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On the Gap Between Positive Polynomials and SOS of
Polynomials

Graziano Chesi, Senior Member, IEEE

Abstract—This note investigates the gap existing between positive poly-
nomials and sum of squares (SOS) of polynomials, which affects several
analysis and synthesis tools in control systems based on polynomial SOS
relaxations, and about which almost nothing is known. In particular, a ma-
trix characterization of the PNS, that is the positive homogeneous forms
that are not SOS, is proposed, which allows to show that any PNS is the
vertex of an unbounded cone of PNS. Moreover, a complete parametriza-
tion of the set of PNS is introduced.

Index Terms—Hilbert’s 17th problem, linear matrix inequality (LMI),
optimization, positive polynomial, sum of squares (SOS).

I. INTRODUCTION

Positive polynomials play a key role in the analysis and synthesis of
control systems. This is due to the fact that conditions for establishing
stability of equilibrium points or computing performance indexes of
the system such as the Ho, norm, can be reformulated in terms of
positivity of a Lyapunov function and negativity of its time derivative.
These functions are usually polynomials as natural extension of the
classic quadratic Lyapunov functions in the attempt of achieving less
conservative results. Unfortunately, establishing whether a polynomial
is positive or not, is still a difficult problem that cannot be solved sys-
tematically because it amounts to solving a nonconvex optimization. In
order to deal with this problem, gridding methods have been proposed,
for example based on the use of Chebychev points, but their conserva-
tiveness and computational burden are generally unacceptable, reason
that has motivated the search for alternative approaches.

This search has recently provided the sum of squares (SOS) relax-
ation (among the first contributions on SOS relaxation, see for example
[1]). In this approach, the positivity of a homogeneous form (equiv-
alently of a polynomial) is established by checking if it is a SOS of
homogeneous forms, operation which amounts to solving a linear ma-
trix inequality (LMI) feasibility problem, i.e., a convex optimization.
Due to the existence of powerful tools for solving LMIs [2], SOS re-
laxations have quickly become an essential tool in control. In robust
control, SOS relaxations have been employed to obtain less conserva-
tive conditions than those provided by quadratic Lyapunov functions to
assess robust stability of linear systems affected by parametric uncer-
tainty, in both cases of time-varying uncertainty [3]-[6] and time-in-
variant uncertainty [7]-[9]. An analogous use of SOS has been made
in the computation of robust performance indexes [10], [11]. SOS have
been exploited also in the field of nonlinear systems [12]-[15], hybrid
systems [16], [17] and time-delay systems [18]. See also [19]-[22] for
further applications of SOS.

“Can any positive homogeneous form be written as a SOS?” This
question was made by Hilbert in his 17th problem and has a negative
answer as it is known. It is hence known that, in spite of their popu-
larity, SOS relaxations can be conservative. However, almost nothing

Manuscript received February 9, 2005; revised December 1, 2006. Recom-
mended by Associate Editor M. Fujita.

The author is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Pokfulam Road, Hong Kong (e-mail chesi@eee.hku.
hk).

Digital Object Identifier 10.1109/TAC.2007.899083

0018-9286/$25.00 © 2007 IEEE

Authorized licensed use limited to: The University of Hong Kong. Downloaded on October 8, 2008 at 00:35 from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 6, JUNE 2007

1067

TABLE I
NOTATION FOR HOMOGENEOUS FORMS

Zn,m: set of homogeneous forms f(x) of degree m in x € R"

2™ e RZ™): base for Z,.,, satisfying (6)

o(n,m) = ((n—1)!m!)~" (n+m — 1)!

7(n,2m) = o (n,m) [o(n,m) + 1] — o(n,2m)

1(g9) = ming g(x) s.t. ||z|| =1  (positivity index)

Ag) = maxa Amin (G + L(e))  (SOS index)

D, 2m: set of positive forms in =, 2m

g(x) € Ppom <= pu(g) >0

Yn,2m: set of SOS in =, 2m

9(z) € Xpom <= Ag) 20

Ay 2m: set of PNS in =, 2m

g(z) € Anom <= p(g) >0and A(g) <0

is presently known about the set of homogeneous forms that are posi-
tive but not SOS (we will refer to such homogeneous forms as PNS).
See [23] for a survey on this problem.

