54. On the Freudenthal's Construction of Exceptional Lie Algebras

By Kiyosi Yamaguti*) and Hiroshi Asano**)

(Comm. by Kenjiro SHODA, M. J. A., April 12, 1975)

Introduction. In his papers [3], [4], Professor Freudenthal constructed an exceptional simple Lie algebra $\mathfrak G$ as follows. Let $\mathfrak F$ be an exceptional simple Jordan algebra of all 3×3 Hermitian matrices with coefficients in the algebras of octaves, in which the Jordan product $X\cdot Y$ is defined as 1/2(XY+YX). A symmetric cross product $X\times Y$ in $\mathfrak F$ is defined by

$$X \times Y = X \cdot Y - \frac{1}{2} (\text{sp}(X)Y + \text{sp}(Y)X - \text{sp}(X) \text{sp}(Y)I + (X, Y)I),$$

where sp (X) means the spur of X, I is the unit matrix and $(X, Y) = \text{sp } (X \cdot Y)$ for $X, Y \in \mathcal{F}$. Furthermore, for any $X, Y \in \mathcal{F}$, $\langle X, Y \rangle$ is a linear transformation of \mathcal{F} defined by

$$\langle X, Y \rangle Z = 2Y \times (X \times Z) - \frac{1}{2}(Z, Y)X - \frac{1}{6}(X, Y)Z$$
 for $Z \in \mathfrak{F}$.

$$P = \lceil X, Y, \xi, \omega \rceil$$
 and $\Theta = \lceil \sum_{i} \langle X_i, Y_i \rangle, \rho, A, B \rceil$

or

$$P \!=\! egin{bmatrix} X \ Y \ \xi \ \omega \end{bmatrix} \quad ext{and} \quad \Theta \!=\! egin{bmatrix} \sum_{t} \langle X_{t}, \, Y_{i}
angle \ \rho \ A \ B \end{bmatrix} .$$

For any elements $P_i = \lceil X_i, Y_i, \xi_i, \omega_i \rceil$ (i=1,2) in \Re , an alternating form $\{P_1, P_2\}$ and an element $P_1 \times P_2$ of \Re are defined as follows;

$$\{P_1,P_2\} = (X_1,Y_2) - (X_2,Y_1) + \xi_1\omega_2 - \xi_2\omega_1, \ \langle X_1,Y_2
angle + \langle X_2,Y_1
angle \ -rac{1}{4}((X_1,Y_2) + (X_2,Y_1) - 3\xi_1\omega_2 - 3\xi_2\omega_1) \ -Y_1 imes Y_2 + rac{1}{2}(\xi_1X_2 + \xi_2X_1) \ X_1 imes X_2 - rac{1}{2}(\omega_1Y_2 + \omega_2Y_1) \
brace$$

^{*)} Kumamoto University.

^{**)} Yokohama City University.

For $\Theta = \lceil \sum_i \langle X_i, Y_i \rangle, \rho, A, B \rceil$ in \mathfrak{L} and $P = \lceil X, Y, \xi, \omega \rceil$ in \mathfrak{R} , an element ΘP in \mathfrak{R} is defined by

$$egin{aligned} arTheta P = \left[egin{aligned} \Big(\sum_i ig\langle X_i, Y_i ig
angle + rac{1}{3}
ho \Big) X + 2B imes Y + \omega A \ - \Big(\sum_i ig\langle Y_i, X_i ig
angle + rac{1}{3}
ho \Big) Y + 2A imes X + \xi B \ & (A, Y) -
ho \xi \ & (B, X) +
ho \omega \end{aligned}
ight]. \end{aligned}$$

Then the following relations hold (cf. [2], [4])

(1)
$$(P \times Q)R - (P \times R)Q + \frac{1}{8}\{P, Q\}R - \frac{1}{8}\{P, R\}Q - \frac{1}{4}\{Q, R\}P = 0,$$

(2)
$$\{(P \times Q)R, S\} + \{R, (P \times Q)S\} = 0.$$

$$[P \times Q, R \times S] = (P \times Q)R \times S + R \times (P \times Q)S.$$

Put $\mathfrak{M}=\{P\in\mathfrak{R}\,|\, P\times P=0\}$ and let $\operatorname{Inv}\left(\mathfrak{M}\right)$ be a Lie algebra of the group of projective transformations of \mathfrak{R} which leave the manifold \mathfrak{M} invariant. Freudenthal introduced a Lie product $[\ ,\]$ in the vector space direct sum $\mathfrak{G}=\operatorname{Inv}\left(\mathfrak{M}\right)\oplus\mathfrak{A}_1\oplus\mathfrak{R}\oplus\mathfrak{R}$, where \mathfrak{A}_1 was a three dimensional simple Lie algebra, and he proved that \mathfrak{G} became a simple Lie algebra of type E_8 .

