54. On the Freudenthal's Construction of Exceptional Lie Algebras

By Kiyosi Yamaguti*) and Hiroshi Asano**)

(Comm. by Kenjiro Shoda, M. J. A., April 12, 1975)

Introduction. In his papers [3], [4], Professor Freudenthal constructed an exceptional simple Lie algebra © \mathscr{S}^{2} as follows. Let \mathfrak{J} be an exceptional simple Jordan algebra of all 3×3 Hermitian matrices with coefficients in the algebras of octaves, in which the Jordan product $X \cdot Y$ is defined as $1 / 2(X Y+Y X)$. A symmetric cross product $X \times Y$ in \mathfrak{F} is defined by

$$
X \times Y=X \cdot Y-\frac{1}{2}(\mathrm{sp}(X) Y+\mathrm{sp}(Y) X-\operatorname{sp}(X) \mathrm{sp}(Y) I+(X, Y) I)
$$

where $\operatorname{sp}(X)$ means the spur of X, I is the unit matrix and (X, Y) $=\operatorname{sp}(X \cdot Y)$ for $X, Y \in \mathfrak{J}$. Furthermore, for any $X, Y \in \mathfrak{F},\langle X, Y\rangle$ is a linear transformation of \mathfrak{J} defined by

$$
\langle X, Y\rangle Z=2 Y \times(X \times Z)-\frac{1}{2}(Z, Y) X-\frac{1}{6}(X, Y) Z \quad \text { for } Z \in \mathfrak{F} .
$$

Let \mathscr{S} be the subspace spanned by $\{\langle X, Y\rangle \mid X, Y \in \mathfrak{F}\}$ in the space of linear transformations on \mathfrak{J}. Let $\mathfrak{\Re}=\mathfrak{J} \oplus \mathfrak{J} \oplus \boldsymbol{R} \oplus \boldsymbol{R}$ and $\mathfrak{R}=\mathfrak{F} \oplus \boldsymbol{R} \oplus \mathfrak{S}$ $\oplus \widetilde{F}$ (\boldsymbol{R} is the field of real numbers) be direct sums as vector spaces, in which elements are denoted as

$$
P=\lceil X, Y, \xi, \omega\rceil \quad \text { and } \quad \Theta=\left\lceil\sum_{i}\left\langle X_{i}, Y_{i}\right\rangle, \rho, A, B\right\rceil
$$

or

$$
P=\left(\begin{array}{c}
X \\
Y \\
\xi \\
\omega
\end{array}\right) \quad \text { and } \quad \Theta=\left[\begin{array}{c}
\sum_{i}\left\langle X_{i}, Y_{i}\right\rangle \\
\rho \\
A \\
B
\end{array}\right]
$$

For any elements $P_{i}=\left\lceil X_{i}, Y_{i}, \xi_{i}, \omega_{i}\right\rceil(i=1,2)$ in \mathfrak{R}, an alternating form $\left\{P_{1}, P_{2}\right\}$ and an element $P_{1} \times P_{2}$ of \mathcal{R} are defined as follows;

$$
\begin{aligned}
& \left\{P_{1}, P_{2}\right\}=\left(X_{1}, Y_{2}\right)-\left(X_{2}, Y_{1}\right)+\xi_{1} \omega_{2}-\xi_{2} \omega_{1}, \\
& P_{1} \times P_{2}=\frac{1}{2}\left(\begin{array}{c}
\left\langle X_{1}, Y_{2}\right\rangle+\left\langle X_{2}, Y_{1}\right\rangle \\
-\frac{1}{4}\left(\left(X_{1}, Y_{2}\right)+\left(X_{2}, Y_{1}\right)-3 \xi_{1} \omega_{2}-3 \xi_{2} \omega_{1}\right) \\
-Y_{1} \times Y_{2}+\frac{1}{2}\left(\xi_{1} X_{2}+\xi_{2} X_{1}\right) \\
X_{1} \times X_{2}-\frac{1}{2}\left(\omega_{1} Y_{2}+\omega_{2} Y_{1}\right)
\end{array}\right)
\end{aligned}
$$

