
On the Fundamental Tradeoffs between Routing
Table Size and Network Diameter in Peer-to-Peer

Networks
Jun Xu

College of Computing
Georgia Institute of Technology

jx@cc.gatech.edu

Abstract— In this work, we study a fundamental tradeoff is-
sue in designing distributed hash table (DHT) in peer-to-peer net-
works: the size of the routing table v.s. the network diameter. It
was observed by Ratnasamy et al. that existing DHT schemes ei-
ther (a) have a routing table of size O(log2n) and network diame-
ter of Ω(log2n), or (b) have a routing table of size d and network
diameter of Ω(n1/d). They asked whether this represents the best
asymptotic “state-efficiency” tradeoffs. Our first major result is
to show that there are straightforward routing algorithms which
achieve better asymptotic tradeoffs. However, such algorithms all
cause severe congestion on certain network nodes, which is unde-
sirable in a P2P network. We then rigorously define the notion of
“congestion” and conjecture that the above tradeoffs are asymp-
totically optimal for a congestion-free network. In studying this
conjecture, we have thoroughly clarified the role that “congestion-
free” plays in this “state-efficiency” tradeoff. Our second major
result is to prove that the aforementioned tradeoffs are asymptoti-
cally optimal for uniform algorithms. Furthermore, for uniform al-
gorithms, we find that the routing table size of Ω(log2n) is a magic
threshold point that separates two different “state-efficiency” re-
gions. Our third and final result is to study the exact (instead of
asymptotic) optimal tradeoffs for uniform algorithms. We propose
a new routing algorithm that reduces the routing table size and the
network diameter of Chord both by 21.4% without introducing
any other protocol overhead, based on a novel number-theoretical
technique.

Index Terms— Fundamental tradeoff, peer-to-peer routing,
distributed hash table, routing table size, network diameter,
congestion-free.

I. INTRODUCTION

As peer-to-peer (P2P) file sharing systems become increas-
ingly popular in recent years, scalability has been recognized as
the central challenge in designing such systems. Early systems
such as Napster and Gnutella all have some design limitations
that prevent them from being scalable: Napster uses centralized
directory service and Gnutella employs flooding when search-
ing for objects. To meet this challenge, various distributed hash
table (DHT) schemes have been proposed in different P2P sys-
tems [1], [2], [3], [4], [5]. The basic idea of a DHT scheme is
to use a hash table-like interface to locate the objects, and to
distribute the duty of maintaining the hash table data structure,
in the face of node joins/leaves, to all participating P2P nodes.
In DHT schemes, each node stores objects that correspond to

This work is supported in part by NSF grant no. ITR/SY 0113933.

O(n
1/d

)

~log n

n

O(n)O(log n)O(1)

CAN

0

Maintain no state

Plaxton et al., Chord, Pastry, Tapestry

<= d

Routing table size

Worst−case distance

Asymptotic tradeoff curve

Maintain full state

Fig. 1. Asymptotic tradeoff curve between the routing table size and the
network diameter

a certain portion of the key space, and uses a routing table (re-
ferred to as a “finger table” in Chord [4]) to forward the request
for an object not belonging to its key space to appropriate “next-
hop” nodes. The request will eventually be forwarded to a node
responsible for the key of the object through a chain of such
“next-hops”.

This paper studies a fundamental tradeoff issue in design-
ing DHT: the number of neighbors (equivalently the size of the
routing table) vs. the network diameter, the number of hops a
request needs to travel in the worst case. In a network consisting
of n nodes, it is straightforward to see that when n neighbors are
maintained (the “full directory” case) at each node, the search
cost is O(1), and when each node only maintains one neighbor
(essentially a “logical ring”), the search cost is O(n). This plots
two end points on the tradeoff curve shown in Fig. 1.1. In prac-
tical systems, neither extreme is desirable: the “full directory”
approach involves heavy maintenance cost due to frequent joins
and leaves of the P2P nodes, and the O(n) diameter incurs in-
tolerable network delay. Such a tradeoff has been referred to
as the “state-efficiency” tradeoff2 in [7]. It was observed in [7]
that existing DHT schemes either (a) have a routing table of size
O(log2n) and network diameter of O(log2n), which includes

1Note that the curve is symbolic in the sense that the coordinates are in
asymptotics rather than in exact values.

2The term was originally introduced in [6] in a similar but different context.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Chord [4], Tapestry [1], Plaxton et. al. [2], and Pastry [3], or (b)
have a routing table of size d and network diameter of O(n1/d),
which includes CAN [5]. It was asked in [7] whether Ω(log2n)
and Ω(n1/d) are the asymptotic lower bounds for the network
diameter when the routing table sizes are O(log2n) and d, re-
spectively. We clarify and rigorously formulate this interesting
question, and answer it in a comprehensive way. Since the an-
swer to the above questions under certain conditions is negative,
as we will show later, the existing algorithms [4], [1], [2], [3],
[5] are not placed on the optimal tradeoff curve in Fig. 1.

The first major result of this paper is to clarify the tradeoff
problem. We first formally characterize the metrics involved in
the tradeoff. Then we show that there are routing algorithms
which achieve better asymptotic tradeoffs than both (a) and (b)
above3. However, these algorithms all cause severe congestion
on certain network nodes even when the load is assumed to be
uniform. Based on this observation, we define the notion of
“congestion”. We conjecture that if the network is required to
be “congestion-free”, the aforementioned tradeoffs (a) and (b)
are asymptotically optimal. We show that the answer to this
conjecture is negative under an “everywhere dense” condition
in which the system does not need to handle the dynamic joins
and leaves of the nodes. However, it remains an open problem
whether this conjecture is true when the system has to accom-
modate such joins and leaves. In studying this conjecture, we
have thoroughly clarified the role that “congestion-free” plays
in this “state-efficiency” tradeoff.

The second major result of this paper is that, if the rout-
ing algorithms are required to be uniform, the aforementioned
tradeoffs (a) and (b) are indeed optimal. This result is practi-
cally important since it can be shown that almost all existing
DHT schemes [4], [1], [2], [3], [5] are uniform. In addition, we
show that Ω(log2n) is a magic threshold point for the routing
table size. If the routing table size is asymptotically smaller or
equal to Ω(log2n), then for any algorithm, “congestion-free”
constraint prevents it from achieving the smaller network diam-
eter When the routing table size is asymptotically larger than
Ω(log2n), however, the “congestion-free” condition no longer
plays this “bottleneck” role. This may explain why many ex-
isting DHT algorithms [1], [2], [3], [4] stay around this magic
threshold.

Our third and final major result is to study the exact (con-
trary to asymptotic) tradeoff between the routing table size and
the network diameter. We first formulate this tradeoff problem
as an optimization problem and explain that finding its solution
can be prohibitively expensive in terms of computational com-
plexity for large-size networks. Then we propose a new routing
algorithm that reduces the routing table size and the network
diameter of Chord [4] both by 21.4% without introducing any
other protocol overhead, based on a novel number-theoretical
technique.

The rest of the paper is organized as follows. In Section II,
we discuss the background and related work. The aforemen-
tioned four major results are established in Sections III, IV, and
V. respectively. Section VI concludes the paper.

3This is the reason why, in Fig. 1, we deliberately do not put any of the
existing DHT schemes on the optimal asymptotic tradeoff curve.

II. BACKGROUND AND RELATED WORK

In this section, we survey the routing aspects of the exist-
ing DHT schemes. Throughout this paper, other aspects will
be discussed only when they become relevant to routing. In a
P2P system using a DHT scheme, each node is responsible for
storing certain parts of the key space. The routing and self-
stabilization (reacting to node joins/leaves) algorithms running
on each node collectively implement a hash table-like interface
that allows each node to perform lookup, insertion, and deletion
of objects.

