^{O_{N_{0}}}{ }^{\delta_{\varepsilon}}{ }^{\square} \mathrm{s}
\end{aligned}
$$

Aéfodmiamic mombints

$$
\begin{aligned}
& M_{\alpha} \propto=c_{m_{a}} \propto \bar{q} S o \quad N_{\beta} \beta=\sigma_{n_{\beta}} \beta \bar{q} s b \\
& M_{p \beta} p \beta=C_{m_{p \beta}}\left(\frac{p b}{p}\right) \beta \bar{q} S \\
& N_{p a} p a=C_{u_{p a}}\left(\frac{p b}{p}\right) a \bar{q} s b
\end{aligned}
$$

$$
\begin{aligned}
& N_{r} r=O_{n_{r}}\left(\frac{r b}{2 b}\right) \ddot{q} 8 b \\
& M_{p r} p r=c_{m_{p r}}\left(\frac{p b}{2 W}\right)\left(\frac{r b}{2 V}\right) \ddot{q} s o \\
& N_{p q} p q=C_{n_{p q}}\left(\frac{p b}{q v}\right)\left(\frac{p q}{2 q}\right) \stackrel{\rightharpoonup}{q} s b \\
& M_{\dot{C}} \dot{\alpha}=C_{m_{\dot{\alpha}}}\left(\frac{\dot{\alpha}}{20}\right) ~ \ddot{q} s c \\
& N_{\dot{\beta}} \dot{\beta}=C_{n_{\dot{\beta}}}\left(\frac{\dot{\rho}}{c}\right) \bar{q} \mathrm{q} \text { b }
\end{aligned}
$$

$$
\begin{aligned}
& \dot{N}_{p \dot{c}} p \dot{\alpha}=o_{n_{p \dot{c}}}\left(\frac{p b}{2 V}\right)\left(\frac{d e}{\partial V}\right) \bar{q} s b \\
& M_{\dot{q}} \dot{q}=c_{m_{\dot{q}}}\left(\frac{\dot{q}}{2 V}\right)\left(\frac{0}{2 V}\right) \bar{q} S_{c} \\
& N_{\dot{r}} \dot{r}=O_{n_{\dot{r}}}\left(\frac{\dot{r} b}{2 V}\right)\left(\frac{b}{2 v}\right) ~ \ddot{a} s b \\
& M_{p r i} p r^{\dot{s}}=c_{m_{p r}}\left(\frac{p b}{2 v}\right)\left(\frac{A b}{2 v}\right)\left(\frac{b}{2 v}\right) \text { qs c } \\
& N_{p \dot{q}} P \dot{q}=C_{n_{p \dot{q}}}\left(\frac{p b}{2 V}\right)\left(\frac{\dot{q}}{2 V}\right)\left(\frac{a}{2 V}\right) \dot{q} s b \\
& \mathrm{~N}_{\delta_{E}} \delta_{E}=C_{m_{G_{E}}} \delta_{E} \ddot{q} \mathrm{sc} \\
& N_{\theta_{R}} B_{R}=C_{n_{\theta_{R}}} \theta_{R} \bar{q} s b \\
& \text { WHERL } \mathcal{\xi}-\beta+1 a, \quad \dot{\xi}=\dot{\beta}+1 \dot{\alpha},
\end{aligned}
$$

TABLE I

AFRODYNMIC MONENIS

$$
\begin{aligned}
& \text { AMRO-BALLISTIC } \\
& M_{j} \xi-1 C_{M_{c}} \xi \bar{q} S 0 \\
& M_{p \xi} p \xi-C_{M_{p a}}\left(\frac{p b}{2 v}\right) \zeta \bar{q} s o
\end{aligned}
$$

$$
\begin{aligned}
& M_{p q} p \eta=-1 C_{M_{q}}\left(\frac{p b}{2 v}\right)\left(\frac{M_{q}}{2 v}\right) \text { iqso } \\
& \text { Mg } \xi-10 M_{G}\left(\frac{k}{28}\right) \text { - s o } \\
& M_{p j} p \xi=o_{M_{a}}\left(\frac{p b}{2 v}\right)\left(\frac{k}{c v}\right) \text { as o } \\
& M_{i} \dot{\eta}-a_{N_{i}}\left(\frac{\dot{y}}{2}\right)\left(\frac{0}{2 V}\right) \text { q̄ } 8 \quad
\end{aligned}
$$