Then the vector space $\mathfrak{T}=\mathfrak{R}\oplus\mathfrak{R}$ becomes a Lie triple system relative to the ternary product $[t_1t_2t_3]=[[t_1,t_2],t_3]$ $(t_i\in\mathfrak{T})$, since $[\mathfrak{R}\oplus\mathfrak{R},\mathfrak{R}\oplus\mathfrak{R}]$ \subset Inv $(\mathfrak{M})\oplus\mathfrak{A}_1$, $[\operatorname{Inv}(\mathfrak{M})\oplus\mathfrak{A}_1,\mathfrak{R}\oplus\mathfrak{R}]\subset\mathfrak{R}\oplus\mathfrak{R}$ and Inv $(\mathfrak{M})\oplus\mathfrak{A}_1$ is a subalgebra of \mathfrak{G} . Therefore it follows from the simplicity of \mathfrak{G} that \mathfrak{T} is simple as Lie triple system (cf. [5], [6]).

In this paper, we shall give a direct proof of this result without using of simplicity of © (see Theorem 1), and a reformation of the Freudenthal's construction by means of a kind of triple systems and a criterion for simplicity of © (see Theorem 4).

§ 1. We denote an element of the vector space $\mathfrak{T}=\mathfrak{R}\oplus\mathfrak{R}$ in matrix form as $\binom{P}{Q}$ for $P,Q\in\mathfrak{R}$. Following Freudenthal [3], a ternary product in \mathfrak{T} is defined abstractly as follows:

$$\left[\binom{P_1}{P_1'}\binom{P_2}{P_2'}\binom{P_3}{P_3'}\right]$$

$$(4) = \begin{bmatrix} (P_1 \times P_2' - P_2 \times P_1') P_3 - \frac{1}{8} (\{P_1, P_2'\} - \{P_2, P_1'\}) P_3 + \frac{1}{4} \{P_1, P_2\} P_3' \\ (P_1 \times P_2' - P_2 \times P_1') P_3' + \frac{1}{8} (\{P_1, P_2'\} - \{P_2, P_1'\}) P_3' - \frac{1}{4} \{P_1, P_2'\} P_3 \end{bmatrix}.$$

Then it is easily seen that \mathfrak{T} has a structure of Lie triple system relative to this product, that is, the following identities are satisfied for any $t, u, v, x, y \in \mathfrak{T}$;

$$[ttu]=0,$$

$$[tuv] + [uvt] + [vtu] = 0,$$

[xy[tuv]] = [[xyt]uv] + [t[xyu]v] + [tu[xyv]].

No. 4]

A subspace \mathfrak{S} is called an ideal of \mathfrak{T} if $[\mathfrak{ST}] \subset \mathfrak{S}$. And \mathfrak{T} is said to be simple if \mathfrak{T} has no proper ideals and dim $\mathfrak{T} > 1$.

Now we put $P_1 = [0, 0, 1, 0]$ and $P_2 = [0, 0, 0, 1]$.

Lemma 1. Let $\mathfrak S$ be an ideal of the Lie triple system $\mathfrak X=\mathfrak R\oplus \mathfrak R$, then $\begin{pmatrix} P \\ 0 \end{pmatrix} \in \mathfrak S$ is equivalent to $\begin{pmatrix} 0 \\ P \end{pmatrix} \in \mathfrak S$.

 $\begin{aligned} & \text{Proof.} \quad \text{If } \begin{pmatrix} P \\ 0 \end{pmatrix} \in \mathfrak{S}, \ then \ \left[\begin{pmatrix} 0 \\ P_1 \end{pmatrix} \begin{pmatrix} 0 \\ P_2 \end{pmatrix} \begin{pmatrix} P \\ 0 \end{pmatrix} \right] = -\frac{1}{4} \begin{pmatrix} 0 \\ P \end{pmatrix} \in \mathfrak{S}. \quad \text{Conversely, } \begin{pmatrix} 0 \\ P \end{pmatrix} \in \mathfrak{S} \text{ implies } \left[\begin{pmatrix} P_1 \\ 0 \end{pmatrix} \begin{pmatrix} P_2 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ P \end{pmatrix} \right] = \frac{1}{4} \begin{pmatrix} P \\ 0 \end{pmatrix} \in \mathfrak{S}. \end{aligned}$

Theorem 1. The Lie triple system $\mathfrak{T}=\mathfrak{R}\oplus\mathfrak{R}$ with the ternary product (4) is simple.