[^0]For $\Theta=\left\lceil\sum_{i}\left\langle X_{i}, Y_{i}\right\rangle, \rho, A, B\right\rceil$ in \mathfrak{R} and $P=\lceil X, Y, \xi, \omega\rceil$ in \mathfrak{R}, an element ΘP in Ω is defined by

$$
\Theta P=\left(\begin{array}{c}
\left(\sum_{i}\left\langle X_{i}, Y_{i}\right\rangle+\frac{1}{3} \rho\right) X+2 B \times Y+\omega A \\
-\left(\sum_{i}\left\langle Y_{i}, X_{i}\right\rangle+\frac{1}{3} \rho\right) Y+2 A \times X+\xi B \\
(A, Y)-\rho \xi \\
(B, X)+\rho \omega
\end{array}\right)
$$

Then the following relations hold (cf. [2], [4])

$$
\begin{equation*}
(P \times Q) R-(P \times R) Q+\frac{1}{8}\{P, Q\} R-\frac{1}{8}\{P, R\} Q-\frac{1}{4}\{Q, R\} P=0, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\{(P \times Q) R, S\}+\{R,(P \times Q) S\}=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
[P \times Q, R \times S]=(P \times Q) R \times S+R \times(P \times Q) S \tag{3}
\end{equation*}
$$

Put $\mathfrak{M}=\{P \in \mathfrak{R} \mid P \times P=0\}$ and let Inv (\mathfrak{M}) be a Lie algebra of the group of projective transformations of \mathfrak{R} which leave the manifold \mathfrak{M} invariant. Freudenthal introduced a Lie product [,] in the vector space direct sum $\mathscr{G}=\operatorname{Inv}(\mathfrak{M}) \oplus \mathfrak{R}_{1} \oplus \mathfrak{R} \oplus \mathfrak{R}$, where \mathfrak{N}_{1} was a three dimensional simple Lie algebra, and he proved that © became a simple Lie algebra of type E_{8}.

Then the vector space $\mathfrak{I}=\Re \oplus \Re$ becomes a Lie triple system relative to the ternary product $\left[t_{1} t_{2} t_{3}\right]=\left[\left[t_{1}, t_{2}\right], t_{3}\right]\left(t_{i} \in \mathfrak{I}\right)$, since $[\Re \oplus \Re, ~ \Re \oplus \Re]$ $\subset \operatorname{Inv}(\mathfrak{M}) \oplus \mathfrak{H}_{1}, \quad\left[\operatorname{Inv}(\mathfrak{M}) \oplus \mathfrak{H}_{1}, \mathfrak{A} \oplus \Re\right] \subset \mathfrak{A} \oplus \Re$ and $\operatorname{Inv}(\mathfrak{M}) \oplus \mathfrak{X}_{1}$ is a subalgebra of \mathbb{C}. Therefore it follows from the simplicity of $\mathscr{C S}^{2}$ that \mathfrak{I} is simple as Lie triple system (cf. [5], [6]).

In this paper, we shall give a direct proof of this result without using of simplicity of © (see Theorem 1), and a reformation of the Freudenthal's construction by means of a kind of triple systems and a criterion for simplicity of © (see Theorem 4).
§ 1. We denote an element of the vector space $\mathfrak{I}=\mathfrak{R} \oplus \mathscr{R}$ in matrix form as $\binom{P}{Q}$ for $P, Q \in \Re$. Following Freudenthal [3], a ternary product in \widetilde{T} is defined abstractly as follows:
$\left[\binom{P_{1}}{P_{1}^{\prime}}\binom{P_{2}}{P_{2}^{\prime}}\binom{P_{3}}{P_{3}^{\prime}}\right]$

$$
=\left(\begin{array}{l}
\left(P_{1} \times P_{2}^{\prime}-P_{2} \times P_{1}^{\prime}\right) P_{3}-\frac{1}{8}\left(\left\{P_{1}, P_{2}^{\prime}\right\}-\left\{P_{2}, P_{1}^{\prime}\right\}\right) P_{3}+\frac{1}{4}\left\{P_{1}, P_{2}\right\} P_{3}^{\prime} \tag{4}\\
\left(P_{1} \times P_{2}^{\prime}-P_{2} \times P_{1}^{\prime}\right) P_{3}^{\prime}+\frac{1}{8}\left(\left\{P_{1}, P_{2}^{\prime}\right\}-\left\{P_{2}, P_{1}^{\prime}\right\}\right) P_{3}^{\prime}-\frac{1}{4}\left\{P_{1}^{\prime}, P_{2}^{\prime}\right\} P_{3}
\end{array}\right] .
$$