$$
\begin{aligned}
& ?, q+1 r, \dot{R}=\dot{q}+1 \dot{r}, \text { and } \dot{q}=\frac{1}{2} \rho r^{2} \\
& M=-1 K_{M} \rho u^{2} d^{3} \xi \\
& T=-K_{T} \rho u \omega d^{4} \xi \\
& H=-K_{H} \rho u d^{4} \eta \\
& x M--1 x_{I T} \rho \omega d^{5} n \\
& I M=1 K_{L M} \rho u d^{4} \dot{\xi} \\
& L T-K_{I T} \rho \omega d^{5} \xi \\
& \text { LH }-K_{\text {LH }} \rho d^{5} \dot{\eta} \\
& \text { IXI }--1 K_{\text {LIT }} \rho \frac{\omega}{u} d^{6} \dot{\eta} \\
& M_{E}=1 x_{M_{E}} \rho u^{2} d^{3} \varepsilon_{E}
\end{aligned}
$$

Table II

$$
\begin{aligned}
& \text { ARRO-BATIISIIC } \\
& \widehat{\mathrm{C}}_{\mathrm{Na}} \\
& \widehat{\mathrm{C}}_{\mathrm{po}} \\
& \hat{\mathrm{C}}_{\mathrm{N}_{8}} \\
& \widehat{\mathrm{C}}_{\mathrm{M}} \\
& \widehat{S H}_{5} \\
& \hat{C M}_{\dot{p}} \\
& \hat{\mathrm{C}}_{\mathrm{pq}} \\
& \hat{Q}_{3} \\
& \widehat{C}_{M_{p c}} \\
& \widehat{\mathrm{C}}_{\mathrm{G}_{\mathrm{e}}} \quad= \\
& K_{1 j}=J_{1 j} \quad \vec{\rho}^{-1} \\
& p=\frac{v u}{d}
\end{aligned}
$$

MOMTNT CONSI'ANTS

$$
\begin{align*}
& A=-K_{T} \rho u \omega d^{4}-1 K_{M} \rho u^{2} d^{3} \\
& B=-K_{H} \rho u d^{4}+1 K_{X T} \rho \omega d^{5} \\
& C=K_{I T} \rho A_{i} d^{5}+1 K_{L M \rho u d^{4}} \tag{2B}
\end{align*}
$$

$D=K_{L H} \rho d^{5}-1 K_{L X T} \rho \quad \omega_{11}^{\prime} d^{6}$
$E=1 K_{M_{E}} \rho u^{2} d^{3}$
Substituting thase axpresaions to Eqs. (32), ard (34), and eombining yields the differential equation for the mitching and yowing motion

$$
\begin{align*}
& +\frac{\nabla^{2}}{d^{2}}\left\{-k^{-2} J_{M}-v^{2} A / B J_{F}-1 \vee A / B J_{N}+1 v x^{-2} J_{M}\right\} \tilde{\zeta} \\
& =v^{2}\left\{1 \frac{2 v}{d^{2}}(1-A / B) \cdot J_{N_{\varepsilon}}-\frac{m}{B} J_{M_{\varepsilon}}\right\}{ }^{s_{\varepsilon}} \varepsilon_{0} e^{i \int\left(\frac{v}{d}\right)} d t \tag{38}
\end{align*}
$$

WHERE

$$
k^{-2}=\frac{m d^{2}}{8}
$$

The sunaral solution in Ballistio forim is given by

$$
\begin{equation*}
\sum_{i}-x_{1} \Phi_{1} t+k_{2} \cdot \Phi_{2}^{t}+k_{3} \cdot \Phi_{3}^{t} \tag{48}
\end{equation*}
$$