Proof. Let $\mathfrak S$ be a non-zero ideal of $\mathfrak T$. If $\binom{P_1}{0} \in \mathfrak S$, then $\left[\binom{P_1}{0}\binom{P_2}{0}\binom{0}{P}\right] \in \mathfrak S$ for any $P \in \mathfrak R$, hence $\frac{1}{4}\binom{P}{0} \in \mathfrak S$ and $\mathfrak R \oplus \{0\} \subset \mathfrak S$. Using Lemma 1, we have $\{0\} \oplus \mathfrak R \subset \mathfrak S$, hence $\mathfrak R \oplus \mathfrak R \subset \mathfrak S$, which implies that $\mathfrak T$ is simple. So we shall show that $\binom{P_1}{0} \in \mathfrak S$. Let $\binom{P}{P'}$ be a non-zero element in $\mathfrak S$. Then, from (4) we see $\left[\binom{P_1}{0}\binom{P_2}{0}\binom{P_2}{P'}\right] = \frac{1}{4}\binom{P'}{0} \in \mathfrak S$. Hence we may assume without loss of generality that $P \neq 0$. Put $P = \lceil X, Y, \xi, \omega \rceil$.

- Case 1. For $\xi \neq 0$: $\left[\left[\binom{P}{P'} \binom{0}{P_0} \binom{0}{P_0} \binom{0}{P_0} \right] \binom{P_1}{0} \binom{P_1}{0} \right] \in \mathfrak{S}$, hence $\frac{1}{4} \xi \binom{P_1}{0} \in \mathfrak{S}$.
- Case 2. For $\omega \neq 0$: $\left[\binom{P}{P'}\binom{0}{P_1}\binom{0}{P_1}\binom{0}{P_1}\right] = -\frac{1}{2}\omega\binom{0}{P_1} \in \mathfrak{S}$. From Lemma 1, it follows that $\binom{P_1}{0} \in \mathfrak{S}$.
- Case 3. For $\xi = \omega = 0$ and $X \neq 0$: Choose $Z \in \mathfrak{F}$ such that $(X, Z) \neq 0$, then $\begin{bmatrix} \binom{P}{P'} \binom{0}{Q} \binom{0}{P_1} \end{bmatrix} = \frac{1}{4} (X, Z) \binom{0}{P_1} \in \mathfrak{S}, \quad \text{where} \quad Q = \lceil 0, Z, 0, 0 \rceil,$ hence $\binom{P_1}{0} \in \mathfrak{S}$.
- Case 4. For $\xi = \omega = 0$ and $Y \neq 0$: Choose $Z \in \Im$ such that $(Y, Z) \neq 0$, then a proof is similar to Case 3.
- § 2. We assume that any vector space considered in this section is a finite dimensional vector space over a field F of characteristic 0. A triple system $\mathfrak A$ is a vector space with a trilinear map $\mathfrak A \times \mathfrak A \times \mathfrak A \to \mathfrak A$: $(x,y,z)\mapsto [xyz]$. A subspace $\mathfrak B$ of $\mathfrak A$ is called an ideal if $[\mathfrak B\mathfrak A\mathfrak A]+[\mathfrak A\mathfrak B\mathfrak A]+[\mathfrak A\mathfrak B\mathfrak A]$. We call a triple system $\mathfrak A$ simple when it has only trivial

ideals and dim $\mathfrak{A}>1$. A Lie triple system is a triple system satisfying (5), (6), (7). We define a *symplectic triple system* \mathfrak{A} as a triple system with a non-zero alternating bilinear form $\mathfrak{R}\times\mathfrak{R}\to F:(x,y)\mapsto\{x,y\}$ satisfying the following identities

- [xyz] = [yxz],
- $[xyz]-[xzy]+\{x,y\}z-\{x,z\}y-2\{y,z\}x=0,$
- (10) [xy[uvw]] = [[xyu]vw] + [u[xyv]w] + [uv[xyw]].