In DHT schemes, a routing algorithm is characterized by the
routing tables employed at each node. Like in Chord [4], we as-
sume that both the name space and the key space of the network
are 0, 1, · · · , n− 1. We let k denote the size of the routing table
at each node. At a node of identification id, the routing table
basically consists of a set of entries {(Sid,i, Jid,i)}1≤i≤k. The
routing algorithm is simply the following: forward a request for
key α to node R(id+ Jid,i) if α− id ∈ Sid,i. Here R(β) is the
node currently (subject to changes due to node joins/leaves) re-
sponsible for the key β, and the arithmetic is in the cyclic sense
(i.e., modulo n). For the correctness of routing, Jid,i �= Jid,j

and Sid,i

⋂
Sid,j = ∅ when i �= j, and

⋃
1≤i≤k

Sid,i consists of

all the keys not handled by the node id. In uniform DHT al-
gorithms (defined rigorously later in Definition 2), where Sid,i

and Jid,i are all independent of id, we simply write them as Si

and Ji.
In Chord [4], n = 2k, Si = [2i−1, 2i), and Ji = 2i−1, where

i = 1, 2, · · · , k. The size of the routing table is exactly log2n,
and the network diameter is also log2n. Algorithms used in
[1], [2], and [3] are similar, except that they use different basis
(Chord uses 2). In Tapestry [1], for example, n = dx, Si∗d+j =
[j ∗ di, (j + 1) ∗ di), Ji∗d+j = j ∗ di, where i = 0, 1, · · · , x −
1 and j = 1, 2, · · · , d − 1. Pastry [3] is similar to Tapestry
except that d is chosen as a exponential of 2. In both algorithms,
the network diameter (logdn) is smaller than Chord’s, but the
routing table size is larger ((d − 1)logdn). However, in terms
of asymptotics, these algorithms all maintain a routing table of
size O(log2n) and achieve a network diameter of O(log2n).
CAN [5], on the other end, maintains no more than a constant
number d of neighbors. In CAN, Si = [xi−1, xi) and Ji =
xi−1, where xd = n. The network diameter is O(n1/d).

It is asked in [7] whether (O(log2n), Ω(log2n)) and (d,
Ω(n1/d)) are the optimal asymptotic tradeoffs between the rout-
ing table size (first coordinates) and the network diameter (sec-
ond coordinates). We clarify and answer this question in the
next four sections. The closest work to ours in the theo-
retical computer science domain is [6], which studies “state-
efficiency” tradeoff in a general network. However, they do
not address the important issue of congestion. Also they use
the storage cost to gauge the routing table size, while we use
the self-stabilization overhead. Both issues make a major dif-
ference in the tradeoff results and also the techniques needed
to derive such results. Viceroy, also based on butterfly, is pro-
posed in [8] to achieve O(log2 n) network diameter with a con-
stant routing table size at every node. The expected diame-
ter of the Viceroy network is about 3 log2 n. It clearly beats
the (d,Ω(n1/d)) tradeoff mentioned above. However, note that

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

such an O(log2n) diameter is achieved “with high probability”,
instead of with certainty. It remains an open problem whether
such better tradeoffs can be achieved with certainty, when the
system has to accommodate node joins/leaves.

III. RIGOROUS CHARACTERIZATION OF THE TRADEOFF

PROBLEM

In this section, we first rigorously characterize the metrics
involved in the tradeoff. Then we show that Ω(log2n) and
Ω(n1/d) are not the asymptotically optimal network diameter
values when the routing table size is constrained by O(log2n)
and d respectively. We show, however, that the schemes which
achieve better tradeoffs all cause severe congestion to certain
network nodes. After we define the notion of congestion, we
conjecture that if “congestion-free” is added as an additional
constraint, Ω(log2n) and Ω(n1/d) will be the asymptotically
optimal network diameter values.

A. Characterization of the metrics involved in the tradeoff

In this section, we formally characterize the notion of the
routing table size in the DHT context. Recall from Sec. II that
a routing table consists of entries {(Sid,i, Jid,i)}1≤i≤k and we
use k to denote the “size” of routing table. In other words, in
measuring the routing table size, we count the number of dif-
ferent “next-hops” (neighbors). This is different from the way
they are counted in [6] (counting the storage cost of Sid,i) and
in IP routers (counting the number of IP prefixes). Counting
the number of neighbors makes sense in DHT, since there are
frequent joins and leaves of nodes, and the cost of maintain-
ing the routing table is directly proportional to the number of
neighbors. In other words, the number of neighbors measures
the cost of self-stabilization for adapting to node joins/leaves.
The storage cost metric used in [6] and in IP routers, on the
other hand, become irrelevant in the DHT context given today’s
storage price and technology.

Counting the number of neighbors, however, is the correct
measure only for stateless routing algorithms. A stateless rout-
ing algorithm makes a routing decision based only on the des-
tination address (i.e., object key in the request). Therefore, in
a stateless routing algorithm, a node does not need to know
about node joins/leaves other than those that change some of
its “next-hop” values (i.e., identity of the neighbors), since they
will not affect its routing decision. All existing DHT schemes
are stateless. Contrary to stateless routing is to let the routing
decision be based on both source and destination addresses. In
such algorithms, a node id may have to react to the join and
leave of a node even though it does not affect id′s neighboring
relationship with other nodes. This certainly would add more
complexity to both the routing and the self-stabilization aspects
of the DHT. Whether such “stateful routing” will bring some
performance benefit (e.g., better load balancing) and hopefully
outweigh its overhead remains an interesting topic for future
research. Throughout this paper, we will only study “stateless”
algorithms.

Recall that n denotes the size of the name space. In Sections
III and IV we assume that the network under consideration con-
sists of n nodes, 0, 1, · · · , n − 1, handling the key spaces {0},

{1}, · · ·, and {n − 1}, respectively. Clearly, we implicitly as-
sume here that every node in the name space exists and is alive4

(i.e., “everywhere dense”). This assumption is acceptable since
we only establish “negative results” in Sections III and IV: no
way for an algorithm to achieve a lower diameter than the bound
even if it does not need to deal with node joins/leaves. In Sec-
tion V where we establish “positive results”, however, we will
no longer use this assumption and will address the issue of sta-
bilization under joins/leaves.

Tradeoff analysis is essentially to study the lower bound of
one metric while fixing the other. All lower bound results target
worst-case performance. Assuming certain traffic or join/leave
patterns, one can design routing algorithms that employ heuris-
tics (e.g., route caching) to enhance average performance. Such
heuristics, however, will not be able to improve the perfor-
mance lower bound in the worst case. So our worst-case trade-
off results do not conflict with better (average) tradeoff results
achieved using such heuristics.

B. Network diameter lower bounds

It has been asked in [7] whether Ω(log2n) and Ω(n1/d) are
the best achievable network diameters when the routing table
sizes are O(log2n) and d respectively. Our answers to both
questions are “no”. We show that there are networks of diam-
eter O(log2n

log2(log2n)) and O(log2n) when the routing table sizes
are O(log2n) and d respectively.

We formulate a DHT scheme as a directed graph (V,E),
where V is the set of all participating DHT nodes and E is
the neighbor relationships among them. There exists an edge
from a node i to a node j if node j is one of node i′s neigh-
bor in the DHT. We further require the network to be strongly
connected (i.e., every one can reach everyone else), which is
clearly required of all DHT schemes. Under this formulation,
the questions above become whether Ω(log2n) and Ω(n1/d) are
the best achievable network diameters when the out-degree of
each node is bounded by O(log2n) and d, respectively. The
following proposition shows otherwise.

...
...

log(n)

levels...
log(log(n)−1)

Fig. 2. The constructive proof of Proposition 1

4This assumption, however, sounds a little ironic: if we know that all the
nodes exist and are alive, why not send the request for key α to the node α
directly? Note however that in this case, the routing table size for a node is
actually O(n).

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Proposition 1—Reachable lower bounds: There exists a
strongly-connected directed graph of diameter O(log2n

log2(log2n))
in which the out-degree of any node is no more than log2n.
There also exists a strongly-connected directed graph of diam-
eter O(logdn) in which the out-degree of any node is no more
than d. The network diameter lower bound is Ω(log2n

log2(log2n)) or
Ω(logdn) when the routing table size is no more than log2n or
d respectively.