WHERE

$$
\begin{align*}
& \mathrm{K}_{1}-\frac{\tilde{\dot{L}}_{0}-\Phi_{2} \tilde{\zeta}_{0}+\mathrm{K}_{3}\left(\Phi_{2}-\Phi_{3}\right)}{\Phi_{2}-\Phi_{2}} \tag{5B}\\
& \kappa_{2}-\frac{\sum_{0}-\Phi_{1} \tilde{S}_{0}+\kappa_{3}\left(\Phi_{1}-\Phi_{3}\right)}{\Phi_{2}-\Phi_{1}} \tag{6B}
\end{align*}
$$

$$
\begin{aligned}
\mathscr{P}_{1,2} & =V / 2 d\left\{-J_{N}-k^{-2}\left(J_{M}+J_{I M}\right)+1 v\left[k^{-2}\left(J_{I T}+J_{X I}\right)+J_{F} 4 / B\right]\right\} \\
& +\nabla / 2 d\left\{\left\{-J_{N}-k^{-2}\left(J_{H}+J_{L M}\right)+1 v\left[k^{-2}\left(J_{L T}+J_{X I}\right)+J_{Y}+A / B\right]\right\}^{2}\right. \\
& \left.-4\left\{-k^{-2} J_{M}-\nu^{2} A / B J_{F}-1 v A / B J_{N}+1 v k^{-2} J_{T}\right\}\right\} \frac{1}{2}
\end{aligned}
$$

$$
\begin{equation*}
\Phi_{3-1 v u / d} \tag{9B}
\end{equation*}
$$

APPENDIX 0

Reduction Technique

It is the purpose of the reduction technique to "fit" the Tricyo"-io Theory to the experimental data obtained from the Aerodymanice Range and to determine the various constants associated with the motion. The present procedure is to first consider the pitching and yawing motion and than, using the values of the constants obtained from the pitching and yawing motion, reduce the transverse displacement. Once these consatanic have been obtained the representation of the experimental data by the theory (ie., "fit") may be determined and the aerodynamic derivefives may be oaloulated.

Yawing Motion

For the purpose of Range reduction the equation of yawing motion (Eq. 40) is modified in two ways:
(1) the independent variable is changed from time to distance along the trajectory of the missile, 8.
(2) the pitch and yaw are measured from the instantaneous velocity vector of the center of gravity to the misaile and are taken ae positive in the first quadrant looking at the approaching misaile*, and is written as

$$
\begin{gather*}
\tilde{\beta}+1 \tilde{a}=0 \quad 2.302\left(b_{k_{1}}+b_{k_{1}} g\right)_{1}\left(a_{1}+b_{1} z\right)^{2.302\left(a_{k_{2}}+b_{k_{2}}\right)_{1}\left(a_{2}+b_{2} z_{1}\right.} \\
+0^{2.302\left(a_{k_{3}}\right)} 1\left(a_{3}+b_{3} \pi\right) \tag{10}
\end{gather*}
$$

where the new constants are related to those in Eq. (46) by

$$
\begin{aligned}
& a_{x_{1}}=\log _{10}\left|k_{1}\right| b_{K_{1}}=\frac{\lambda_{2}}{2.302 \nabla} b_{1}=\frac{w_{1}}{\nabla}(20)(50)(70) \\
& a_{K_{2}}-\log _{10}\left|k_{2}\right| b_{K_{2}}-\frac{\lambda_{2}}{2.302 \nabla} b_{2}=\frac{w_{2}}{\nabla}(30)(60)(80) \\
& a_{K_{3}}=\log _{10}\left|x_{3}\right|
\end{aligned}
$$

Substituting the Range data for $\tilde{\beta}, \tilde{\sigma}$ and z at each station: into Eq. (1C) yields a set of 50 equations which are non-linear in the constants to be determined thus the Method of Least Squares ${ }^{32}$ cannot be applied.

Differential Corrections ${ }^{31}$

Eq. (1C) is therefore expanded in a Taylor's Series in which the higher order terms are neglected as

$$
\begin{aligned}
& \left.+1 \Delta_{e_{1}}+1{ }_{2} \Delta b_{1}\right] \\
& +0.2 .302\left(a_{K_{2_{0}}}+b_{K_{2}} z\right)_{1}\left(a_{2_{0}}+b_{2_{0}} z\right)\left[2.302 \Delta a_{K_{2}}+2.302 \Delta b_{K_{2}}\right. \\
& \left.+1 \Delta a_{2}+12 \Delta b_{2}\right] \\
& 2.302\left(a_{x_{3}}\right)_{0} 1\left(\varepsilon_{3}+b_{3}{ }_{0}^{2}\right)\left[\begin{array}{llll}
2.302 & a_{x_{3}}+1 & a_{3}+1 \varepsilon & b_{3}
\end{array}\right] \text { (100) }
\end{aligned}
$$

