ON THE FREE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

Kazuo KITAMURA

(Received May 24, 1972)

Let R be a commutative ring with unit element 1. A quadratic extension of R is an R-algebra which is a finitely generated projective R-module of rank 2. Let Q(R) be the set of all R-algebra isomorphism classes of quadratic extensions of R, and $Q_s(R)$ the set of all R-algebra isomorphism classes of separable quadratic extensions of R. In [2], it was shown that the product in $Q_s(R)$, in the sense of [1], [4] and [5], is extended to Q(R), and Q(R) is an abelian semigroup with unit element. In this note, we study the quadratic extensions of R which are free R-modules. We shall call them the free quadratic extensions of R. Let $Q_f(R)$ and $Q_{fs}(R)$ be the sets of all classes which are free R-modules in Q(R) and $Q_s(R)$, respectively. We shall show that $Q_f(R)$ is an abelian semigroup with unit element, and $Q_{fs}(R)$ is an abelian group consisting of all invertible elements in $Q_f(R)$. For some special rings, we shall determine the structures of $Q_f(R)$ and $Q_{fs}(R)$. We remark that $Q_{fs}(R)$, $Q_s(R)$ and $Pic(R)_2$; the group of isomorphism classes [U] of R-module U such that $U \otimes_R U \cong R$, are closely related by the exact sequence $0 \to Q_{fs}(R) \to Q_s(R) \to Pic(R)_2$.

Let R be any commutative ring with unit element 1. For a free quadratic extension S of R, we can write $S=R\oplus Rx$ and $x^2=ax+b$ for some a, b in R, then we denote it by S=(R, a, b), and by [R, a, b] the R-algebra isomorphism class containing (R, a, b).

Lemma 1. The following two conditions a) and b) are equivalent;

- a) $(R, a, b) \cong (R, c, d)$ as R-algebras,
- b) there exist an invertible element α in R and an element β in R such that $c=\alpha$ $(a-2\beta)$ and $d=\alpha^2(\beta a+b-\beta^2)$.
 - If (R, a, b) and (R, c, d) satisfy a) or b), then we have
- c) $c^2+4d=\alpha^2(a^2+4b)$ for some invertible element α in R. Moreover, if 2 is invertible in R, then we have the converse.

Proof. $a) \rightarrow b$: Let $\sigma: (R, a, b) = R \oplus Rx \rightarrow (R, c, d) = R \oplus Ry$ be an R-algebra isomorphism, and set $\sigma(x) = \alpha y + \beta$ and $\sigma^{-1}(y) = \alpha' x + \beta'$. Since $y = \sigma \cdot \sigma^{-1}(y) = \alpha' \alpha y + \alpha' \beta + \beta'$, we have $\alpha' \alpha = 1$, that is, α and α' are invertible. The equalities $(\sigma(x))^2 = (\alpha y + \beta)^2 = \alpha(\alpha c + 2\beta)y + \alpha^2 d + \beta^2$ and $\sigma(x^2) = \sigma(\alpha x + b) = \alpha ay$

K. Kitamura

- $+b+\beta a$ imply that $\alpha c+2\beta=a$ and $\alpha^2 d+\beta^2=b+\beta a$. Then we have $c=\alpha'(a-2\beta)$ and $d=\alpha'^2(\beta a+b-\beta^2)$.
- $b) \to a$): Define a mapping σ : $(R, a, b) = R \oplus Rx \to (R, c, d) = R \oplus Ry$ by $\sigma(x) = \alpha^{-1}y + \beta$, then σ is an R-algebra isomorphism.
- $b) \rightarrow c$) is obvious. If 2 is invertible, setting $\beta = \frac{1}{2}(a \alpha^{-1}c)$, we see that c) implies b).

The following lemma is well known.

Lemma 2. (R, a, b) is R-separable if and only if a^2+4b is invertible in R.

We shall define a product in $Q_f(R)$ by $[R, a, b] \cdot [R, c, d] = [R, ac, a^2d + bc^2 + 4bd]$. From the following Lemma 3, it is easily seen that $Q_f(R)$ is an abelian semigroup with unit element [R, 1, 0].

Lemma 3. (Lemma 3 in [2]). If $(R, a, b) \cong (R, a', b')$ and $(R, c, d) \cong (R, c', d')$ are isomorphisms as R-algebras, then so is $(R, ac, a^2d + bc^2 + 4bd) \cong (R, a'c', a'^2d' + b'c'^2 + 4b'd')$.

