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On the Freudenthal’s Construction of
Exceptional Lie Algebras

By Kiyosi YAMAGUTI* and Hiroshi ASANO**

(Comm. by Kenjiro SHOD., M. . A., April 12, 1975)

Introduction. In his papers [3], [4], Professor Freudenthal con-
structed an exceptional simple Lie algebra (R) as ollows. Let be an
exceptional simple Jordan algebra of all 3 3 Hermitian matrices with
coefficients in the algebras of octaves, i which the Jordan product
X. Y is defined as 1/2(XY+ YX). A symmetric cross product X Y
in is defined by

X Y--X. Y--l(sp (X)Y+ sp (Y)X-sp (X) sp (Y)I+(X, Y)I)
2

where sp (X) means the spur of X,I is the unit matrix and (X, Y)
=sp (X. Y) for X, Y e . Furthermore, for any X, Y e , (X, Y) is a
linear transformation of defined by

X, YZ=2Y (X Z)- -(Z, Y)X-- -(Z, Y)Z for Z e .
Let be the subspace spanned by {(X, YIX, Y e } in the space

of linear transformations on . Let =@RR and f=@R
@ (R is the field of real numbers) be direct sums as vector spaces, in
which elements are denoted as

P=X, Y, , o and (X,, Y, p, A, B]
or

x <x, Y>
P= and 0

A
B

For any elements P=X, Y, , o(] (i=1, 2) in , an alternating
form {P, P} and an element P P of are defined as follows;

{P, P} (X, Yz) (X, Y1) +wz-zwx,
<x, Y>+ <x, Y>

((x, )+ (x, Y)--)1 1P XP: YX Y+(X+X)

XxX-(Y+Y)
Z
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For e=F <X,, Y,}, p, A, B1 in and P=FX, Y, , oI in , an
element OP in is defined by

o= <,x)+go +xx+e
(A, )-o
(B, X) +p

Then the following relations hold (cf. [2], [4])

(1)

(2)
(3)

_
1 {p, R}Q--{Q, R}P=0,(P Q)R-(P R)Q + {P, Q}R--

{(P V)R, S} + {R, (P Q)S}-- 0,
[P Q, R S] (P Q)R S/R (P Q)S.

Put ={P e IPP=0} and let Inv () be a Lie algebra of the
group of projective transformations of which leave the manifold
invariant. Freudenthal introduced a Lie product [, in the vector
space direct sum (R)= Inv(), where was a three dimen-
sional simple Lie algebra, and he proved that (R) became a simple Lie
algebra of type Es.

Then the vector space %= becomes a Lie triple system relative
to the ternary product [ttt] =[[t, t], t] (t e %), since [,

Inv (g)I, [Inv (),t]t and Inv() is a sub-
algebra of (R). Therefore it follows from the simplicity of (R) that % is
simple as Lie triple system (cf. [5], [6]).

In this paper, we shall give a direct proof of this result without
using of simplicity of (R) (see Theorem 1), and a reformation of the
Freudenthal’s construction by means of a kind of triple systems and a
criterion for simplicity of (R) (see Theorem 4).

1. We denote an element of the vector space % in matrix

form as ()for P, Qe$. Following Freudenthal [3], a ternary

product in % is defined abstractly, as follows"

1 1 {p, p}p,(P xP--P xP)P-- ({P, P}--{P, P})P+ --( 4

[(Pt P’--P P) Pa+ - ({P, P’}- {P., P’}) P-- {P., P’}Pa

Then it is easily seen that 3; has a structure of Lie triple system
relative to this product, that is, the following identities are satisfied
for any t, , , , g e %
( ) [tt] o,
( 6 ) [tuv] + [uvt] + [vtu] =0,
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( 7 ) [xy[tuv]] [[xyt]uv] / [t[xyu]v] / [tu[xyv]].
A subspace is called an ideal of % if [%%] . And % is said

to be simple if % has no proper ideals and dim %> 1.
Now we put P--O, 0, 1, 0 and P.-VO, O, O, 1.
Lemma 1. Let be an ideal of the Lie triple system %--,

then ()e is equivalent to (Op) e(R).

1 0 e (R). Con-
]

1 P0)e implies [()()(p 0
versely, (p

Theorem 1. The Lie triple system %-- with the ternary
product (4) is simple.

Proof. Let be a non-zero ideal of %. If ()e,thea
[(1)(2)(p0)]_ e for any Pe, hence __-(P) e0 and {0} c .
Using Lemma 1, we have {0}c(R), hencec, Which implies that

% is simple. So we shall show that----__() e . Let (pP)be a non-zero

[/P \/P\/P\] /P
element in (R). Then, from (4)we see [(’O)(’6)(-p)]--(-O
Hence we may assume without loss of generality that P:/:0. Put
P--VX, Y, ,

1Case 1. For,:/:0" [[(;)()(p0)]()()] e(R), hence

Case2. Forgo:/:0 [(,)(0)(0)] 1 (0)------ e . From Lemma 1,
P1 P1 2 P

it ollows that () e .
Case 3. For ---0 and X0: Choose Z e such that (X, Z):/=0, then

1[(pPt)(Q -(X, z)(Op)e, where Q 0, Z, 0, 07,

hence (P).0

Case 4. For =o=0 and Y:/:0 Choose Z e such that (Y, Z):/:0, then
a proof is similar to Case 3.

