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Abstract—This work considers the multiuser multiple-input
single-output (MISO) broadcast channel (BC), where a transmit-
ter with M antennas transmits information to K single-antenna
users, and where - as expected - the quality and timeliness of
channel state information at the transmitter (CSIT) is imperfect.
Motivated by the fundamental question of how much feedback
is necessary to achieve a certain performance, this work seeks
to establish bounds on the tradeoff between degrees-of-freedom
(DoF) performance and CSIT feedback quality. Specifically, this
work provides a novel DoF region outer bound for the general K-
user M×1 MISO BC with partial current CSIT, which naturally
bridges the gap between the case of having no current CSIT (only
delayed CSIT, or no CSIT) and the case with full CSIT. The work
then characterizes the minimum CSIT feedback that is necessary
for any point of the sum DoF, which is optimal for the case with
M ≥ K, and the case with M = 2, K = 3.

I. INTRODUCTION

We consider the multiuser multiple-input single-output

(MISO) broadcast channel (BC), where a transmitter with M
antennas, transmits information to K single-antenna users. In

this setting, the received signal at time t, is of the form

yk,t = hT

k,txt + zk,t, k = 1, · · · ,K (1)

where hk,t denotes the M × 1 channel vector for user k, zk,t
denotes the unit power AWGN noise, and where xt denotes

the transmitted signal vector adhering to a power constraint

E[||xt||
2] ≤ P , for P taking the role of the signal-to-noise

ratio (SNR). We here consider that the fading coefficients

hk,t, k = 1, · · · ,K, are independent and identically dis-

tributed (i.i.d.) complex Gaussian random variables with zero

mean and unit variance, and are i.i.d. over time.

It is well known that the performance of the BC is greatly

affected by the timeliness and quality of feedback; having

full CSIT allows for the optimal min{M,K} sum degrees-

of-freedom (DoF) (cf. [1])1, while the absence of any CSIT

reduces this to just 1 sum DoF (cf. [2], [3]). This gap has

1We remind the reader that for an achievable rate tuple (R1, R2, · · · , RK),
where Ri is for user i, the corresponding DoF tuple (d1, d2, · · · , dK) is given

by di = limP→∞

Ri

logP
, i = 1, 2, · · · ,K. The corresponding DoF region

D is then the set of all achievable DoF tuples (d1, d2, · · · , dK).
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Fig. 1. System model of K-user MISO BC with CSIT feedback.

spurred a plethora of works that seek to analyze and optimize

BC communications in the presence of delayed and imperfect

feedback. One of the works that stands out is the work by

Maddah-Ali and Tse [4] which recently revealed the benefits

of employing delayed CSIT over the BC, even if this CSIT

is completely obsolete. Several interesting generalizations fol-

lowed, including the work in [5] which showed that in the BC

setting with K = M+1, combining delayed CSIT with perfect

(current) CSIT (over the last K−1
K

fraction of communication

period) allows for the optimal sum DoF M corresponding

to full CSIT. A similar approach was exploited in [6] which

revealed that, to achieve the maximum sum DoF min{M,K},

each user has to symmetrically feed back perfect CSIT over

a
min{M,K}

K
fraction of the communication time, and that this

fraction is optimal. Other interesting works in the context of

utilizing delayed and current CSIT, can be found in [7]–[10]

which explored the setting of combining perfect delayed CSIT

with immediately available imperfect CSIT, the work in [11]

which additionally considered the effects of the quality of

delayed CSIT, the work in [12] which considered alternating

CSIT feedback, the work in [13] which considered delayed

and progressively evolving (progressively improving) current

CSIT, and the works in [14]–[16] and many other publications.

Our work here generalizes many of the above settings,

and seeks to establish fundamental tradeoff between DoF

performance and CSIT feedback quality, over the general K-



user M × 1 MISO BC with general CSIT quality. It is noted

that, in parallel to this work, [17] also considered a particular

case of K-user MISO BC with the additional constraint that

the CSIT quality is invariant over time and equal for all users,

and provided an inner bound and an outer bound.