Then it is easily seen that \mathfrak{T} has a structure of Lie triple system relative to this product, that is, the following identities are satisfied for any $t, u, v, x, y \in \mathfrak{I}$;

$$
\begin{gather*}
{[t t u]=0,} \tag{5}\\
{[t u v]+[u v t]+[v t u]=0,} \tag{6}
\end{gather*}
$$

$$
\begin{equation*}
[x y[t u v]]=[[x y t] u v]+[t[x y u] v]+[t u[x y v]] . \tag{7}
\end{equation*}
$$

A subspace \mathbb{S} is called an ideal of \mathfrak{T} if $[\subseteq \mathfrak{T} \mathfrak{T}] \subset \mathbb{S}$. And \mathfrak{I} is said to be simple if \mathfrak{T} has no proper ideals and $\operatorname{dim} \mathfrak{T}>1$.

Now we put $\boldsymbol{P}_{1}=\lceil 0,0,1,0\rceil$ and $\boldsymbol{P}_{2}=\lceil 0,0,0,1\rceil$.
Lemma 1. Let \subseteq be an ideal of the Lie triple system $\mathfrak{I}=\mathfrak{A} \oplus \mathscr{R}$, then $\binom{P}{0} \in \mathbb{S}$ is equivalent to $\binom{0}{P} \in \mathbb{S}$.

Proof. If $\binom{P}{0} \in \mathbb{S}$, then $\left[\binom{0}{P_{1}}\binom{0}{\boldsymbol{P}_{2}}\binom{P}{0}\right]=-\frac{1}{4}\binom{0}{P} \in \mathbb{S} . \quad$ Conversely, $\binom{0}{\boldsymbol{P}} \in \mathbb{S}$ implies $\left[\binom{\boldsymbol{P}_{1}}{0}\binom{\boldsymbol{P}_{2}}{0}\binom{0}{\boldsymbol{P}}\right]=\frac{1}{4}\binom{P}{0} \in \mathbb{S}$.

Theorem 1. The Lie triple system $\mathfrak{I}=\mathfrak{P} \oplus \mathfrak{A}$ with the ternary product (4) is simple.