A separable quadratic extension S of R has a unique automorphism $\sigma = \sigma$ (S) of S such that $S^{\sigma} = \{x \in S; \sigma(x) = x\} = R$. In [1], [4] and [5], the product $S_1 \bigstar S_2$ of separable quadratic extension S_1 and S_2 of R was defined as the fixed subalgebra $(S_1 \otimes_R S_2)^{\sigma_1 \otimes \sigma_2}$, where $\sigma_i = \sigma(S_i)$.

Lemma 4 (Proposition 4 in [2]). Let (R, a, b) and (R, c, d) be separable quadratic extensions of R. Then we have $[R, a, b] \cdot [R, c, d] = [(R, a, b) \bigstar (R, c, d)]$.

Theorem 1. An element [R, a, b] of $Q_f(R)$ is invertible if and only if [R, a, b] is contained in $Q_{fs}(R)$. Therefore, $Q_{fs}(R)$ is the set of all invertible elements in $Q_f(R)$. It is an abelian group of exponent 2.

Proof. Let [R, a, b] be any element of $Q_{fs}(R)$. By Lemma 2, a^2+4b is invertible in R. Set $\alpha=(a^2+4b)^{-1}$ and $\beta=-2b$, then we have $\alpha(a^2-2\beta)=1$ and $\alpha^2(\beta a^2+(2a^2b+4b^2)-\beta^2)=0$, hence we have $(R, a^2, 2a^2b+4b^2)\cong(R, 1, 0)$ by Lemma 1. Since $[R, a, b]^2=[R, a^2, 2a^2b+4b^2]$, we have $[R, a, b]^2=[R, 1, 0]$, so [R, a, b] is invertible in $Q_f(R)$. Conversely, we assume $[R, a, b] \cdot [R, c, d]=[R, 1, 0]$, then we have $1=\alpha^2\{(ac)^2+4(a^2d+bc^2+4bd)\}=\alpha^2(a^2+4b)(c^2+4d)$ for some invertible element α in R. Thus, a^2+4b is invertible in R, therefore, [R, a, b] is contained in $Q_{fs}(R)$.

Theorem 2. Let $\{R_{\lambda}; \lambda \in \Lambda\}$ be a family of commutative rings with unit elements, and $R = \prod_{\lambda \in \Lambda} R_{\lambda}$ a direct product of $\{R_{\lambda}; \lambda \in \Lambda\}$. Then we have isomorphisms $Q_f(R) \cong \prod_{\lambda \in \Lambda} Q_f(R_{\lambda})$ and $Q_{fs}(R) \cong \prod_{\lambda \in \Lambda} Q_{fs}(R_{\lambda})$ by correspondence $[R, \prod_{\lambda \in \Lambda} a_{\lambda}, \prod_{\lambda \in \Lambda} b_{\lambda}]$ $f \mapsto \prod_{\lambda \in \Lambda} [R_{\lambda}, a_{\lambda}, b_{\lambda}]$.

Proof, Let $(R, \prod_{\lambda \in \Lambda} a_{\lambda}, \prod_{\lambda \in \Lambda} b_{\lambda}) \cong (R, \prod_{\lambda \in \Lambda} c_{\lambda}, \prod_{\lambda \in \Lambda} d_{\lambda})$. Then, there exist $\alpha = \prod_{\lambda \in \Lambda} \alpha_{\lambda}$

and $\beta = \prod_{\lambda \in \Lambda} \beta_{\lambda}$ such that α is invertible in R, $\prod c_{\lambda} = \alpha(\prod a_{\lambda} - 2\beta)$ and $\prod d_{\lambda} = \alpha^{2}(\beta + \prod a_{\lambda} + \prod b_{\lambda} - \beta^{2})$. It is equivalent to existence of α_{λ} and β_{λ} in R_{λ} such that α_{λ} is invertible, $c_{\lambda} = \alpha_{\lambda}(a_{\lambda} - 2\beta_{\lambda})$ and $d_{\lambda} = \alpha_{\lambda}^{2}(\beta_{\lambda}a_{\lambda} + b_{\lambda} - \beta_{\lambda}^{2})$ for all $\lambda \in \Lambda$, namely, $\prod_{\lambda \in \Lambda} (R_{\lambda}, a_{\lambda}, b_{\lambda}) \cong \prod_{\lambda \in \Lambda} (R_{\lambda}, c_{\lambda}, d_{\lambda})$. Thus f is injective. It is clear that f is an epimorphism. Therefore, we have an isomorphism $Q_{f}(R) \cong \prod_{\lambda \in \Lambda} Q_{f}(R_{\lambda})$ as semigroups, so we have the isomorphism $Q_{fs}(R) \cong \prod_{\lambda \in \Lambda} Q_{fs}(R_{\lambda})$ as groups by Theorem 1.