A. Structure of paper, notation and conventions

We proceed to first describe the quality and timeliness

measure of CSIT feedback, and how this measure relates to

existing work. After that, Section II provides the main results

of this work, i.e., the novel outer bound on the DoF region

and sum DoF, optimal DoF characterizations for many cases,

and some inner bounds on the sum DoF. The sketches of the

proofs are shown in the same section, as well as in Section III

and Section IV, while most proof details are placed, due to

the lack of space, in the journal version of this work [18].

Throughout this paper, we will consider communication

over n coherence periods where, for clarity of notation, we will

focus on the case where we employ a single channel use per

such coherence period (unit coherence period). Furthermore,

unless stated otherwise, we assume perfect delayed CSIT, as

well as adhere to the common convention (see [4], [6], [8],

[9], [12], [19]), and assume perfect and global knowledge of

channel state information at the receivers. In terms of notation,

(•)T will denote the transpose of a matrix or vector, while ||•||
will denote the Euclidean norm.

B. Quality and timeliness measure of CSIT feedback

We here use ĥk,t to denote the current channel estimate (for

channel hk,t) at the transmitter at timeslot t, and use

h̃k,t = hk,t − ĥk,t

to denote the estimate error assumed to be mutually indepen-

dent of ĥk,t and assumed to have i.i.d. Gaussian entries with

power

E[‖h̃k,t‖
2]

.
= P−αk,t ,

for some CSI quality exponent αk,t ∈ [0, 1] describing the

quality of this estimate.

The approach extends over non-alternating CSIT settings in

[4] and [7]–[10], as well as over an alternating CSIT setting

(cf. [6], [12]) where CSIT knowledge alternates between

perfect CSIT (αk,t = 1), and delayed or no CSIT (αk,t = 0).

In a setting where communication takes places over n such

coherence periods (t = 1, 2, · · · , n), this approach offers a

natural measure of a per-user average feedback cost, in the

form of

ᾱk ,

∑n

t=1 αk,t

n
, k = 1, 2, · · · ,K,

as well as a measure of current CSIT feedback cost

CC =

K
∑

k=1

ᾱk,

accumulated over all users.

Furthermore, in a setting where delayed CSIT is always

available, the above model captures the alternating CSIT

setting where the exponents are binary (αk,t = 0, 1), in which

case ᾱk = δP,k simply describes the fraction of time during

which user k has perfect CSIT, with CC = CP ,
∑K

k=1 δP,k

describing the total perfect CSIT feedback cost.

II. MAIN RESULTS

A. Outer bounds

We first present the DoF region outer bound for the general

K-user M × 1 MISO BC.

Theorem 1 (DoF region outer bound): The DoF region of

the K-user M × 1 MISO BC, is outer bounded as

K
∑

k=1

dπ(k)

min{k,M}
≤1+

K−1
∑

k=1

(

1

min{k,M}
−

1

min{K,M}

)

ᾱπ(k)

(2)

dk ≤ 1, k = 1, 2, · · · ,K (3)

where π denotes a permutation of the ordered set

{1, 2, · · · ,K}, and π(k) denotes the kth element of set π.

Proof: A sketch of the proof is shown in Section III.

Remark 1: It is noted that the bound captures the results in

[4] (αk,t = 0, ∀t, k), in [8], [9] (K = 2, αk,t = α, ∀t, k), in

[19] (M = K = 2, α1,t = 1, α2,t = 0, ∀t), in [10] (K = 2,

α1,t 6= α2,t, ∀t), in [6], [12] (αk,t ∈ {0, 1}, ∀t, k), as well as

in [17] (M ≥ K, αk,t = α, ∀t, k).

Summing up from the above the K different bounds,

where for bound k(= 1, 2, · · · ,K) we have π = {π(i) =
mod(k+ i−2)K +1, i = 1, · · · ,K} with mod(x)K being the

modulo operator, we directly have the following upper bound

on the sum DoF d∑ ,
∑K

k=1 dk, which is presented using the

following notation

dMAT ,
K

1 + 1
min{2,M} + 1

min{3,M} + · · ·+ 1
min{K,M}

. (4)

Corollary 1a (Sum DoF outer bound): For the K-user

M × 1 MISO BC, the sum DoF is outer bounded as

d∑ ≤ dMAT +

(

1−
dMAT

min{K,M}

) K
∑

k=1

ᾱk. (5)

The above then readily translates onto a lower bound on

the minimum possible total current CSIT feedback cost CC =
∑K

k=1 ᾱk needed to achieve the maximum sum DoF2 d∑ =
min{K,M}.