A linear mapping D of \Re is called a derivation of \Re if D[xyz] = [(Dx)yz] + [x(Dy)z] + [xy(Dz)]. The identity (10) implies that a linear mapping $L(x,y): z \mapsto [xyz]$ is a derivation of \Re . Using (9) and (10), we can prove that the bilinear form $\{\ ,\ \}$ is invariant under any derivation of \Re . Especially we have

(11)
$$\{[xyz], w\} + \{z, [xyw]\} = 0.$$

The vector space \Re considered in Introduction and \S 1 becomes a symplectic triple system by putting $[P_1P_2P_3]=(P_1\times P_2)P_3$ and $\{P_1,P_2\}=1/8\{P_1,P_2\}$ from (1) and (3). Another example is a vector space with a non-zero alternating bilinear form $\{\ ,\ \}$ and the trilinear map $(x,y,z)\mapsto [xyz]=\{x,z\}y+\{y,z\}x$.

Remark. The symplectic triple systems are variations on the Freudenthal triple systems (see [7]) or the balanced symplectic ternary algebras (see [1]).

Lemma 2. Let $\mathfrak R$ be an ideal of a symplectic triple system $\mathfrak R.$ Then

- (i) $\{\mathfrak{N},\mathfrak{R}\}\mathfrak{R}\subset\mathfrak{N}$,
- (ii) $\mathfrak{R}^{\perp} = \{x \in \mathfrak{R} \mid \{x, \mathfrak{R}\} = 0\}$ is an ideal of \mathfrak{R} ,
- (iii) \Re^{\perp} is the maximal ideal of \Re .

Using this lemma, we have

Theorem 2. Let \Re be a symplectic triple system with an alternating bilinear form $\{\ ,\ \}$. Then \Re is simple if and only if the form $\{\ ,\ \}$ is non-degenerate.

To construct a Lie triple system \mathfrak{T} from a symplectic triple system \mathfrak{R} , put $\mathfrak{T}=\mathfrak{R}\oplus\mathfrak{R}$. We denote an element $t=x\oplus y$ in matrix form as $t=\begin{pmatrix}x\\y\end{pmatrix}$ and define a triple product in \mathfrak{T} by

$$= \begin{pmatrix} x \\ y \end{pmatrix} \text{ and define a triple product in } \mathfrak{T} \text{ by}$$

$$(12) \qquad [t_1 t_2 t_3] = \begin{pmatrix} [x_1 y_2 x_3] - [x_2 y_1 x_3] - \{x_1, y_2\} x_3 + \{x_2, y_1\} x_3 + 2\{x_1, x_2\} y_3 \\ [x_1 y_2 y_3] - [x_2 y_1 y_3] + \{x_1, y_2\} y_3 - \{x_2, y_1\} y_3 - 2\{y_1, y_2\} x_3 \end{pmatrix}$$

for
$$t_i = \begin{pmatrix} x_i \\ y_i \end{pmatrix}$$
 with $x_i, y_i \in \Re$.

Then it is easily shown that $\mathfrak T$ is a Lie triple system with respect to this product. We call $\mathfrak T$ the Lie triple system associated with $\mathfrak R$. By modification of the proofs of Lemma 1 and Theorem 1, we have the following

Lemma 3. Let \(\mathbb{Z} \) be the Lie triple system associated with a sym-

plectic triple system R. Then,

- (i) if \Re is an ideal of \Re , then $\Re \oplus \Re$ is an ideal of \Im ,
- (ii) if \mathfrak{S} is an ideal of \mathfrak{T} , then $\mathfrak{S}=(\mathfrak{S}\cap\mathfrak{K})\oplus(\mathfrak{S}\cap\mathfrak{K})$ and $\mathfrak{S}\cap\mathfrak{K}$ is an ideal of \mathfrak{K} .

Using this Lemma 3 and Theorem 2, we obtain a generalization of Theorem 1 as follows.

Theorem 3. Let \mathfrak{T} be the Lie triple system associated with a symplectic triple system \mathfrak{R} . Then \mathfrak{T} is simple if and only if \mathfrak{R} is simple.

For $r, s \in \mathfrak{T}$, a linear mapping $L(r, s) : t \mapsto [rst]$ on \mathfrak{T} is also a derivation by (7). By $\mathcal{L}(\mathfrak{T}, \mathfrak{T})$ (resp. $\mathcal{L}(\mathfrak{R}, \mathfrak{R})$), we denote the Lie algebra generated by $\{L(r, s) | r, s \in \mathfrak{T}\}$ (resp. $\{L(x, y) | x, y \in \mathfrak{R}\}$), of which elements are called inner derivations.