Proof: We prove the first assertion first. Fig. 2 shows such
a graph that satisfies the aforementioned condition. There is a
pseudo “root” in this graph and a directed perfectly-balanced
(log2n-1)-ary tree5 grows from this “root”. This allows the
“root” to reach everyone else in at most log(log2n−1)n =

log2n
log2(log2n−1) steps. Also every node other than the root has

a directed edge back to the root6. This allows every node to
reach every other node through the root. So the network diam-
eter is at most log2n

log2(log2n−1) + 1 = O(log2n
log2(log2n)). Note that the

maximum out-degree at each node is no more than log2n. The
second assertion follows by similar arguments.

As to the third assertion (the lower bound), note that when
each node’s out-degree is bounded by x, a node can only reach
xl other nodes using paths no longer than l. If l is the diameter,
then xl ≥ n − 1 since there are n nodes in the graph. When
x = log2n, we get l ≥ log2(n−1)

log2log2n ; when x = d, we get l ≥
logd(n − 1).

Remark: In later discussion, we refer to the proof of the
third assertion (lower bound) as the reachability argument.

We can see that the routing algorithm used in the network
shown in Fig. 2 is hierarchical: the root has a high in-degree
and handles most of the traffic. This is undesirable in P2P net-
works since the root will become the performance bottleneck
and central point of failure. Our initial hypothesis was that if we
bound the degree sum (in-degree plus out-degree) at each node
to O(log2n) and d, the network diameter bounds O(log2n) and
O(n1/d) should become optimal. This is unfortunately false, as
shown by the following proposition.

...
...

log(n)

levels...
log(log(n)/2)

Fig. 3. The constructive proof of Proposition 2

5For simplicity of discussion, we omit the use of floors and ceilings when
appropriate.

6Note that the “pointers” in DHT are unidirectional. In Fig. 2, although the
in-degree of the root is O(n), its out-degree, which is also its routing table size,
is only log2n − 1.

Proposition 2: There exists a strongly-connected directed
graph of diameter O(log2n

log2(log2n)) in which each node’s degree
sum (in-degree plus out-degree) is no more than O(log2n).
There exists a strongly-connected directed graph of diameter
O(log(d/2)n) in which each node’s degree sum is no more than
d.

Proof: We only prove the first assertion since the argu-
ments for the second assertion are similar. Fig. 3 shows such
a graph that satisfies the aforementioned condition. There is
again a pseudo “root” in this graph and a directed perfectly-
balanced (log2n

2)-ary tree grows from this “root”. This allows
the “root” to reach everyone else in at most log(log2n

2)n =
log2n

log2(
log2n

2)
steps. Also, every node other than the root has a di-

rected edge to its parent. This allows every node to reach every
other node in 2 log2n

log2(
log2n

2)
= O(log2n

log2(log2n)) steps (through their

lowest common ancestor). Clearly, in this network, no node’s
degree sum is more than log2n + 2, which is O(log2n).

Observant readers can see that the network construction in
Fig. 3 is still a “cheat”: intuitively, the root is still the point of
congestion. This leads us to the conjecture that if we impose an
additional “congestion-free” constraint, the aforementioned di-
ameter lower bounds Ω(log2n) and Ω(n1/d) might actually be
optimal. In the next section, we define the notion of congestion
and introduce this conjecture.

C. The notion of congestion

In this section we precisely define the notion of “congestion”
and use that to formulate our conjecture. Note that it makes
sense to talk about congestion only when a communication load
is specified. We artificially impose a uniform all-to-all commu-
nication load. In other words, for each pair of nodes i, j, i �= j,
we impose a unit of traffic from i to j. Altogether, a load of
n(n − 1) units is imposed on the network. With this artificial
load imposed, we define the notion of congestion-free as fol-
lows.

Definition 1: We say that a network is c-congestion-free (c >
1) if it is both c-node-congestion-free and c-edge-congestion-
free. A network is said to be c-node-congestion-free if no node
is handling more than c times the average traffic per node. Like-
wise, a network is said to be c-edge-congestion-free if no edge
is handling more than c times the average traffic per edge. When
c = 1, we simply say that the network is node-congestion-free
or edge-congestion-free.

These definitions need to be carefully explained. Suppose the
average path length from a random node i to another random
node j is l. We have the following proposition stating that the
average load on a node is (n − 1)l and its proof is essentially
a Little’s Law [9] argument. This means that, if a network is
c-node-congestion-free, no node should route more than c(n −
1)l traffic. Likewise, if a network is c-edge-congestion-free, no
edge should carry more than cn(n−1)l

|E| traffic, where |E| is the
number of edges/links in the network. It can be shown that all
existing DHT schemes [1], [2], [3], [4], [5] are congestion-free,
when all nodes in the identification space exist and are alive.
The node-congestion-free part can be proven from Theorem 1
in the next section.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

Proposition 3: The average amount of traffic going through
a node is (n − 1)l.

Proof: We write down all n(n − 1) sequences of node
identifications corresponding to the communications paths be-
tween all pairs of nodes. Each occurrence of a node in a se-
quence in which it is not the source node constitute a unit load
to that node. The total number of such occurrences for all n
nodes are n(n − 1)l, since the average path length is l and the
first node (source) in each sequence should not be counted. So
the average load on each node is (n − 1)l.

D. Our main conjecture

Based on the intuition we have obtained from Propositions
1 and 2, we initially have the following conjecture on the role
that congestion-free plays in the tradeoff between the network
diameter and the routing table size.

Conjecture 1: When the network is required to be c-
congestion-free for some constant c ≥ 1, Ω(log2n) and
Ω(n1/d) are the asymptotic lower bounds for the network di-
ameter when the routing table sizes are no more than O(log2n)
and d, respectively.

Unfortunately, the answer to this conjecture is negative when
the network is “everywhere dense” (defined in Part A of Sec.
III) and there are no dynamic joins and leaves. Karp [10] points
out to us that the static butterfly network7 can be configured to
reach the diameter of O(log2n

log2log2n), when the routing table size
is no more than log2n, shown next. Note that this is exactly the
lower bound when the congestion has not become a factor.

The general static8 butterfly network can be defined as fol-
lows. A (a, b)-butterfly is a directed graph with n = a ∗
ba vertices, where a and b are referred to as the diameter
and the degree, respectively. Each vertex is of the form
(x0, x1, · · · , xa−1; i), where 0 ≤ x0, x1, · · · , xa−1 ≤ b − 1
and 0 ≤ i ≤ a − 1. For each vertex (x0, x1, · · · , xa−1; i), we
refer to i as its level9 and (x0, x1, ..., xa−1) as its row. From
each vertex (x0, x1, · · · , xa−1; i), there is a directed edge to all
vertices of the form (x0, x1, · · · , xi, y, xi+2, · · · , xa−1; i + 1)
when i �= a − 1, and (y, x1, ..., xa−1; 0) when i = a − 1.
The routing path from vertex (x0, x1, · · · , xa−1; i) to vertex
(y0, y1, · · · , ya−1; j) successively changes xi+1 to yi+1 while
going from level i to level i+ 1, xi+2 to yi+2 while going from
level i + 1 to level i + 2, and so on. This process proceeds un-
til all of the x’s have been changed to y’s, and then continues
along row (y0, y1, ..., ya−1) to level j.

Note that in the static butterfly, the size of the routing table is
b since each node (x0, x1, · · · , xa−1; i) is connected to all nodes
that have the same coordinates as the node in all dimensions
except for the (i + 1)th. The diameter is 2a − 1 since a query
may, in the worst case, change all coordinates (there are a of
them) to the right value and then travel another a − 1 steps to
go to the right level. Since n = aba, depending on the routing
table size b, we have two cases: (1) when b = log2n, we have
a ≤ log2n

log2log2n , and (2) when b = d, we have a ≤ logdn. In

7It was originally proposed in the context of parallel computing.
8We use the term static to emphasize that this topology works only under the

“all-exist all-alive” condition.
9Throughout this paper, it is assumed that additive operations on level are

modulo a.

other words, if we do not consider node joins/leaves, we can
achieve O(log2n

log2log2n) and O(logdn) network diameter when the
routing table size is log2n and d respectively. In this paper, we
will only explore the first case in depth.