Proof. Let \subseteq be a non-zero ideal of \mathfrak{T}. If $\binom{\boldsymbol{P}_{1}}{0} \in \mathbb{S}$, then $\left[\binom{\boldsymbol{P}_{1}}{0}\binom{\boldsymbol{P}_{2}}{0}\binom{0}{\boldsymbol{P}}\right] \in \mathbb{S}$ for any $P \in \mathfrak{R}$, hence $\frac{1}{4}\binom{P}{0} \in \mathbb{S}$ and $\mathfrak{\Re} \oplus\{0\} \subset \mathbb{S}$.
 \mathfrak{I} is simple. So we shall show that $\binom{\boldsymbol{P}_{1}}{0} \in \mathbb{S}$. Let $\binom{P}{P^{\prime}}$ be a non-zero element in \mathbb{S}. Then, from (4) we see $\left[\binom{\boldsymbol{P}_{1}}{0}\binom{\boldsymbol{P}_{2}}{0}\binom{P}{P^{\prime}}\right]=\frac{1}{4}\binom{P^{\prime}}{0} \in \mathbb{S}$. Hence we may assume without loss of generality that $P \neq 0$. Put $P=\lceil X, Y, \xi, \omega\rceil$.
Case 1. For $\xi \neq 0:\left[\left[\binom{P}{P^{\prime}}\binom{0}{\boldsymbol{P}_{2}}\binom{0}{\boldsymbol{P}_{2}}\right]\binom{\boldsymbol{P}_{1}}{0}\binom{\boldsymbol{P}_{1}}{0}\right] \in \mathbb{S}$, hence $\frac{1}{4} \xi\binom{\boldsymbol{P}_{1}}{0} \in \mathbb{S}$.
Case 2. For $\omega \neq 0:\left[\binom{\boldsymbol{P}}{\boldsymbol{P}^{\prime}}\binom{0}{\boldsymbol{P}_{1}}\binom{0}{\boldsymbol{P}_{1}}\right]=-\frac{1}{2} \omega\binom{0}{\boldsymbol{P}_{1}} \in \mathbb{S}$. From Lemma 1, it follows that $\binom{\boldsymbol{P}_{1}}{0} \in \mathbb{S}$.
Case 3. For $\xi=\omega=0$ and $X \neq 0$: Choose $Z \in \mathfrak{\Im}$ such that $(X, Z) \neq 0$, then $\left[\binom{P}{P^{\prime}}\binom{0}{Q}\binom{0}{\boldsymbol{P}_{1}}\right]=\frac{1}{4}(X, Z)\binom{0}{\boldsymbol{P}_{1}} \in \mathbb{S}, \quad$ where $\quad Q=\lceil 0, Z, 0,0\rceil$, hence $\binom{\boldsymbol{P}_{1}}{0} \in \mathbb{S}$.
Case 4. For $\xi=\omega=0$ and $Y \neq 0$: Choose $Z \in \mathfrak{J}$ such that $(Y, Z) \neq 0$, then a proof is similar to Case 3.
§ 2. We assume that any vector space considered in this section is a finite dimensional vector space over a field F of characteristic 0 . A triple system \mathfrak{U} is a vector space with a trilinear map $\mathfrak{U} \times \mathfrak{U} \times \mathfrak{H} \rightarrow \mathfrak{U}$: $(x, y, z) \mapsto[x y z]$. A subspace \mathfrak{B} of \mathfrak{A} is called an ideal if [ß્XX] $+[\mathfrak{Z B}$ $+[\mathfrak{H} \mathfrak{H} \mathfrak{B}] \subset \mathfrak{B}$. We call a triple system \mathfrak{A} simple when it has only trivial
ideals and $\operatorname{dim} \mathfrak{H}>1$. A Lie triple system is a triple system satisfying (5), (6), (7). We define a symplectic triple system \AA as a triple system with a non-zero alternating bilinear form $\mathfrak{A} \times \mathfrak{\Re} \rightarrow F:(x, y) \mapsto\{x, y\}$ satisfying the following identities

$$
\begin{equation*}
[x y z]=[y x z] \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
[x y z]-[x z y]+\{x, y\} z-\{x, z\} y-2\{y, z\} x=0 \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
[x y[u v w]]=[[x y u] v w]+[u[x y v] w]+[u v[x y w]] . \tag{10}
\end{equation*}
$$

A linear mapping D of \Re is called a derivation of Ω if $D[x y z]$ $=[(D x) y z]+[x(D y) z]+[x y(D z)]$. The identity (10) implies that a linear mapping $L(x, y): z \mapsto[x y z]$ is a derivation of \Re. Using (9) and (10), we can prove that the bilinear form $\{$, \} is invariant under any derivation of $\mathfrak{\Re}$. Especially we have

$$
\begin{equation*}
\{[x y z], w\}+\{z,[x y w]\}=0 . \tag{11}
\end{equation*}
$$

The vector space \AA considered in Introduction and $\S 1$ becomes a symplectic triple system by putting $\left[P_{1} P_{2} P_{3}\right]=\left(P_{1} \times P_{2}\right) P_{3}$ and $\left\{P_{1}, P_{2}\right\}$ $=1 / 8\left\{P_{1}, P_{2}\right\}$ from (1) and (3). Another example is a vector space with a non-zero alternating bilinear form $\{$,$\} and the trilinear map (x, y, z)$ $\mapsto[x y z]=\{x, z\} y+\{y, z\} x$.

Remark. The symplectic triple systems are variations on the Freudenthal triple systems (see [7]) or the balanced symplectic ternary algebras (see [1]).

Lemma 2. Let \mathfrak{R} be an ideal of a symplectic triple system \mathfrak{R}. Then
(i) $\{\mathfrak{N}, \mathfrak{\Re}\} \not \subset \mathfrak{R}$,
(ii) $\mathfrak{R}^{\perp}=\{x \in \mathfrak{R} \mid\{x, \mathfrak{N}\}=0\}$ is an ideal of \mathfrak{R},
(iii) Ω^{\perp} is the maximal ideal of Ω.