Let U(R) be the unit group of a ring R, and $U^2(R)$ the set $\{u^2 : u \in U(R)\}$. We define a relation \sim in R as follows; for a and b in R, $a \sim b$ if there exist c and d in $U^2(R)$ such that ac=bd. Then the relation \sim is an equivalence relation and we denote by $R/U^2(R)$ the quotient R/\sim . The multiplication in R induces a multiplication in $R/U^2(R)$, and $R/U^2(R)$ is an abelian semigroup with unit element [1], where [a] denotes the class of a in $R/U^2(R)$. It is clear that the set of all invertible elements in $R/U^2(R)$ is $U(R)/U^2(R)$. We define a mapping $D: Q_f(R) \rightarrow R/U^2(R)$ by $D([R, a, b]) = [a^2 + 4b]$, and this is a homomorphism, which carries [R, 1, 0] and [R, 0, 0] to [1] and [0], respectively. Indeed, by Lemma 1, D is well defined, and $D([R, a, b] \cdot [R, c, d]) = [(ac)^2 + 4(a^2d + bc^2 + 4bd)] = [a^2 + 4b][c^2 + 4d]$.

Theorem 3. If 2 is invertible in R, then D is an isomorphism and this induces an isomorphism $Q_{fs}(R) \simeq U(R)/U^2(R)$ as groups. (cf. Proposition 3.3 in [1])

Proof. By Lemma 1, [R, a, b] = [R, c, d] in $Q_f(R)$ if and only if $[a^2+4b] = [c^2+4d]$ in $R/U^2(R)$. Thus D is a monomorphism. For any element a in R, $D([R, 0, \frac{a}{4}]) = [a]$, therefore D is surjective. Thus D is an isomorphism. Furthermore, by Theorem 1, D induces an isomorphism $Q_{fs}(R) \cong U(R)/U^2(R)$ as groups.

In the case where 2 is not invertible in R, we give a sufficient condition such that D ia a monomorphism;

Theorem 4. If R is a unique factorization domain of characteristic ± 2 , or a ring such that 2R is a prime ideal and 2 is a non-zero-divisor, then D is a monomorphism.

Proof. In the first place, we remark that if a=a'+2r then $(R, a, b) \cong (R, a', ra+b-r^2)$ and $a^2+4b=a'^2+4(ra+b-r^2)$. Let D([R, a, b])=D([R, c, d]), that is, $a^2+4b=\alpha^2(c^2+4d)$ for some invertible element α in R. Since $(R, a, b) \cong (R, a/\alpha, b/\alpha^2)$, we may assume that $a^2+4b=c^2+4d$. If $a-c\in 2R$, we may put a=c, and so we have b=d. Thus, if $a-c\in 2R$, D is a monomorphism. Now, we remain only to show that $a^2+4b=c^2+4d$ implies $a-c\in 2R$. Let R be a unique factorization domain. If b=d, the implication is clear. Let $b\neq d$. Put