As pointed out by Karp [10], the static (a, b) butterfly is
node-congestion-free. However, it is not edge-congestion free.
Consider the edges going form a node (x0, x1, · · · , xa−1; i) to
(x0, x1, · · · , xa−1; i + 1). In the static (log n

log log n , log n) butter-
fly, each node has exactly one such horizontal edge, and the
remaining a − 1 are nonhorizontal edges. However, a query
traverses a−1

2 horizontal links and a non-horizontal links on
average. Therefore, a horizontal link carries about log n

2 times
as much traffic as a non-horizontal link. In other words, its edge
congestion factor is O(log2n).

Additionally, there is no straightforward way to apply
the static butterfly network to the real P2P networks that
are “sparse” (in the name space) and has dynamic node
joins/leaves. In [11], we designed a congestion-free DHT sys-
tem called Ulysses that is based on butterfly and has addressed
the issues of edge-congestion and dynamic node joins/leaves.
Note, however, in Ulysses the routing table size at each
node is O(log2n) with high probability, instead of with cer-
tainty. It remains an open problem whether a congestion-free
(O(log2n),Ω(log2n

log2log2n)) tradeoff can be achieved with cer-
tainty under dynamic node joins/leaves.

Interestingly, as we will show in the next section, the answer
to the Conjecture 1 is positive for a class of routing algorithms
known as uniform. We show that uniform algorithms eliminate
node-congestion in a natural way. This result is both theoreti-
cally and practically important: all existing DHT10 algorithms
[1], [2], [3], [4], [5] are uniform.

IV. ASYMPTOTIC TRADEOFFS FOR UNIFORM

ALGORITHMS

In this section, we show that when the routing algorithms
are weakly uniform (defined below), Ω(log2n) and Ω(n1/d) are
the lower bounds of the diameter for any network with routing
table size O(log2n) and d, respectively. This result is prac-
tically important since all existing schemes [1], [2], [3], [4],
[5] except Viceroy [8] are uniform. In other words, as uni-
form algorithms, these algorithms all have achieved the optimal
asymptotic “state-efficiency” tradeoffs. Then we show that, for
uniform algorithms, Ω(log2n) is a magic threshold point for
the routing table size. If the routing table size is asymptoti-
cally smaller than or equal to O(log2n), “congestion-free” con-
straint prevents the algorithm from achieving the smaller (op-
timal) network diameters established through reachability ar-
gument in Proposition 1. However, when the routing table size
is asymptotically larger than Ω(log2n), the “congestion-free”
condition no longer plays this “bottleneck” role. This may ex-
plain why many existing DHT algorithms [1], [2], [3], [4] stay
around this magic threshold.

We again assume that the name space is {0, 1, · · ·, n − 1}
and all the nodes in the name space exist and are alive. We
recall from Sec. II that the routing table at node id consisting
of entries {(Sid,i, Jid,i)}1≤i≤k. At node id, a request for key α

10Except for Viceroy [8] which is based on butterfly network.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

is forwarded to node id + Jid,i (equal to R(id + Jid,i) under
our “all-exist all-alive” assumption) if α − id ∈ Sid,i. Note
that all the arithmetic is in the cyclic sense (i.e., modulo n).
The concepts of weak and strong uniformity are defined in the
following. For the correctness of routing, Jid,i �= Jid,j and
Sid,i

⋂
Sid,j = ∅ when i �= j, and

⋃
1≤i≤s

Sid,i consists of all

the keys not handled by the node id.

A. Notions of uniformity

Definition 2: A routing algorithm is said to be weakly uni-
form, if for any pair of nodes id and id′, Jid,i = Jid′,i for all
1 ≤ i ≤ k. A routing algorithm is said to be strongly uniform
if it is weakly uniform, and for any pair of nodes id and id′,
Sid,i = Sid′,i for all 1 ≤ i ≤ k.

Intuitively, the weak uniformity only requires the “jump
sizes” to be the same at all nodes. Strong uniformity, in ad-
dition, requires all “routing tables” to be homogeneous. All
existing algorithms [1], [2], [3], [4], [5], except Viceroy [8], are
strongly uniform and therefore node-congestion-free, due to the
following Theorem 1.

In the following discussion, we will use the notation Ji (in-
stead of Jid,i) in weakly uniform algorithms, and Si (instead of
Sid,i) in strongly uniform algorithms. Also, we will refer to the
set {Ji}1≤i≤k as the jump set and Ji’s as jump sizes, since Ji’s
specify how much a request (packet) will advance (“jump”) in
the name space from its current node, during the next step on
its way to the destination.

Theorem 1: A strongly uniform algorithm is node-
congestion-free, when all nodes in the name space exist
and are alive.

Proof: Let P (i, j) be the routing path from node i to
node j. We define a function I(i, j, t) as follows: I(i, j, t) = 1
if P (i, j) contains the node t and i �= t. Otherwise, I(i, j, t) =
0. Let T (t) be the amount of traffic that goes through the
node t, when the uniform all-to-all communication load is im-
posed. Then for any 0 ≤ t′ ≤ n − 1 and t′ �= t, T (t) =∑
0≤i,j≤n−1

I(i, j, t) =
∑

0≤i,j≤n−1
I(i + t − t′, j + t − t′, t)

=
∑

0≤i,j≤n−1
I(i, j, t′) = T (t′). The first and the last equal-

ities are from the definitions of T and uniform all-to-all com-
munication. The second equality is due to the standard change
of variable technique in combinatorial summation. The third
equality is from the fact I(i + t − t′, j + t − t′, t) = I(i, j, t),
which follows from Lemma 1 below.

For any 0 ≤ t ≤ n−1, since T (t) = T (t′) for any t �= t′, the
total amount of traffic in the network is

∑
0≤t≤n−1

T (t) = nT (t)

and the average per node is T (t). Therefore, the network is
node-congestion-free.

Remark: From this theorem, we can see that in strongly
uniform algorithms, the node-congestion is not dependent on
the configurations of the routing tables (i.e., S′

is) and the jump
sets. Edge-congestion, however, will be dependent on both,
to be shown in Part E of Sec. V. Note also that in gen-
eral weak uniformity implies neither node-congestion-free nor
edge-congestion-free.

Lemma 1: For any 0 ≤ i, j, t, δ ≤ n − 1, I(i, j, t) = I(i +
δ, j + δ, t + δ).

Proof: Again, let P (i, j) be the routing path from node
i to node j as above. We perform induction on |P (i, j)|, the
length of P (i, j):

• Initial step: When |P (i, j)| = 0, we know that i = j.
So for any t and δ, i + δ = j + δ and I(i, j, t) = 0 =
I(i + δ, j + δ, t + δ).

• Induction hypothesis: Suppose I(i, j, t) = I(i + δ, j +
δ, t + δ) holds for all (i, j) pairs such that |P (i, j)| ≤ m.

• Induction step: Let P (i′, j′) be any path of length m + 1.
We would like to show that for any t and δ, I(i′, j′, t) =
I(i′+δ, j′+δ, t+δ) holds. Since I(i′, j′, t) is either 1 or 0,
let us consider the case I(i′, j′, t) = 1 first. Let v denote
the second vertex on the path P (i′, j′). Then according
to the definition of strong uniformity, v + δ must be the
second vertex on the path P (i′ + δ, j′ + δ). We again
consider two cases: (1) if t = v, then t + δ = v + δ and
therefore I(i′+δ, j′+δ, t+δ) = 1, (2) if t �= v, then t+δ �=
v + δ and I(v, j′, t) = 1, and by induction hypothesis
(since P (v, j′) is of length m) I(i′ + δ, j′ + δ, t + δ) =
I(v + δ, j′ + δ, t + δ) = I(v, j′, t) = 1. Similarly, when
I(i′, j′, t) = 0, we can also show I(i′+δ, j′+δ, t+δ) = 0.
Therefore, I(i′, j′, t) = I(i′ + δ, j′ + δ, t+ δ) holds for all
(i′, j′) pairs such that |P (i′, j′)| = m + 1.