Corollary 1b (Bound on CSIT cost for maximum DoF):

The minimum CC required to achieve the maximum sum

DoF min{K,M} of the K-user M × 1 MISO BC, is lower

bounded as

C
⋆
C ≥ min{K,M}. (6)

Transitioning to the alternating CSIT setting where αk,t ∈
{0, 1}, we have the following sum-DoF outer bound as a

function of the perfect-CSIT duration ᾱk = δP,k = δP, ∀ k.

2Naturally the result is limited to the case where min{K,M} > 1.
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Fig. 2. Optimal sum DoF d∑ vs. δP for the MISO BC with M ≥ K .

We note that the bound holds irrespective of whether, in the

remaining fraction of the time 1− δP, the CSIT is delayed or

non existent.

Corollary 1c (Outer bound, alternating CSIT): For the K-

user M × 1 MISO BC, the sum DoF is outer bounded as

d∑ ≤ dMAT +

(

K −
KdMAT

min{K,M}

)

min

{

δP,
min{K,M}

K

}

.

(7)

B. Optimal cases of DoF characterizations

We now provide the optimal cases of DoF characterizations.

The case with M ≥ K is first considered in the following.

Theorem 2 (Optimal case, M ≥ K): For the K-user M×1
MISO BC with M ≥ K, the optimal sum DoF is characterized

as

d∑ = (K − dMAT)min{δP, 1}+ dMAT. (8)

Proof: The converse and achievability proofs are derived

from Corollary 1c and Proposition 2 (shown in the next

subsection), respectively.

Remark 2: It is noted that, for the special case with M =
K = 2, the above characterization captures the result in [12].

Moving to the case where M < K, we have the following

optimal sum DoF characterizations for the case with M =
2, K = 3. The first interest is placed on the minimum C

⋆
P(d

∑)

to achieve a sum DoF d∑, recalling that CP =
∑K

k=1 δP,k

describes the total perfect CSIT feedback cost.

Theorem 3 (Optimal case, M = 2,K = 3): For the three-

user 2×1 MISO BC, the minimum total perfect CSIT feedback

cost is given as

C
⋆
P(d

∑) = (4d∑ − 6)+, ∀ d∑ ∈ [0, 2] (9)

where the total feedback cost C
⋆
P(d

∑) can be distributed

among all the users with some combinations {δP,k}k such that

δP,k ≤ C
⋆
P(d

∑)/2 for any k.

Proof: The converse proof is directly from Corollary 1a,

while the achievability proof can be found in [18].

Theorem 3 reveals the fundamental tradeoff between sum

DoF and total perfect CSIT feedback cost (see Fig 3). The
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Fig. 3. Optimal sum DoF (dΣ) vs. total perfect CSIT feedback cost (CP)
for three-user 2× 1 MISO BC.

following examples are provided to offer some insights corre-

sponding to Theorem 3.

Example 1: For the target sum DoF dΣ = 3/2, 7/4, 2, the

minimum total perfect CSIT feedback cost is C
⋆
P = 0, 1, 2,

respectively.

Example 2: The target dΣ = 7/4 is achievable with

asymmetric feedback δP = [1/6 1/3 1/2], and symmetric

feedback δP = [1/3 1/3 1/3], and some other feedback

such that C⋆
P(7/4) = 1.

Example 3: The target dΣ = 2 is achievable with asymmet-

ric feedback δP = [1/3 2/3 1], and symmetric feedback

δP = [2/3 2/3 2/3], and some other feedback such that

C
⋆
P(2) = 2.

Transitioning to the symmetric setting where δP,k = δP ∀k,

from Theorem 3 we have the fundamental tradeoff between

optimal sum DoF and CSIT feedback cost δP.