The aim of this note is to characterize PNS since actually they repre-
sent the gap between several fundamental problems in control systems
and the corresponding solution tools. First, some remarks about the
distance between PNS and SOS are introduced, in particular showing
that the set of PNS, when not empty, has a non empty interior. Then,
a matrix characterization of PNS is proposed based on eigenvectors
and eigenvalues decomposition. This characterization is based on the
concept introduced in this paper of maximal matrix for the represen-
tation of homogeneous forms. It is shown that any PNS is the vertex
of an unbounded cone of PNS whose directions correspond to strictly
positive SOS. This cone can be linearly parameterized in a convex set.
Moreover, a complete parametrization of the set of PNS is proposed,
providing hence a technique to construct PNS.

This note is organized as follows. Section II introduces some pre-
liminaries about the representation and classification of homogeneous
forms. Section III presents the main results of the paper about the rep-
resentation of homogeneous forms and characterization of PNS. Last,
Sections IV and V conclude with some illustrative examples and re-
marks.

II. PRELIMINARIES

A. Homogeneous Forms Representation

Let us define the following notation: N, R: natural number set (in-
cluding 0) and real number set; S, : set of symmetric matrices n.xn; I, :
identity matrix n X n; A': transpose of matrix 4; A > 0(A > 0): sym-
metric positive definite (semidefinite) matrix A; Apin (A): minimum
real eigenvalue of A; ker(A): null space of matrix 4;img(A4): image
of matrix A; diag(x): diagonal matrix » x n whose diagonal compo-
nents are the components of = € R";x; or (), : i-th component of
vector z;x > 0(x > 0): vector with positive (strictly positive) com-
ponents; x? : a'@d? .- 2l with v € R", ¢ € N"; s.t.: subject to.

We say that f(x) is a homogeneous form of degree m in =z € R" if

flay=">_ et (1

4€ELn,m

where ¢, € R are the coefficients of f(x) and Q,, ,» is the index set

Qn,mI{QENnZZqi:m} )

=1

with cardinality equal to o(n, m) defined in Table I. The set of ho-
mogeneous forms of degree m in @ € R" is denoted by =, .. Let

2™ € R7(v™) be a vector whose components constitute a base for

the homogeneous forms in =y, .. For any f(x) € =, ., we define the
norm

1£(2)]c = ||f]| where f is such that f(z) = f2l™.  (3)

Any g(x) € =, 2., can be written as

g(x) = Ll’[m](G + L(a))x[m] )

where G € Sy(n,m) is any matrix satisfying g(x) = 2" Gxl"™ and
L(«) is any linear parametrization of the set

Ln,2m = {L S So‘(n,7n) : r[m]LT[m] = 0} (5)

with dimension equal to 7(n, 2m) defined in Table I. The representa-
tion (4) is known as complete square matricial representation (CSMR)
(see [1], [20]) and Gram matrix method [23]. In the sequel we will say
that the matrix G (resp., G + L(«)) in (4) is a SMR (resp., CSMR)
matrix of g(z). In the sequel we suppose that 21" satisfies

almlgml = <Z L,2> . (6)

=1

A possible choice guaranteeing this property is obtained by defining
the i-th component of =™ € R7("™) a5

Iml) _ m! (@)
(= )"_\/wu»n(wm!---<so<w:>>n!x -0

where o : {i e N:1 < i < o(n,m)} — Q, ., is any bijective
function.

B. Positive Forms, SOS and PNS

We say that g(z) € =, 2., is positive if g(x) > 0 for all = or,
equivalently, if u(g) > 0 where p(g) is the positivity index of g(x) in
Table I (observe in fact that the positivity of g(x) does not depend on
the norm of z).

The form g(z) € ZE,2m is a SOS if and only if there exist
filz), -+, fe(x) € Zn m such that

k
g(x) = fi(x)". ®)
=1

It is straightforward to verify that g(z) is a SOS if and only if there
exists v such that G+ L(«) > 0 or, equivalently, if and only if A(¢) >
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0 where A(g) is the SOS index of g(z) in Table I. This index can be
computed by solving the eigenvalue problem (EVP)

Ag) = IItlaxt s.b. G+ L) — tlo(n,m) = 0 )

that is a convex optimization constrained by LMIs.
The form g(z) € =, 2, is a PNS if and only if g(z) is positive but
it is not a SOS or, equivalently, if and only if (g) > 0 and A(g) < 0.
We denote the sets of positive forms, SOS, and PNS in =, 2., as
Dy 2m, Yn,2m and Ay, 2.y, respectively. These sets clearly satisty

-:71,2711 D (I)n,27n7q)n,27n = En,?nz U An,Zmy

En,?nz n A17,727n = @ (10)

It has been shown that A, »,, is empty in the following cases [23],
[24]:

e m = 1 forall n;

e n < 2 for all m;

e n=3andm < 2.