Using this lemma, we have
Theorem 2. Let $\mathfrak{\Re}$ be a symplectic triple system with an alternating bilinear form $\{$,$\} . Then \Re$ is simple if and only if the form \{ , \} is non-degenerate.

To construct a Lie triple system \mathfrak{I} from a symplectic triple system \mathfrak{R}, put $\mathfrak{I}=\Re \oplus \Re$. We denote an element $t=x \oplus y$ in matrix form as t $=\binom{x}{y}$ and define a triple product in \mathfrak{Z} by

$$
\begin{equation*}
\left[t_{1} t_{2} t_{3}\right]=\binom{\left[x_{1} y_{2} x_{3}\right]-\left[x_{2} y_{1} x_{3}\right]-\left\{x_{1}, y_{2}\right\} x_{3}+\left\{x_{2}, y_{1}\right\} x_{3}+2\left\{x_{1}, x_{2}\right\} y_{3}}{\left[x_{1} y_{2} y_{3}\right]-\left[x_{2} y_{1} y_{3}\right]+\left\{x_{1}, y_{2}\right\} y_{3}-\left\{x_{2}, y_{1}\right\} y_{3}-2\left\{y_{1}, y_{2}\right\} x_{3}} \tag{12}
\end{equation*}
$$

for $t_{i}=\binom{x_{i}}{y_{i}}$ with $x_{i}, y_{i} \in \Omega$.
Then it is easily shown that \mathfrak{I} is a Lie triple system with respect to this product. We call \mathfrak{I} the Lie triple system associated with \Re. By modification of the proofs of Lemma 1 and Theorem 1, we have the following

Lemma 3. Let \mathfrak{I} be the Lie triple system associated with a sym-
plectic triple system \AA. Then,
(i) if \mathfrak{N} is an ideal of \mathfrak{R}, then $\mathfrak{n} \oplus \mathfrak{N}$ is an ideal of \mathfrak{I},
(ii) if \mathfrak{S} is an ideal of \mathfrak{I}, then $\mathfrak{S}=(\subseteq \cap \Re) \oplus(\subseteq \cap \Re)$ and $\subseteq \cap \Re$ is an ideal of Ω.

Using this Lemma 3 and Theorem 2, we obtain a generalization of Theorem 1 as follows.

Theorem 3. Let \mathfrak{I} be the Lie triple system associated with a symplectic triple system $\mathfrak{\Omega}$. Then \mathfrak{I} is simple if and only if $\mathfrak{\Omega}$ is simple.

For $r, s \in \mathfrak{N}$, a linear mapping $\left.L(r, s): t_{\mapsto} \mapsto r s t\right]$ on \mathfrak{I} is also a derivation by (7). By $\mathcal{L}(\mathfrak{T}, \mathfrak{T})$ (resp. $\mathcal{L}(\Re, \Re)$), we denote the Lie algebra generated by $\{L(r, s) \mid r, s \in \mathfrak{I}\}$ (resp. $\{L(x, y) \mid x, y \in \mathfrak{R}\}$), of which elements are called inner derivations.

For any $D \in \mathcal{L}(\Re, \Re)$, a linear mapping \bar{D} of \mathfrak{I} is defined by $\bar{D}\binom{x}{y}$ $=\binom{D x}{D y}$, and three special linear mappings U, V, W are defined by

$$
U\binom{x}{y}=\binom{x}{-y}, \quad V\binom{x}{y}=\binom{y}{0}, \quad W\binom{x}{y}=\binom{0}{x} .
$$

From (12), we have

$$
\begin{aligned}
L\left(\binom{x_{1}}{y_{1}},\binom{x_{2}}{y_{2}}\right)= & \overline{L\left(x_{1}, y_{2}\right)}-\overline{L\left(x_{2}, y_{1}\right)}-\left(\left\{x_{1}, y_{2}\right\}-\left\{x_{2}, y_{1}\right\}\right) U \\
& +2\left\{x_{1}, x_{2}\right\} V-2\left\{y_{1}, y_{2}\right\} W
\end{aligned}
$$