2. We assume that any vector space considered in this section
is a finite dimensional vector space over a field F of characteristic 0. A
triple system /is a vector space with a trilinear map
(x, y, z)[xyz]. A subspace ! of is called an ideal i [?/?/]
/ [!] !. We call a triple system .?/ simple when it has only trivial
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ideals and dim>1. A Lie triple system is a triple system satisfying
(5), (6), (7). We define a symplectic triple system as a triple system
with a non-zero alternating bilinear form oF" (x,y){x,y}
satisfying the following identities
( S ) [xyz]-[yxz,],
( 9 ) [xyz]--[xzy]+{x, y}z--{x, z}y--2(y, z}x--O,
(10) [xy[uvw]]- [[xyu]vw] + [u[xyv]w] + [uv[xyw]].

A linear mapping D o t is called a derivtioa of t if D[xyz]
[(Dx)yz] + [x(Dy)z] + [xy(Dz)]. The identity (10) implies that a linear

mapping L(x, y)" z[xyz] is a derivation of . Using (9) and (10), we
can prove that the bilinear form {, } is iavariant uader any derivation
o . Especially we have
(11) {[xyz], w} + {z, [xyw]} =0.

The vector space considered in Introduction nd 1 becomes a
symplectic triple system by putting [PPP]=(PP)P and {P,

1/8{P, P} rom (1) and (3). Another example is a vector space with
a non-zero alternating bilinear orm {, } and the trilinear map (x, y, z)
[xyz]-- {x, z}y + {y, z}x.

Remark. The symplectic triple systems are variations on the
Freudenthal triple systems (see [7]) or the balanced symplectic ternary
algebras (see [1]).

Lemma 2. Let be an ideal of a symplectic triple system
Then

) {,}c,
(ii) +/-= {x e l{x, }=0} is an ideal of ,
(iii) +/- is the maximal ideal of .

Using this lemma, we have
Theorem 2. Let be a symplectic triple system with an alter-

nating bilinear form {, }. Then is simple if and only if the form
{ } is non-degenerate.

To construct a Lie triple system % from a symplectic triple system, put %=@t. We denote an element t=xy in matrix form as t
( x and define a triple product in % by
Y /

+(12) [ttt]=\[xy.y]--[xyy] + {x, y}ya--{x, y}ya--2{yl, y}x/

for t,=(x’ with x,, y,e
\ ]Y

Then it is easily shown that % is a Lie triple system with respect
to this product. We call % the Lie triple system associated with
By modificatioa o the proos o Lemma 1 and Theorem 1, we have the
ollowing

Lemma :}. Let % be the Lie triple system associated with a sym-
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plectic triple system . Then,
(i ) if is an ideal of , then is an ideal of %,
(ii) if is an ideal of %, then ((R) )((R) ) and (R) is an

ideal of .
Using this Lemma 3 and Theorem 2, we obtain a generalization

o2 Theorem 1 as 2ollows.
Theorem :. Let % be the Lie triple system associated with a

symplectic triple system . Then % is simple if and only if is simple.
For r, s e %, a linear mapping L(r, s) t[rst] oa % is also a deri-

vation by (7). By _L(%, %) (resp..L’(, )), we denote the Lie algebra
generated by {L(r, s) lr, s e %} (resp. {L(x, y) lx, y e }), o which ele-
ments "are called inner derivations.

For any De _L(, )a linear mapping o % is defined by (xy
_-/\(DX)Dy, and three special linear mappings U, V, W are defined by

\ /

X X x )_(o).
From (12), we have

L(( xl ), (x2))=L(Xl, y2)--L(x2, yl)- ({xl y2}-{x,yl})U
Yl Y

+ 2{xl, x2}V-- 2(y, y}W.
Conversely,

0 0 xl

0 X 0

0)
These identities mean that endomorphisms L(x, y), U, V, W are inner
derivations of %. Hence, we see that

_(%, %)=_(, )FUFVFW.
The Lie products among these endomorphisms are

[L(x, y), L(u, v)]-----L([xyu], v)+ L(u, [xyv]),
[L(x, y), U] [L(x, y), V] [L(x, y), W] =0,
[U, V]=2V, [U, W]=-2W, IV, W]= U.

Let (R) be the standard enveloping Lie algebra o % (c. [5]), that
is, (R)=%_L’(%, %)=_L’(,)FUFVFW. Then, we have
the ollowing

Theorem 4. Let be a symplectic triple system and (R) the stand-
ard enveloping Lie algebra of the Lie triple system associated with .
Then (R) is simple if and only if is simple.

Remark. The Lie algebra (R) considered in Introduction is isomor-
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phic to one obtained in this method from a symplectic triple system.
Furthermore, by Theorem 2 and Theorem 4, it is easily shown that (R) is
simple. Linear mappings L(x, y), U, V, W considered in 2 cor-
respond respectively to operators 0, F, _A, in the Freudenthal’s con-
struction (cf. [3]). In case that is the Jordan algebra of all 3 3
complex Hermitian matrices, the associated Lie triple system % (see
Introduction) is T in the Lister’s classification of simple Lie triple
systems (cf. [5], 240-241).
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