where S_{M} a measured value of angle attack and yaw in Range

$$
\xi_{0} \text { - value computed from Eq. (1C) using initial values of }
$$

Since these equations are linear in the differential correction e the Method of Least Squares may be applied for their determination, provided that estimates of initial values of the constants may be mede. Once values of the differential correstions are determined, they may be added to the original initial values of the constants and this process of Differential
it is noted that initial estimates of these constants may be roadily determined for
(1) b_{3}, the rolling velocity of the misoile as a function of z may bo measured directly from the observed motion in the Range ${ }^{19,20}$
(2) a_{3}, the angular position of K_{3} at a masy be obtadned from a knorledge of the roll orientation of the missile at a (see above (1) and a knowledge of the orientation of K_{j} with respect to the asymutry* whioh is fixed in the missile (wi.75)
(3) e. $302\left[\mathrm{a}_{3}\right]$, the alze of K_{3} at z_{0} may be estimated from Eq. (43) provided that the asymmetry la known from the phyoical measurements of the insssile and that estimated values of the aarodymaic coefilicients are available. In many cases, inspection of the experimental pitching and yaring motion yields a good indication of the aize of K_{3}.

Thus initial valuen for h_{1}, a_{3} and b_{3} may be obtained. Subtractine the third team from the experimentil data aind applying the standard technique 32.30 yields estimates of the remaining imitial values of the constants.

Tranoverse Displucement
The reduction of the transverse displacement of the missile follows directiy iram the reduction of the pitching and yewing motion, Writing Eq, (77) a

$$
\left(\phi_{1} / v 22+k_{2} e^{\left(\phi_{2} / v\right) z}+k_{3} e^{\left(\phi_{3} / v\right) 2}+\left(k_{4} / v\right) \equiv+k_{5}\right.
$$

and substituting the lanie data for 5 and 2 and the pitch and yow onntents prevtously determi red yicide a set of $2 ;$ equations which are linos:: in the unknowns, $k_{1}, k_{2}, k_{3}, k_{4}$ and k_{5}; ana thus the liethod of Least squares may be applied f.stheir deterninntions.

[^1]Corrections successively repeated until the sum of the squares of the residuals is a minimun. The values of the final constants so obtained may be considored as the beet the deta can yield employing the theory of motion. If the probable Etror from the residuals,

$$
\begin{equation*}
P E=6745 \sqrt[5]{\frac{5}{n-10}} \tag{IIC}
\end{equation*}
$$

is of the same order of magnitude as the ostimated orror in meacurement of the experimental data, then the theory may be considered to represent accurately the data.

Initial Values

The determinatior of the original initial values of the constants is critical for employing the Method of Differential Corrections; for if their determination is poor then the process may not be convergent.*

The technique used in obtaining these initial values is to remove the effect of the third term fram the experimental data; then the resultant data will be epicyclic and the standal itechnique for determining the initial values may be used. 30,32

The effect of the third arm on the experimentel data may be subtracted once the constants of this term are estimated.

Conaidering this term

$$
\begin{align*}
& \left.2.302\left(a_{K_{3}}\right)_{0}^{1\left(a_{3}\right.}+b_{3_{0}} m\right)\left[2.302 \Delta a_{K_{3}}+\Delta a_{3}+12 \Delta b_{3}\right] \tag{120}\\
& \text { where } e^{2.302\left(a_{K_{3}}\right)} \text {. size of arm }\left|x_{3}\right|
\end{align*}
$$

$$
\begin{aligned}
& a_{3}=\text { angular poaition of arm at } z_{0} \\
& b_{3}=\begin{array}{l}
\text { rolling velocity of the missile as a function } \\
\text { of }
\end{array}
\end{aligned}
$$

* Of course if the theory is not correct, the Process may also be di. vergent.

DISTRIMUTION LTST

[^0]: ${ }^{\text {ithopgood, R. C., "A Proposed Revision of American Standard Letter }}$ Symbols for Aeronautical Sciences", Aeronautical Engineering Revi.m: \therefore in nary, 1953.

[^1]: "Ihe angular orientation of the asymmetry with respect to the missile may be detecmined by measirement prior to flring.