Conversely,

$$
\begin{gathered}
\left.\overline{2 L\left(x_{1}, y_{2}\right.}\right)=L\left(\binom{x_{1}}{0},\binom{0}{y_{2}}\right)+L\left(\binom{y_{2}}{0},\binom{0}{x_{1}}\right), \\
2\left\{x_{1}, y_{2}\right\} U=L\left(\binom{y_{2}}{0},\binom{0}{x_{1}}\right)-L\left(\binom{x_{1}}{0},\binom{0}{y_{2}}\right), \\
\left.2\left\{x_{1}, x_{2}\right\} V=L\left(\binom{x_{1}}{0},\binom{x_{2}}{0}\right), \quad 2\left\{y_{1}, y_{2}\right\} W=-L\binom{0}{y_{1}},\binom{0}{y_{2}}\right) .
\end{gathered}
$$

These identities mean that endomorphisms $\overline{L(x, y)}, U, V, W$ are inner derivations of \mathfrak{I}. Hence, we see that

$$
\mathcal{L}(\mathfrak{I}, \mathfrak{T})=\overline{\mathcal{L}(\Re, \Re)} \oplus F U \oplus F V \oplus F W .
$$

The Lie products among these endomorphisms are

$$
\begin{aligned}
& [\overline{L(x, y)}, \overline{L(u, v)}]=\overline{L([x y u], v)}+\overline{L(u,[x y v]}) \\
& {[\overline{L(x, y)}, U]=[\overline{L(x, y)}, V]=[\overline{L(x, y)}, W]=0,} \\
& {[U, V]=2 V, \quad[U, W]=-2 W, \quad[V, W]=U .}
\end{aligned}
$$

Let $\mathbb{S H}^{2}$ be the standard enveloping Lie algebra of \mathfrak{I} (cf. [5]), that is, $₫=\mathfrak{I} \oplus \mathcal{L}(\mathfrak{R}, \mathfrak{I})=\mathfrak{R} \oplus \mathfrak{R} \oplus \overline{\mathcal{L}(\Re, \Re)} \oplus F U \oplus F V \oplus F W$. Then, we have the following

Theorem 4. Let \Re be a symplectic triple system and $₫ \subseteq$ the standard enveloping Lie algebra of the Lie triple system associated with \AA. Then $₫$ ® is simple if and only if $\mathfrak{\Re}$ is simple.

Remark. The Lie algebra © considered in Introduction is isomor-
phic to one obtained in this method from a symplectic triple system. Furthermore, by Theorem 2 and Theorem 4, it is easily shown that ©f is simple. Linear mappings $\sum_{i} \overline{L\left(x_{i}, y_{i}\right)}, U, V, W$ considered in $\S 2$ correspond respectively to operators $\Theta, \Gamma, \underline{\Lambda}, \bar{\Delta}$ in the Freudenthal's construction (cf. [3]). In case that \mathfrak{F} is the Jordan algebra of all 3×3 complex Hermitian matrices, the associated Lie triple system \mathfrak{I} (see Introduction) is T_{4} in the Lister's classification of simple Lie triple systems (cf. [5], 240-241).

References

[1] J. R. Faulkner and J. C. Ferrar: On the structure of symplectic ternary algebras. Nederl. Akad. Wetensch. Proc. Ser. A $75=$ Indag. Math., 34, 247-256 (1972).
[2] H. Freudenthal: Beziehungen der E_{7} und E_{8} zur Oktavenebene. I. Nederl. Akad. Wetensch. Proc. Ser. A $57=$ Indag. Math., 16, 218-230 (1954).
[3] --: Beziehungen der E_{7} und E_{8} zur Oktavenebene. II. Nederl. Akad. Wetensch. Proc. Ser. A $57=$ Indag. Math., 16, 363-368 (1954).
[4] -: Beziehungen der E_{7} und E_{8} zur Oktavenebene. VIII. Nederl. Akad. Wetensch. Proc. Ser. A 62=Indag. Math., 21, 447-465 (1959).
[5] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
[6] K. Meyberg: Jordan-Tripelsysteme und die Koecher-Konstruktion von LieAlgebren. Math. Z., 115, 58-78 (1970).
[7] -: Eine Theorie der Freudenthalschen Tripelsysteme. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 71 =Indag. Math., 30, 162-174, 175-190 (1968).

[^0]: *) Kumamoto University.
 **) Yokohama City University.