Corollary 3a (Optimal case, M = 2,K = 3, δP): For the

three-user (2 × 1) MISO BC with symmetrically alternating

CSIT feedback, the optimal sum DoF is given as

d∑ = min

{

3(2 + δP)

4
, 2

}

. (10)

Now we address the questions of what is the minimum C
⋆
P

to achieve the maximum sum DoF min{M,K} for the general

BC, and how to distribute C
⋆
P among all the users, recalling

again that C⋆
P is the total perfect CSIT feedback cost.

Theorem 4 (Minimum cost for maximum DoF): For the

K-user M × 1 MISO BC, the minimum total perfect CSIT

feedback cost to achieve the maximum DoF is given by

C
⋆
P(min{M,K}) =

{

0, if min{M,K} = 1
min{M,K}, if min{M,K} > 1

where the total feedback cost C⋆
P can be distributed among all

the users with any combinations {δP,k}k.

Proof: For the case with min{M,K} = 1, simple TDMA

is optimal in terms of the DoF performance. For the case with

min{M,K} > 1, the converse proof is directly derived from

Corollary 1b, while the achievability proof can be found in

[18].



It is noted that Theorem 4 is a generalization of the

result in [6] where only symmetric feedback was considered.

The following examples are provided to offer some insights

corresponding to Theorem 4.

Example 4: For the case where M = 2, K = 4, the optimal

2 sum DoF performance is achievable, with asymmetric feed-

back δP = [1/5 2/5 3/5 4/5], and symmetric feedback

δP = [1/2 1/2 1/2 1/2], and any other feedback such

that C⋆
P = 2.

Example 5: For the case where M = 3, K = 5, the opti-

mal 3 sum DoF performance is achievable, with asymmetric

feedback δP = [1/5 2/5 3/5 4/5 1], and symmetric

feedback δP = [3/5 3/5 3/5 3/5 3/5], and any other

feedback such that C⋆
P = 3.

The following corollary is derived from Theorem 4, where

the case with min{M,K} > 1 is considered.

Corollary 4a (Minimum cost for maximum DoF): For the

K-user M ×1 MISO BC, where J users instantaneously feed

back perfect (current) CSIT, with the other users feeding back

delayed CSIT, then the minimum number J is min{M,K},

in order to achieve the maximum sum DoF min{M,K}.

C. Inner bounds

In this subsection, we provide the following inner bounds

on the sum DoF as a function of the CSIT cost, which are

tight for many cases as stated.

Proposition 1 (Inner bound, M = 2,K ≥ 3): For the

K(≥ 3)-user 2× 1 MISO BC, the sum DoF is bounded as

d∑ ≥
3

2
+

K

4
min{δP,

2

K
}. (11)

Proof: The proof is shown in Section IV-A.

Proposition 2 (Inner bound, M ≥ K and M < K): For

the K-user M × 1 MISO BC, the sum DoF for the case with

M ≥ K is bounded as

d∑ ≥ (K − dMAT)min{δP, 1}+ dMAT, (12)

while for the case with M < K, the sum DoF is bounded as

d∑ ≥ (K −
KΓ

M
)min{δP,

M

K
}+ Γ (13)

where

Γ,
M

∑K−M

i=1
1
i
(M−1

M
)i−1 + (M−1

M
)K−M (

∑K

i=K−M+1
1
i
)
.

Proof: The proof is shown in Section IV-B.

III. CONVERSE PROOF OF THEOREM 1

We first provide Proposition 3 to be used, the proof of which

can be found in [18]. For simplicity we drop the time index.

Proposition 3: Let

yk = hT

kx+ zk,

yk , [y1 y2 · · · yk]
T, Hk , [h1 h2 · · · hk]

T

H , [h1 h2 · · · hK ]T, H = Ĥ + H̃

d∑ 

M/K

M

0
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
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Fig. 4. Achievable sum DoF dΣ vs. δP for the MISO BC with M < K.

where h̃i ∈ C
M×1 has i.i.d. NC(0, σ

2
i ) entries. Then, for any

U such that p
X|UĤH̃

= p
X|UĤ

and K ≥ m ≥ l, we have

l′ h(ym|U, Ĥ, H̃)−m′ h(yl|U, Ĥ, H̃)

≤ −(m′ − l′)

l
∑

i=1

log σ2
i + o(logP ) (14)

where we define l′ , min {l,M} and m′ , min {m,M}.