For any $D \in \mathcal{L}(\Re, \Re)$, a linear mapping \overline{D} of \mathfrak{T} is defined by $\overline{D} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} Dx \\ Dy \end{pmatrix}$, and three special linear mappings U, V, W are defined by

$$U\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ -y \end{pmatrix}, \quad V\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ 0 \end{pmatrix}, \quad W\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ x \end{pmatrix}.$$

From (12), we have

$$L\left(\binom{x_1}{y_1},\binom{x_2}{y_2}\right) = \overline{L(x_1,y_2)} - \overline{L(x_2,y_1)} - (\{x_1,y_2\} - \{x_2,y_1\})U + 2\{x_1,x_2\}V - 2\{y_1,y_2\}W.$$

Conversely,

$$\begin{split} \overline{2L(x_1,y_2)} &= L\left(\binom{x_1}{0},\binom{0}{y_2}\right) + L\left(\binom{y_2}{0},\binom{0}{x_1}\right),\\ 2\{x_1,y_2\}U &= L\left(\binom{y_2}{0},\binom{0}{x_1}\right) - L\left(\binom{x_1}{0},\binom{0}{y_2}\right),\\ 2\{x_1,x_2\}V &= L\left(\binom{x_1}{0},\binom{x_2}{0}\right), \qquad 2\{y_1,y_2\}W = -L\left(\binom{0}{y_1},\binom{0}{y_2}\right). \end{split}$$

These identities mean that endomorphisms $\overline{L(x,y)}$, U,V,W are inner derivations of \mathfrak{T} . Hence, we see that

$$\mathcal{L}(\mathfrak{T},\mathfrak{T}) = \overline{\mathcal{L}(\mathfrak{R},\mathfrak{R})} \oplus FU \oplus FV \oplus FW.$$

The Lie products among these endomorphisms are

$$[\overline{L(x,y)}, \overline{L(u,v)}] = \overline{L([xyu], v)} + \overline{L(u, [xyv])},$$

 $[\overline{L(x,y)}, U] = [\overline{L(x,y)}, V] = [\overline{L(x,y)}, W] = 0,$
 $[U, V] = 2V, \quad [U, W] = -2W, \quad [V, W] = U.$

Let $\mathfrak S$ be the standard enveloping Lie algebra of $\mathfrak T$ (cf. [5]), that is, $\mathfrak S = \mathfrak T \oplus \mathcal L(\mathfrak T, \mathfrak T) = \mathfrak R \oplus \mathfrak R \oplus \overline{\mathcal L(\mathfrak R, \mathfrak R)} \oplus FU \oplus FV \oplus FW$. Then, we have the following

Theorem 4. Let \Re be a symplectic triple system and \Im the standard enveloping Lie algebra of the Lie triple system associated with \Re . Then \Im is simple if and only if \Re is simple.

Remark. The Lie algebra & considered in Introduction is isomor-

phic to one obtained in this method from a symplectic triple system. Furthermore, by Theorem 2 and Theorem 4, it is easily shown that $\mathfrak G$ is simple. Linear mappings $\sum_i \overline{L(x_i,y_i)}$, U,V,W considered in § 2 correspond respectively to operators $\Theta,\Gamma,\underline{J},\bar{J}$ in the Freudenthal's construction (cf. [3]). In case that $\mathfrak F$ is the Jordan algebra of all 3×3 complex Hermitian matrices, the associated Lie triple system $\mathfrak T$ (see Introduction) is T_4 in the Lister's classification of simple Lie triple systems (cf. [5], 240–241).

References

- [1] J. R. Faulkner and J. C. Ferrar: On the structure of symplectic ternary algebras. Nederl. Akad. Wetensch. Proc. Ser. A 75=Indag. Math., 34, 247-256 (1972).
- [2] H. Freudenthal: Beziehungen der E₇ und E₈ zur Oktavenebene. I. Nederl. Akad. Wetensch. Proc. Ser. A 57=Indag. Math., 16, 218-230 (1954).
- [3] —: Beziehungen der E₇ und E₈ zur Oktavenebene. II. Nederl. Akad. Wetensch. Proc. Ser. A 57=Indag. Math., 16, 363-368 (1954).
- [4] —: Beziehungen der E_τ und E_s zur Oktavenebene. VIII. Nederl. Akad. Wetensch. Proc. Ser. A 62=Indag. Math., 21, 447-465 (1959).
- [5] W. G. Lister: A structure theory of Lie triple systems. Trans. Amer. Math. Soc., 72, 217-242 (1952).
- [6] K. Meyberg: Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren. Math. Z., 115, 58-78 (1970).
- [7] —: Eine Theorie der Freudenthalschen Tripelsysteme. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math., 30, 162-174, 175-190 (1968).