18 K. KITAMURA

- $2=p_1^{e_1}\cdot p_2^{e_2}\cdots p_n^{e_n}$ the prime factorization of 2. For each i, $(1\leq i\leq n)$, let f_i be an integer such that $a+c=p_i^{f_i}\cdot s_i$ and $p_i\not \mid s_i$. Then from $4\mid (a+c)(a-c)$, we have $p_i^{2e_i-f_i}\mid a-c$. If $f_i\leq e_i$, we have $p_i^{e_i}\mid a-c$ because of $2e_i-f_i\geq e_i$. On the other hand, if $f_i>e_i$, we have $p_i^{e_i}\mid a-c$ because of $a-c=p_i^{f_i}\cdot s_i-2c$. Thus we have $p_i^{e_i}\mid a-c$ for every i, $(1\leq i\leq n)$. Therefore, $a-c\in 2R$. Let R be a ring such that 2R is a prime ideal. Since (a+c)(a-c)=4(d-b) is in 2R, if $a-c\in 2R$ then a+c=2r for some r in R, and so a-c=2(r-c). It is a contradiction. Thus, $a-c\in 2R$.
- Corollary 1. Let Z be the ring of rational integers. Q(Z) is isomorphic to a multiplicative subsemigroup $\{n; n=4r \text{ or } n=4r+1, r\in Z\}$ of Z. Therefore, Q_s (Z) is trivial. (cf. Proposition 4 in [3]).
- **Corollary 2.** Let $R = \mathbb{Z}[i]$ be the ring of Gaussian integers. $Q(R) = Q_f(R)$ is isomorphic to the subsemigroup $\{[\alpha] \in R/\{1, -1\}; \alpha = 4b, 4b+1, 4b+2i \text{ for all } b \in R\}$ of $R/U^2(R) = \mathbb{Z}[i]/\{1, -1\}$. And $Q_s(R)$ is trivial.
- Proof. Since $R/2R = \{\overline{0}, \overline{1}, \overline{i}, \overline{1+i}\}$, we get $Q(R) = \{[R, 0, b], [R, 1, b], [R, i, b], [R, 1+i, b]; b \in R\}$. Therefore, we have $Q(R) \simeq Im D = \{[\alpha] \in R/\{1, -1\}; \alpha = 4b, 4b+1, 4b+2i \text{ for all } b \text{ in } R\}$, hence $Q_s(R)$ is trivial..
- REMARK 1. In Theorem 4, we can not omit the condition that 2 is a non-zero-divisor. For example, let $R=\mathbb{Z}/(4)$, then we have $Q(R)=\{[R, \bar{0}, \bar{0}], [R, \bar{0}, \bar{1}], [R, \bar{0}, \bar{2}], [R, \bar{0}, \bar{3}], [R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}, Q_s(R)=\{[R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}, D$ $(Q(R))=\{\bar{0}, \bar{1}\}\subset \mathbb{Z}/(4)$ and $D(Q_s(R))=\{\bar{1}\}\subset \mathbb{Z}/(4)$. Then D is neither monomorphic nor epimorphic.
- REMARK 2. In the case where R is not a unique factorization domain, we can not omit the condition in Theorem 4 that 2R is a prime ideal. For example, let $R = \mathbb{Z}[\sqrt{5}]$. Then we have $[R, \sqrt{5}, -1] \neq [R, 1, 0]$ but $D([R, \sqrt{5}, -1]) = D([D, 1, 0]) = [1]$. D is not a monomorphism.
- **Theorem 5.** Let $K=GF(p^n)$ be finite field, then Q(K) is isomorphic to the multiplicative semigroup $\mathbb{Z}/(3)$. Further, the isomorphism induces an isomorphism $Q_s(K) \cong \{\overline{1}, -\overline{1}\} = U(\mathbb{Z}/(3))$.
- Proof. The case $p \neq 2$. In the first place, we note that $(R, a, b) \cong (R, 0, a^2 + 4b)$ and $U(K) = K^* = K \{0\}$. From Theorem 3 and $(K^*: K^{*2}) = 2$, we have $Q(K) = \{[K, 0, 0], [K, 0, 1], [K, 0, \alpha]\}$, where α is an element K^* which is not contained in K^{*2} . By the correspondence $[K, 0, 0] \mapsto \overline{0}$, $[K, 0, 1] \mapsto \overline{1}$ and $[K, 0, \alpha] \mapsto -\overline{1}$, we have an isomorphism $Q(K) \cong \mathbb{Z}/(3)$ as multiplicative semigroups, and it induces $Q_s(K) \cong \{\overline{1}, -\overline{1}\} = U(\mathbb{Z}/(3))$ as groups.
- The case p=2. Since $a^2+a=a(a+1)$ for a in K, we have $\#\{a^2+a; a\in K\}$ $=2^{n-1}<\#(K)$, where #(K) denotes the number of elements in K. Then, there