Giving the observations and messages of users 1, . . . , k− 1
to user k, we establish the following genie-aided upper bounds

on the achievable rates

nRk ≤ I(Wk; y
n
1 , y

n
2 , . . . , y

n
k |W1, . . . ,Wk−1,Ω

n) + nǫ
(15)

where we apply Fano’s inequality and some basic chain rules

of mutual information using the fact that messages from

different users are independent, and where we define

Ωn , {St, Ŝt}
n
t=1, ynk , {yk,t}

n
t=1

St ,
[

h1,t · · · hK,t

]

T

, Ŝt ,
[

ĥ1,t · · · ĥK,t

]T

.

Alternatively, we have

nRk ≤ h(yn1 , . . . , y
n
k |W1, . . . ,Wk−1,Ω

n)

− h(yn1 , . . . , y
n
k |W1, . . . ,Wk,Ω

n) + nǫ. (16)

Therefore, it follows that

K
∑

k=1

n

k′
(Rk − ǫ)

≤
K−1
∑

k=1

n
∑

t=1

(

h(y1,t, . . . ,yk+1,t | y
t−1
1 , . . . ,yt−1

k ,W1, . . . ,Wk,Ω
n)

(k + 1)′

−
1

k′
h(y1,t, . . . , yk,t | y

t−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n)

)

+ n logP + n o(logP ) (17)

≤ logP

K−1
∑

k=1

n
∑

t=1

(k + 1)′ − k′

k′(k + 1)′

k
∑

i=1

αi,t+n logP+n o(logP )

(18)



= n logP

K−1
∑

i=1

( 1

k′
−

1

K ′

)

ᾱi + n logP + n o(logP ) (19)

where we define k′ ,min {k,M}, the inequality (17) is

due to 1) the chain rule of differential entropy, 2) the

fact that removing condition does not decrease differential

entropy, 3) h(y1,t |Ω
n) ≤ logP + o(logP ), i.e., Gaus-

sian distribution maximizes differential entropy under covari-

ance constraint, and 4) h(yn1 , . . . , y
n
K |W1, . . . ,WK ,Ωn) =

h(zn1 , . . . , z
n
K) > 0; (18) is from Proposition 3 by setting

U = {yt−1
1 , . . . , yt−1

k ,W1, . . . ,Wk,Ω
n} \ {St, Ŝt}, H = St,

and Ĥ = Ŝt; the last equality is obtained after putting the

summation over k inside the summation over i and some basic

manipulations. Similarly, we can interchange the roles of the

users and obtain the same genie-aided bounds. Finally, the

single antenna constraint gives that di ≤ 1, i = 1, · · · ,K.

With this, we complete the proof.

IV. SOME ACHIEVABILITY PROOFS

We here provide the sketches of some achievability proofs,

leaving more details in [18] due to the lack of space.

A. Proof of Proposition 1

The achievability scheme is based on time sharing between

two strategies of CSIT feedback, i.e., delayed CSIT feedback

with δP = 0 and alternating CSIT feedback with δP = 2
K

,

where the first strategy achieves d∑ = 3/2 by applying

Maddah-Ali and Tse (MAT) scheme (see in [4]), with the

second strategy achieving d∑ = 2 by using alternating CSIT

feedback manner (see in [6]).

B. Proof of Proposition 2

For the case with M ≥ K, the proposed scheme is based

on time sharing between delayed CSIT feedback with δP = 0
and full CSIT feedback with δP = 1, where the first feedback

strategy achieves d∑ = dMAT by applying MAT scheme, with

the second one achieving d∑ = K.

Similar approach is exploited for the case with M < K.

In this case, we apply time sharing between delayed CSIT

feedback with δP = 0 and alternating CSIT feedback with

δP = M/K.

V. CONCLUSIONS

This work considered the general multiuser MISO BC, and

established inner and outer bounds on the tradeoff between

DoF performance and CSIT feedback quality, which are opti-

mal for many cases. Those bounds, as well as some analysis,

were provided with the aim of giving insights on how much

CSIT feedback to achieve a certain DoF performance.
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