B. State-efficiency tradeoffs for uniform algorithms

We are now ready to prove two main theorems of this sec-
tion, which states that the Ω(log2n) and Ω(n1/d) are indeed the
optimal achievable network diameters for uniform routing algo-
rithms, when the routing table sizes are no more than O(log2n)
and d, respectively. Note that in the following theorems we only
assume weak uniformity, which does not imply congestion-free
in general.

Theorem 2: Let k be the number of neighbors each node
maintains. Suppose each node in the name space {0, 1, ..., n −
1} exists and is alive, and the network employs a weakly uni-
form routing algorithm. The following are true:
(a) The diameter lower bound for the network is � 1

2 log2n,
which is Ω(log2n), if k ≤ � 1

2 log2n.
(b) The diameter lower bound for the network is Ω(n1/d), if

k ≤ d, where d > 2.
Proof: Let {Ji}1≤i≤k be the set of jump sizes, which

are the same for all nodes due to the weak uniform assumption.
Suppose the network diameter is l. We pick an arbitrary node
id and consider all paths from node id to all other nodes. There
are n such paths (including the empty path to itself) and let
P denote the set of those n paths. We define a function f :
P → (N

⋃
{0})k+1, where N

⋃
{0} is the set of non-negative

integers, as follows. For any path p ∈ P , we denote as ap,i the
number of jumps of size xi used in the path, for each 1 ≤ i ≤ k.

We know that
k∑

i=1
ap,i ≤ l since l is the network diameter. We

define ap,0 = l −
k∑

i=1
ap,i, and clearly ap,0 ≥ 0. Let

f(p) := (ap,0, ap,1, · · · , ap,k)

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

We claim that f is injective (one-to-one). We prove this claim
by contradiction. Suppose that there are two paths p, q ∈ P ,
such that ap,i = aq,i, i = 0, 1, · · · , k. Then clearly

∑k
i=1 ap,i ∗

xi =
∑k

i=1 aq,i ∗ xi. So starting from the node id, both paths
necessarily end up at the same destination. This contradicts
our definition of P as the set of paths used to reach different
destinations.

The size of the range, which is the number of vectors
(a0, a1, a2, · · · , ak) that satisfy the equation a0+a1+· · ·+ak =
l and ai ≥ 0, i = 0, 1, 2, ..., k. We know from elementary com-
binatorics that this number is equal to the number of different
ways to put l indistinguishable balls into k + 1 different bins,
which is equal to

(
l+k
k

)
. Since f is injective, the size of the

range should be no smaller than the size of domain, which is n.
Therefore,

(
l+k
k

)
≥ n. Now we are ready to prove both (a) and

(b)
(a) It suffices to show that l ≥ 1

2�log2n. First, we show that
l ≥ k. We prove by contradiction and suppose l < k.
Note that

(
l+k
k

)
is an increasing function of l. So

(
l+k
k

)
<(

k+k
k

)
. However, given any ε > 0, by Stirling’s formula

(x! ≈
√

2πx(x
e)x),

(
k+k

k

)
≤ (1 + ε) ∗ 22k 1√

πk
< 22k ≤

n for large enough n and k. This contradicts our prior
assumption that

(
l+k
k

)
≥ n. Therefore l ≥ k. We proceed

to show l ≥ 1
2�log2n. We again argue by contradiction.

Suppose l < 1
2�log2n. Note that

(
l+k
k

)
≤

(
l+l
l

)
(easy

to verify through combinatorial argument), since l ≥ k.
However, when l < 1

2�log2n, we have
(
l+l
l

)
< n due to

the same argument above. Therefore
(
l+k
k

)
≤

(
l+l
l

)
< n,

a contradiction.
(b) We need to show that l has to be Ω(n1/d). Since (l +

d)d >
(
l+d
d

)
> n, we have l + d > logdn and therefore

l > n1/d − d, which is Ω(n1/d).

Theorem 2(a) essentially shows that the diameter lower
bound is approximately 1

2 log2n when k is approximately
1
2 log2n. However, we have not been able to design a new
scheme that achieves the (1

2 log2n, 1
2 log2n) tradeoff11. In fact,

such a tradeoff might not be achievable at all. This is because
in our estimation of the range size in the proof, some elements
in the range may not be the image of any paths. In other words,
there may exist two vectors (a1, a2, ..., ak) �= (a′

1, a
′
2, ..., a

′
k) in

the range such that
k∑

i=1
aiJi =

k∑
i=1

a′
iJi. The (unique) path in

P of length
k∑

i=1
aiJi will map to at most one of them, and the

other one will not be the image of any path. Therefore, it can be
interesting to further sharpen the estimate on the constant factor
through perhaps more sophisticated combinatorial arguments.

Using the intermediate result
(
l+k
k

)
≥ n in the above proof,

we can prove the following result, which is stronger and more
general than Theorem 2(a).

Theorem 3: Let k be the number of neighbors each node
maintains. Suppose each node in the name space {0, 1, ..., n −
1} exists and is alive, and the network employs a weakly uni-

11We did however achieve (0.7864log2n, 0.7864log2n) tradeoff in Section
V.

form routing algorithm. Then the diameter l is at least Ω(log2n)
when k = O(log2n).

Proof: From the above proof we know that
(
l+k
k

)
≥ n,

denoted as (*). In the following, we write l and k as l(n) and
k(n) to emphasize the fact that they are functions of n. Since
k(n) = O(log2n), there exists c > 0 and N1 > 2 such that
k(n) ≤ clog2n when n > N1. We then choose c1 > c + 1/2
and fix it. We need to show that there exists c2 > 0 and N2 > 0
such that l(n) ≥ c2log2n for all n > N2.

We define a(x, y) = (x+y)(x+y)

xxyy . Given any x, y > 0, it
is straightforward to see that, lim

y→0+
a(x, y) = 1. So given

c1 > 0 as above, there exists c2 > 0 such that a(c1, 2c2) <
√

2.
We let N2 = max(�22/c1�, �22/c2�, 4, N1). We claim that
when n > N2, l(n) ≥ c2log2n. We prove this by contra-
diction. Suppose there exists n′ > N2 such that l(n′) <
c2log2n

′. Without loss of generality (WLOG), we choose c′
1

such that c < c′
1 < c1 and c′

1log2n
′ is a positive integer (re-

call that c1 > c + 1/2). We know that k(n′) ≤ c log2 n
′ ≤

c′
1 log2 n

′. WLOG, we can also choose c′
2 such that c2 <

c′
2 < 2c2 and c′

2 log2 n
′ is a positive integer. Then

(
l(n′)+k(n′)

k(n′)

)

=
(
l(n′)+k(n′)

l(n′)

)
≤

(c′
1 log2 n′+c′

2 log2 n′

c′
2 log2 n′

)
≤ 2(a(c′

1, c
′
2))

log2n′ ≤
2(a(c1, 2c2))log2n′

< 2
√
n′ < n′, which contradicts (*) above.

The first inequality holds because
(
l+k

l

)
is an increasing func-

tion of both l and k. The second inequality is due to Lemma 2
in the following. The third inequality holds since a(x, y) is an
increasing function of both x and y when x, y > 0. Therefore,
l(n) = Ω(log2n) when n > N2. Note that all the complica-
tions in choosing c′

1 and c′
2 are due to the fact that the formula(c′

1 log2 n′+c′
2 log2 n′

c′
2 log2 n′

)
needs to be defined.

Lemma 2: Let c′
1, c′

2, and a(x, y) be defined as above. Then(c′
1 log2 n′+c′

2 log2 n′

c′
2 log2 n′

)
≤ 2(a(c′

1, c
′
2))

log2n′
.

Proof: Let x = c′
1 log2 n

′ and y = c′
2 log2 n

′. We
know that x, y ≥ 1 when n′ > N2. Then

(
x+y

y

)
=

(x+y)!
x!y! <

2
√

2π(x+y)(x+y
e)(x+y)

√
2πx(x

e)x
√

2πy(y
e)y

≤ 2(x+y)(x+y)

xxyy = 2a(x, y) =

2a(c′
1, c

′
2)

log2n′
. The first inequality is by the extended form

of the Stirling’s formula
√

2πz(z/e)z < z! < 2
√

2πz(z/e)z

for z > 2 and z ∈ N . Here N is the set of natural numbers.
The second inequality uses the fact x ≥ 1 and y ≥ 1.