exists α in K such that $\alpha \in \{a^2 + a; a \in K\}$, and the quadratic equation $x^2 + x + \alpha = 0$ has no roots in K. Then, we can see the equalities $\sharp \{a^2 + a; a \in K\} = \sharp \{a^2 + a + \alpha; a \in K\} = \sharp \{a^2 + a + \alpha; a \in K\} = 2^{n-1}$ and $\{a^2 + a; a \in K\} \cap \{a^2 + a + \alpha; a \in K\} = \emptyset$. For, if $c = a^2 + a$ and $c = b^2 + b + \alpha$ for some a, b in K, then $(a+b)^2 + (a+b) + \alpha = 0$. It is a contradiction. Therefore, we have $K = \{a^2 + a; a \in K\} \cup \{a^2 + a + \alpha; a \in K\}$, (disjoint sum), namely, any element a in K verifies either $\beta^2 + \beta + a = 0$ or $\beta^2 + \beta + a + \alpha = 0$ for some β in K. On the other hand, by Lemma 1, $(K, 1, 0) \cong (K, 1, a)$ if and only if there exists β in K such that $\beta^2 + \beta + a = 0$. And $(K, 1, \alpha) \cong (K, 1, a)$ if and only if there exists β in K such that $\beta^2 + \beta + a + \alpha = 0$. Accordingly, we have $Q_s(K) = \{[K, 1, 0], [K, 1, \alpha]\}$. Furthermore, since $U^2(K) = U(K)$, $(K, 0, 0) \cong (K, 0, a)$ for all a in K, hence $Q(K) = \{[K, 0, 0], [K, 1, 0], [K, 1, \alpha]\}$. By the correspondence $[K, 0, 0] \mapsto \overline{0}$, $[K, 1, 0] \mapsto \overline{1}$ and $[K, 1, \alpha] \mapsto -\overline{1}$ we have the isomorphism $Q(K) \cong Z/(3)$, and it induces $Q_s(K) \cong \{\overline{1}, -\overline{1}\} = U(Z/(3))$.

REMARK 3. Let Q, R and C be the fields of rational numbers, real numbers and complex numbers, respectively. By the same argument as the proof of Theorem 5 (in case $p \neq 2$), we can see that $Q(R) = \{[R, 0, 0], [R, 0, 1], [R, 0, -1]\}$, $Q(C) = \{[C, 0, 0], [C. 1, 0]\}$. Further, $Q_s(Q)$ is an infinite ableian group of exponent 2, $Q_s(R)$ is a group of order 2 and $Q_s(C)$ is trivial.

REMARK 4. In the case $R = GF(2^n)$, the homomorphism D is not a monomorphism but an epimorphism.

Theorem 6. Let $R = \mathbb{Z}/(n)$, and let $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_r}$ be the prime factorization of n. Then $Q_{fs}(R)$ is the abelian group of type $(2, 2, \dots, 2)$, r-times.

Proof. It is enough to prove that $Q_s(\mathbf{Z}/(p^e))$ is the group of order 2 for any prime integer p. In the case $p \neq 2$, by Theorem 3, $Q_s(\mathbf{Z}/(p^e))$ is isomorphic to the group $U(\mathbf{Z}/(p^e))/U^2(\mathbf{Z}/(p^e))$. The index $(U(\mathbf{Z}/(p^e)))$: $U^2(\mathbf{Z}/(p^e))$) is 2, since $U(\mathbf{Z}/(p^e))$ is a cyclic group of order $\varphi(p^e)=(p-1)p^{e-1}$. Thus, $Q_s(\mathbf{Z}/(p^e))$ is the group of order 2. In the case p=2, put $\mathbb{Z}/(2^e)=R$. We shall remark that $\{\bar{a}^2\}$ In fact, let $f: 2R \rightarrow \{\bar{a}^2 - \bar{a}; \bar{a} \in R\}$ be a mapping defined by f $-\bar{a}$; $\bar{a} \in R$ }=2R. $(\bar{a})=\bar{a}^z-\bar{a}$. If $f(\bar{a})=f(\bar{b})$, we have $(a-b)(a+b-1)\equiv 0 \mod 2^e$. Since $2 \not\mid a+b$ -1, we have $2^{e}|a-b$, hence $\bar{a}=\bar{b}$, Furthermore, $\{\bar{a}^{2}-\bar{a}; \bar{a}\in R\}$ and 2R are finite sets and $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} \subseteq 2R$. Hence, $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} = 2R$. shall show that $(R, \overline{1}, \overline{a+2}) \cong (R, \overline{1}, \overline{a})$ for all integer a. $(R, \overline{1}, \overline{a+2}) \cong (R, \overline{1}, \overline{a})$ if and only if there exist an odd integer α and an integer β such that $1 \equiv \alpha(1 - \alpha)$ 2β) and $a \equiv \alpha^2(\beta + a + 2 - \beta^2) \mod 2^e$, namely, there exists an integer β such that $(4a+1)\beta^2 - (4a+1)\beta - 2 \equiv 0 \mod 2^e$. Since $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} = 2R$, we can take an integer β such that $\overline{\beta}^2 - \overline{\beta} = 2(\overline{4a+1})^{-1}$, and we have $(4a+1)\beta^2 - (4a+1)\beta - 2 \equiv$ 0 mod 2^e . Hence, we have $(R, \overline{1}, \overline{a+2}) \cong (R, \overline{1}, \overline{a})$ for all integer a. Accordingly we have $(R, \overline{1}, \overline{2a}) \cong (R, \overline{1}, \overline{0})$ and $(R, \overline{1}, \overline{2a+1}) \cong (R, \overline{1}, \overline{1})$ for all integer a,