C. O(log2n) as a magic threshold for routing table size

We can see from Theorem 2 and Theorem 3 that k =
Ω(log2n) is a magic asymptotic threshold. When k is a con-
stant,

(
l+k
k

)
is approximately lk. However, when k becomes

1
2 log2n,

(
l+k
k

)
is approximately 22k. It is also a magic thresh-

old in the following sense. Recall from Proposition 1 that for
a general network (without assuming uniformity) the diameter
of a network is at least Ω(logkn) through simple reachability
arguments. Theorems 2 and 3 show that this ideal lower bound
is superseded by the need to achieve congestion-free routing,
when the number of neighbors k is no larger than Ω(log2n).
In other words, below the O(log2n) threshold, congestion fac-
tor dominates the reachability factor. However, we can show
that when the number of neighbors k is asymptotically larger
than O(log2n), we can indeed achieve the bound dictated by

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

the reachability argument. In other words, the congestion no
longer plays a “bottleneck” role. This is shown in the following
proposition.

Proposition 4: There exists a strongly uniform network of
diameter 1

α (0 < α < 1) in which the number of neighbors at
each node is bounded by O(nα).

Proof: We let n = xd for simplicity of discussion
(to avoid getting into floors and ceilings). In our construc-

tion, the jump set at each node is S =
d⋃

i=1
Si, where Si =

{1xi−1, 2xi−1, · · · , (x − 1)xi−1}. The routing algorithm is es-
sentially a “greedy” one: given a request for a key α that arrives
at node id, id will forward it to id + j, where j = max{s|s ∈
S, s ≤ α − id}. Clearly, this algorithm is strongly uniform.
Now we show why the network diameter is no more than d.
Suppose that a node sends a request to another node that is
δ (0 ≤ δ ≤ n − 1) larger (in the cyclic sense) in the name
space. Since n = xd, we can write δ as an x-ary number of
at most d digits ad−1ad−2...a0, where δ =

∑d−1
i=0 aix

i. Since
aix

i ∈ Si ⊆ S, the “greedy” routing algorithm will route this
message in at most d jumps: ad−1x

d−1, ad−2x
d−2, · · ·, and

a0x
0.

Remark: Note that the network is automatically node-
congestion-free due to Theorem 1. When n = xd, it can be
shown that the network is also edge-congestion-free.

With the routing table size in Proposition 4, the reachability
argument gives us the diameter lower bound log(nα)n = 1/α,
which is equal to the bound established in Proposition 1. This
shows that when the routing table size is asymptotically larger
than Ω(log2n), the congestion no longer becomes a limiting
factor.

In this section, we have shown that when the routing algo-
rithms are weakly uniform, Ω(log2n) and Ω(n1/d) are indeed
the diameter lower bounds for any network with routing table
size O(log2n) and d, respectively. This shows that existing
DHT schemes, as strongly uniform algorithms, have achieved
the optimal asymptotic tradeoffs. We have also shown that
Ω(log2n) is a magic asymptotic threshold for the routing table
size, which separates the tradeoff region dominated by conges-
tion and the region dominated by reachability.

V. ON THE EXACT OPTIMAL TRADEOFFS

We have shown in the previous section that, as uniform al-
gorithms, all existing DHT schemes have achieved the optimal
asymptotic tradeoffs. However, it is not clear whether they have
achieved the optimal tradeoff down to the constant factor. In
particular, we would like to know whether the (log2n, log2n)
tradeoff in Chord [4] is optimal. In this section, we formu-
late this tradeoff problem as an optimization problem: find-
ing the minimum network diameter while fixing the number
of neighbors k in a network of size n. However, we are not
able to find a closed-form solution or an efficient algorithm
for the problem, even though such a solution obviously ex-
ists for each (n, k) pair. Nevertheless, we construct an algo-
rithm that achieves (0.786log2n, 0.786log2n) tradeoff using a
novel number-theoretical technique. In other words, it is 21.4%
smaller in diameter than Chord and uses 21.4% less neighbors

(“fingers”). We also introduced a set of novel mathematical
techniques in estimating the increase of the average hop count
and the edge congestion in our new routing scheme. This result
is interesting in three aspects:

1) Since the number of neighbors is directly proportional
to the self-stabilizing overhead, any sizable reduction is
desirable. Moreover, we pay nothing in terms of fault-
tolerance overhead (and even get paid!) for this reduc-
tion: the network diameter is also reduced and there is
no other protocol overhead. The increase of the average
hop count and the edge congestion in our new scheme is
moderate.

2) Our result shows that, if the low diameter is the only goal,
Chord’s tradeoff is not optimal down to the constant fac-
tor, among uniform algorithms. This opens the door for
further optimization.

3) We introduced a set of novel number theoretical tech-
niques in estimating the worst and average behavior of
the scheme. They are thought-provoking and may lead
to the discovery of a general framework to optimize such
tradeoffs.

A. Formulation of the problem

An optimal tradeoff problem can be viewed as an optimiza-
tion problem: optimizing one metric while fixing the other.
In this section, we formulate the tradeoff between the rout-
ing table size and the network diameter as the following op-
timization problem. We assume that the network consists of
n nodes 0, 1, 2, ..., n − 1 and the routing table is weakly uni-
form12. We assume that the jump set consists of k jumps
1 ≤ J1 < J2 < ... < Jk ≤ n − 1. The problem is to
find a best jump sequence {Ji}1≤i≤k that minimizes the net-
work diameter. Let Pδ(J1, J2, ..., Jk) = {(a1, a2, · · · , ak) :∑k

i=1 aiJi = δ (mod n), ai ≥ 0}. Then the network diameter
h(J1, J2, · · · , Jn) as a function of {Ji}1≤i≤k is equal to

max
1≤δ≤n−1

min
(a1,a2,...,ak)∈Pδ(J1,J2,···,Jk)

k∑

i=1

ai

This is because min
(a1,a2,...,ak)∈Pδ(J1,J2,···,Jk)

k∑
i=1

ai is the min-

imum cost to reach a node that is larger than the source node
by δ in the name space. Therefore, we would like to find an
algorithm that, given k, computes the following:

argmin

1 ≤ J1 < J2 < ... < Jk ≤ n − 1
[h(J1, J2, · · · , Jk)]

Unfortunately, we are not able to find a closed-form solution
to this optimization problem. Also, for large n, k, we so far are
not able to find an efficient algorithm (brute-force search takes
nk steps) that computes the optimal jump set and the network
diameter. Nevertheless, using a novel number-theoretical tech-
nique, we are able to construct a routing algorithm that achieves
better tradeoffs than Chord.

12Note that a weakly uniform algorithm can by stateful.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

B. Our new “number system”

We have designed a novel uniform routing scheme that is
able to achievable a network diameter of 0.786log2n when the
number of neighbors of each node are no more than 0.786log2n.
In other words, it maintains 21.4% less neighbors than Chord
[4] for the same network size, and achieves 21.4% less worst-
case network delay. The construction of the scheme is based on
the following novel number-theoretical technique.

x 2xx 2x 3...
0 1

x*x=1−2x

Fig. 4. Our “number system” in a normalized name space

To explain the intuition behind the scheme, we normalize the
name space into a unit interval [0, 1), shown in Fig. 4. In other
words, the network nodes in this system are 0, 1/n, 2/n, ...,
(n − 1)/n. The jump set used in Chord can be viewed as 1/2,
1/4, 1/8, 1/16,..., 1/n in the normalized name space. In our
scheme, we let x =

√
2 − 1 ≈ 0.414 and the jump set consists

of x, x2, · · ·, xk, where xk ≈ 1/n (i.e., k ≈ log(1/x)n). Note
that x is the root of the equation 1 − 2x = x2, as shown in Fig.
4.

Essentially, the goal here is to approximate every real num-
ber in [0, 1) using these jump sizes in a “greedy” fashion, when
allowing a “remainder” smaller than 1/n. Given a number
y ∈ [0, 1) to approximate, there are three cases at the very be-
ginning:
(a) If y ∈ [0, x) then do nothing for this step.
(b) If y ∈ [x, 2x), we subtract x from it (a “jump” of size x in

the normalized name space) and the “remainder” y − x is
in [0, x).

(c) If y ∈ [2x, 1), we subtract x from it for two times, and the
“remainder” y − 2x is in [0, x2).

The above procedure will be repeatedly executed in a recur-
sive and “greedy” fashion. In other words, such approximation
steps (like (a)–(c)) will be performed in smaller and smaller in-
tervals [0, �xi�), i=0, 1 , ..., k, until the remainder is in [0, 1/n).
The intuition of the steps (a)–(c) is the following. If a number
y belongs to case (a), it is already “better-off” in terms of path
length (so we do nothing in the current step). This is because,
if y belongs to case (b) or (c), 1 or 2 additional jumps of size x
are needed to reduce the remainder to the case (a). Since case
(c) requires one more jump (hop) than case (b), we compensate
this difference by allowing its remainder to jump to the region
[0, x2) (since 1 − 2x = x2) instead of [0, x) as in case (b). In
this way, we “equalize” the cost to approximate numbers in re-
gions [x, 2x) and [2x, 1). Note that such equalization is done in
a recursive way, spreading its “equalization” benefit recursively.

C. Our new routing scheme

Now we go back to the original (not normalized) name
space 0,1,2, · · ·, n − 1. In our routing scheme, the routing
table consists of the following jump sizes: �xn�, �x2n�, ...,

�xk−1n� = 2, �xkn� = 1. So the number of neighbors in
this network is k ≈ log(1/x)n ≈ 0.786log2n, which is 21.4%
less than in Chord [4]. The routing protocol is essentially the
same as in Chord. When a request destined for node id′ reaches
node id, the current node id will forward it to id+�xin� where
�xin� ≤ id′−id < �xi+1n�. The maintenance of the neighbors
in the face of node joins/leaves (i.e., self-stabilization) is also
similar to that is used in Chord. In other words, we only change
the jump sizes in the routing table and leave all other mecha-
nisms intact. It is also easy to see that our routing algorithm is
strongly uniform. So by Theorem 1, it is node-congestion-free.
Compared to Chord, it reduces the network diameter by 21.4%,
shown in the following Theorem.

Theorem 4: Under the routing algorithm shown above, the
network diameter is no more than �log(1/x)n� + 1 ≈
0.786log2n.

Proof: It suffices to prove the following invariant: for any
0 ≤ i ≤ k − 1, if the difference y between the destination node
and the current node in the name space is in [0, �nxi�), then
either of the following is true: (a) after no more than one jump,
the remainder falls into the region [0, �nxi+1�), or (b) after two
jumps, the remainder falls into the region [0, �nxi+2�). In other
words, each jump is rewarded by at least an additional exponent
on x, and after at most �log(1/x)n� + 1 jumps we are done.

Given y ∈ [0, �nxi�), we consider three cases. First, if
y ∈ [0, �nxi+1�), then (a) is automatically satisfied and we
are done. Otherwise, suppose �nxi+1� ≤ y < 2�nxi+1�.
Then, a jump of size �nxi+1� is made due to “greedy” rout-
ing, and the remainder is y − �nxi+1� < �nxi+1�, which sat-
isfies (a). Otherwise, 2�nxi+1� ≤ y < �nxi�. Then the rout-
ing algorithm dictates that two jumps, each of size �nxi+1�, be
made. The remainder is y − 2�nxi+1� < �nxi� − 2�nxi+1� ≤
�nxi − 2nxi+1� = �nxi+2�, which satisfies (b).

Therefore, our algorithm achieves a
(0.786log2n, 0.786log2n) tradeoff, which is better than
Chord’s tradeoff (log2n, log2n). This represents a 21.4%
reduction on both metrics.

However, setting the jump sizes to �xin�, i = 1, 2..., k,
clearly makes them dependent on the size of name space n.
This is undesirable since the name space may need to grow on
demand and we do not want the whole set of jumps be recon-
figured as a result of that. So we would like to find a set of
“universal” jump sizes that do not change with respect to n and
still achieve the equivalent reduction on network diameter. We
found such a set that satisfies these requirements, characterized
by the following theorem. We omit the proof of the theorem
since it is similar to that of Theorem 4.

Theorem 5: When the jump sizes are set to Ji, i = 1, 2, ..., k,
where J1 = 1, J2 = 2, and Ji+2 = 2Ji+1 + Ji for i > 1, both
k and the network diameter is approximately 0.786log2n.

Example: When n = 1, 000, 000, the jump sizes are 1, 2, 5,
12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782,
195025, and 470832 according to the theorem.

D. Analysis of the average path length

There is one (minor) drawback in this picture, however,
which is the average path length, averaged over all pairwise

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

communications. In this section, we show that our scheme in-
creases the average path length by about 22.7%, compared to
Chord. Nevertheless, the proposed routing scheme is still a bar-
gain, since the scheme reduces both network diameter and the
routing table size by 21.4%. Also, as we have explained before,
given a stochastic model of node joins/leaves, heuristics such
as route caching may be used to enhance the (average) perfor-
mance significantly.

In the following, we show the calculation of the increase in
the average path length. Due to the recursive nature of our al-
gorithm, the increase in the average path length can be exactly
calculated: no need for simulation. Its derivation exhibits the
beauty of recursion.

Let h(δ) be the exact path length that is needed to reach a
node which is δ larger than the source node in the name space
(in the cyclic sense). Then the average path length for the name
space of size n, denoted as f(n), is equal to (

∑n−1
δ=0 h(δ))/n.

Note that the average path length in Chord is exactly 1
2 log2n.

Therefore, our goal is to find out lim
n→∞

f(n)
1
2 log2n

, which is how

much worse our scheme did compared to Chord. This is shown
in the next theorem.

Theorem 6: lim
n→∞

f(n)
1
2 log2n

= 2(2x + 1)c1log(1/x)2 ≈ 1.227,

where c1 =
√

2+1
4
√

2
and x =

√
2 − 1. Here we assume that all

nodes in the name space exist and are alive.
Proof: For simplicity of discussion,, we would like to

avoid “floors” and “ceilings” involved in manipulating the func-
tion f , which is defined only on the integer domain. We instead
work on the (approximate) extension of function f to g, which
is defined on the real domain. g(n) is defined as follows. We
let l(t) be the “hop counts” (path length) needed to represent
a real number t, using the jump set nx, nx2, nx3, ... (these
are real numbers). We define g(n) as 1

n

∫ n

0 l(t)(dt). It can be
shown (through complicated floor and ceiling operations) that
f(n) ≈ g(n).

We define g̃(y) := y ∗ g(y) (i.e., g̃ is the total while g is the
average). It is much easier to work with g̃(y). We obtain the
following recurrence relations due to the recursive nature of the
routing algorithm:

g̃(n) = 2g̃(xn) + g̃(x2n) + xn + 2x2n

g̃(xn) = 2g̃(x2n) + g̃(x3n) + x2n + 2x3n

g̃(x2n) = 2g̃(x3n) + g̃(x4n) + x3n + 2x4n

......