20 K. KITAMURA

But $[R, \overline{1}, \overline{0}] \neq [R, \overline{1}, \overline{1}]$. Therefore, $Q_s(R)$ is the group of order 2.

REMARK 5. Let $R = \mathbb{Z}/(2^e)$. Then we have following;

- i) if e=1, $Q(R)=\{[R, \bar{0}, \bar{0}], [R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}.$
- ii) if $e \ge 2$, $Q(R) = \{[R, \bar{0}, \bar{a}_i]; i = 1, 2, \dots, r\} \cup \{[R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}$, (disjoint sum), where $\{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_r\}$ is the representatives of $R/U^2(R)$.

Proof. i) is a special case of Theorem 5.

ii) $(R, \bar{0}, \bar{a}) \cong (R, \bar{0}, \bar{b})$ if and only if there exist an odd integer α and an integer β such that $2\beta \equiv 0$ and $b \equiv \alpha^2 (a - \beta^2) \mod 2^e$. Put $\beta \equiv 2^{e^{-1}n} \mod 2^e$ and $2 \not\mid n$, then we have $\beta^2 \equiv 0 \mod 2^e$. Therefore, $(R, \bar{0}, \bar{a}) \cong (R, 0, \bar{b})$ if and only if $\bar{b} = \bar{\alpha}^2 \bar{a}$ for some $\bar{\alpha}$ in U(R), namely, $[\bar{a}] = [\bar{b}]$ in $R/U^2(R)$.

REMARK 6. There is a commutative ring R with the homomorphism D: $Q_f(R) \to R/U^2(R)$ which is not a monomorphism but the restriction $D \mid Q_{fs}(R)$ is a monomorphism. For example, if $R = \mathbb{Z}/(2^e)$, $(e \ge 3)$, then we have $D([R, \overline{1}, \overline{0}]) = [\overline{1}]$, $D([R, \overline{1}, \overline{1}]) = [\overline{5}]$ and $[\overline{1}] \pm [\overline{5}]$ in $U(R)/U^2(R)$. Thus, the restriction $D \mid Q_{fs}(R)$ is a monomorphism. But, we have $[R, \overline{0}, \overline{0}] \pm [R, \overline{0}, \overline{2}^{e-2}]$ and $D \in [R, \overline{0}, \overline{0}] = D([R, \overline{0}, \overline{2}^{e-2}]) = [\overline{0}]$, Then D is not a monomorphism.

OSAKA KYOIKU UNIVERSITY

References

- [1] H. Bass: Lectures on Topics in Algebraic K-theory, Tata Inst. Fund. Research, Bombay, 1967.
- [2] T. Kanzaki: On the quadratic extensions and the extended Witt ring of a commutative ring, Nagoya Math. J. 49 (1973), 127-141.
- [3] A. Micali et E. Villamayor: Sur les algèbres de Clifford. II., J. Reine Angew. Math. 242 (1970), 61-90.
- [4] A. Micali et E. Villamayor: Algèbres de Clifford et groupe de Brauer, Ann. Sci. Ecole Norm. Sup. 4° ser. 4 (1971), 285-310.
- [5] P. Revoy: Sur les deux premiers invariants d'une forme quadratique, Ann. Sci. Ecole Norm. Sup. 4^e ser. 4 (1971), 311-319.