We evaluate g(n) = 1
n g̃(n) based on the recurrence relations

above. We obtain

g(n) =
k−1∑

j=1

(ajx
j + 2ajx

j+1) + o(log2n)

where {ai}1≤i≤k is in turn generated by the following recur-
rence relation:

ai+1 = 2ai + ai−1, i = 2, 3, · · · , k − 1

The initial conditions are a1 = 1 and a2 = 2. Solving this
recurrence relation, we obtain

ai = c1r
i
1 + c2r

i
2, i = 1, 2, · · · , k − 1

where c1 =
√

2+1
4
√

2
, c2 =

√
2−1

4
√

2
, r1 = 1 +

√
2, and r2 =

1 −
√

2 .
Note that |r2| < 1 and |r1| > 1, so ri

2 → 0 when i → ∞. So
ai ≈ c1r

i
1. Also, note that r1x = (1 +

√
2)(

√
2 − 1) = 1. So

we have

lim
n→∞

(ajx
j + 2ajx

j+1) = lim
n→∞

(2x + 1)c1xjrj
1 = (2x + 1)c1

Therefore lim
n→∞

f(n)
1
2 log2n

= limn→∞
g(n)

1
2 log2n

=

lim
n→∞

∑k−1

j=1
(ajxj+2ajxj+1)

1
2 log2n

= lim
n→∞

∑k−1

j=1
(ajxj+2ajxj+1)

k−1
k−1

1
2 log2n

= 2(2x + 1)c1log1/x2 ≈ 1.227

E. How about edge congestion?

Although the new routing scheme is 1-node-congestion-free
due to Theorem 1, it is not 1-edge-congestion-free. Instead, it
is 1.2336-edge-congestion-free by the following theorem. In
other words, certain links carries 1.2336 times more traffic than
average. However, such a small edge congestion is usually ac-
ceptable in P2P environments.

Theorem 7: Suppose the jump sizes are as specified in The-
orem 5. Let n = 2 ∗ Jk + Jk−1 − 1, which represents the worst
case for edge congestion13. Then the scheme is 1.2336-edge-
congestion-free. Here we assume that all nodes in the name
space exist and are alive.

Proof: [Sketch] Let Ei denote the set of edges (links) that
are of jump size Ji, i.e., Ei = {j → (j + Ji)|0 ≤ j ≤ n − 1}
where j → (j + Ji) denotes a link from node j to node j + Ji.
We claim that given a uniform all-to-all communication load
(introduced in Part C of Sec. III), all edges in Ei are of the
same load. The proof of this claim is omitted since it is similar
to that of Theorem 1. However, the load of an edge in Ei may be
different from the load of an edge in Ej when i �= j. Now let Li

be the load of an edge in Ei, i = 1, 2, ..., k. It is hard to work
with Li since it involves complicated “floors” and “ceilings”
operations. Instead, like in the proof of Theorem 6, we work
with its “extrapolation” to the real domain (L̃) as follows.

It is implicitly shown in the proof of Theorem 6 that Ji ≈
c1(1/x)i, where c1 =

√
2+1

4
√

2
. We define a new set of jump

sizes that are of real values: J ′
i = c1(1/x)i, i = 1, 2, ..., k.

Clearly Ji ≈ J ′
i for i = 1, 2, ..., k. The new name space in

the real domain, denoted as S, is set to [0, c1(1/x)k+1), where
x =

√
2 − 1 as in Theorem 6. Similar to our “new number

system” discussed in Part B of Sec. V, the “routing problem” in
the integer domain can be converted to the problem of “greedily
representing” a real number in S using these real jump sizes
{J ′

i}1≤i≤k. We define f(y, i) = j if y’s greedy representation
contains Ji for j times. We know that the possible j values
are 0, 1, and 2, from the aforementioned properties of the “new
number system”. We define L̃(i) =

∫
y∈S f(y, i)d. We claim

without proof that L̃(i) ≈ L(i), i = 1, 2, ..., k. In the following

13We omit the proof to this claim, which is involved and less interesting.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

we will only work with L̃, the extrapolation of L to the real
domain.

From simple calculation, we get L̃(k) = 2x2n + xn ≈
0.7574n and L̃(k − 1) = 2(nx3 + nx2) ≈ 0.4853n. Clearly
L̃(k − 1) < L̃(k). We claim that L̃(k − 1) < L̃(k − 3) <
L̃(k − 5) < ... < L̃(k − 4) < L̃(k − 2) < L̃(k). In other
words, for any i = k − 1, k − 2, ..., 1, L̃(i− 1) is between L̃(i)
and L̃(i + 1). To show this, we use the recurrence relations
L̃(i − 1) = 2xL̃(i) + x2L̃(i + 1), i = k − 1, k − 2, ..., 1, from
Lemma 3. Since 2x+x2 = 1, L̃(i−1) is a convex combination
of L̃(i) and L̃(i + 1) and must lie between L̃(i) and L̃(i + 1).

Therefore, we know that L̃(k) = max1≤i≤kL̃(i). We al-
ready know from Theorem 6 that the average hop count is
0.614 per node. Therefore, the average amount of traffic per
node is 0.614 n by Little’s Law argument similar to that of
Proposition 3. Therefore, the edge congestion is no more than
L̃(k)/(0.614n) = 0.7574/0.614 = 1.2336.

Lemma 3: L̃(i − 1) = 2xL̃(i) + x2L̃(i + 1) for i = k −
1, k − 2, ..., 1.

This Lemma can be proven by the fact that x2 + 2x = 1 and
standard techniques in calculus such as change of variables in
integration. We omit its proof here since it is mechanical.

VI. CONCLUSIONS

In this paper, we study the fundamental tradeoffs (both
asymptotic and exact) between the routing table size and the
network diameter. We rigorously formulate this tradeoff prob-
lem and show that there are algorithms which achieve better
tradeoffs than existing DHT schemes. However, all of these al-
gorithms cause intolerable levels of congestion on certain net-
work nodes. After formulating the notion of “congestion”, we
conjecture that the tradeoffs achieved by existing DHT schemes
are asymptotically optimal if the network is required to be
“congestion-free”. The exploration of this conjecture ramifies
the role that congestion-free plays in the “state-space” tradeoff.
We then prove that, as uniform algorithms, the existing DHT
schemes are indeed asymptotically optimal. Furthermore, we
find that, for uniform algorithms, O(log2n) is a magic thresh-
old on the routing table size that separates the tradeoff region
dominated by congestion and the region dominated by reacha-
bility. Finally, we formulate the exact (instead of asymptotic)
“state-efficiency” tradeoff problem for uniform algorithms. We
construct a new routing scheme based on a novel number-
theoretical technique, which maintains 21.4% less neighbors
than Chord and has a diameter 21.4% less than Chord.

VII. ACKNOWLEDGMENTS

We thank Prof. Richard Karp for providing us with a suc-
cinct description of the static (a, b) butterfly topology and for
pointing out its suitability for building low-diameter p2p net-
works. We thank Prof. Richard Lipton, Prof. Xingxing Yu,
Prof. Yi Pan, and Prof. Yechezkel Zalcstein for helpful dis-
cussions. We thank Mr. Shashidhar Merugu and anonymous
referees for their comments and suggestions that help improve
the quality and readability of the paper.

REFERENCES

[1] B. Y. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing,” Tech. Rep., U.C.
Berkeley Tech. Report UCB/CSD-01-1141, 2001.

[2] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” in Proc. of ACM Sym-
posium on Parallel Algorithms and Architectures, 1997.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems,” in IFIP/ACM In-
ternational Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, Nov. 2001, pp. 329–350.

[4] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in Proc. of ACM SIGCOMM’01, San Diego, CA, 2001, pp. 149–160.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scal-
able content-addressable network,” in Proc. of ACM SIGCOMM’01, San
Diego, CA, 2001.

[6] D. Peleg and E. Upfal, “A trade-off between space and efficiency for
routing tables,” Journal of the ACM, vol. 36, no. 3, pp. 510–530, July
1989.

[7] S. Ratnasamy, S. Shenker, and I. Stoica, “Routing algorithms for dhts:
Some open questions,” in Proc. of 1st Workshop on Peer-to-Peer Systems
(IPTPS’01), 2001.

[8] Dahlia Malkhi, Moni Naor, and David Ratajczak, “Viceroy: A scalable
and dynamic emulation of the butterfly,” in Proc. of the 21st ACM PODC,
2002.

[9] L. Kleinrock, Queueing Systems, vol. I and II, J. Wiley and Sons, 1975.
[10] Richard Karp, “A Counter Example,” Private correspondence, Sept.

2002.
[11] A. Kumar, J. Xu, and X. Yu, “Ulysses: A low diameter peer-to-peer

network,” Tech. Rep., Collge of Computing, Georgia Inst. of Tech., Nov.
2002.

0-7803-7753-2/03/$17.00 (C) 2003 IEEE IEEE INFOCOM 2003