III. MAIN RESULTS

A. The Maximal SMR Matrix

Let us introduce the following concept, which is the base for the
characterization of PNS proposed in this paper. Given g(z) € Z,, 2.,
a SMR matrix G of g(x) is said maximal if

Amin(G) = A(g). (11)
The maximal SMR matrices of g(x) are hence given by
G+ L(a®) (12)

where o* is any optimal value of « in (9) (™ exists because A(g) is
bounded whenever ||g(x)||. is bounded).

In order to characterize the maximal SMR matrices, let us introduce
the following definition. The quadruplet {Amin (G), 3, Vo, V) is said a
decomposition of matrix G € S, () if

G=VDV' (13)

where D € S, (;,,m) is the diagonal matrix containing the eigenvalues
of G defined by the minimum eigenvalue Anin (G) of multiplicity
o(n,m) — r and the vector 3 € R", 3 > 0, as

D = Ain(G) o (50 + (14)

0
diag(3)
and V € R7(mm)>e(mm) g an orthonormal eigenvector matrix de-
fined as

V= [VoV,)] (15)

where the columns of Vy, € Ro(rm)xo(nm)=r 4e 3 base of
the eigenspace of the minimum eigenvalue, and the columns of
Ve € R7(™)X" are bases for the eigenspaces of the other eigen-
values.

Let us observe that the introduced decomposition is not unique. In
fact, there are multiple choices for 3, Vp, V), that satisfy the required
conditions. In particular, if (Amin (&), 3, Vo, V3 ) is a decomposition of
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G, it follows that also {Amin (G'), BS3, Vo A, V,, B) is for all orthonormal
matrices A € R7("m)=rXe(mm)=r apd for all permutation matrices
B e R,

The following result holds.

Theorem 1: Let (Amin(G). 3, Vo, V,) be any decomposition of the
matrix G € Sy(.,m) and define

(Vo) = 11}‘?3{1 Amin (Vo L(a)Vp). (16)

[|ox
Then, G is a maximal SMR matrix if and only if ((V5) < 0. Moreover,
¢(Vo) does not depend on the chosen decomposition.
Proof: From (11) it follows that G is maximal if and only if

An1in (G + L(O‘)) S /\111111<G)va 75 0

and, hence, if and only if forall &« # 0 there existsy € R70"™) ||y|| =
1, such that

Y (G + L)y < Amin(G). an

Let (Amin (G), B, Vo, Vp) be a decomposition of G. Then, (17) can be
rewritten as

y'Vp diag(8)Vyy < —y'L(a)y. (18)

Observe that L(«) depends linearly on «. This means that hf y must
tend to zero as a tends to zero since diag(3) > 0. Moreover, if (18)
holds with the pair (y, «), it also holds with the pair (y, ca) for all
¢ > 1. Therefore, it turns out that &G is maximal if and only if

Ya # 0¥z > 03y, |ly[| = 1: ||V,yll < e and (18) holds

or, equivalently, if and only if

Ya # 03y, |lyll = 1: Viy = 0 and (18) holds. (19)

Since ker(V,) = img(Vp), it follows that V,y = 0 if and only if

y € img(Vy). Hence, (19) can be rewritten as

Va #03y € img (Vo). llyl = 1:y'L(a)y <0.  Q0)

Write y € img (V) asy = Vop withp € Re(»™) =7 Since y' L(a)y

depends linearly on «, condition (20) can be rewritten as

Yo, |lall = 1,3p, |Ipll = 1 : 9" Vo L(a)Vop <0

and, hence, as ((V5) < 0.

Last, observe that the choice of V5 in the decomposition of G' does
not affect ¢((V5). In fact, all the matrices whose columns are an or-
thonormal base of the eigenspace of the minimum eigenvalue of G' can
be written as Vo A where A € R7(") =X (. m)=r ig an orthonormal
matrix. Since it turns out that the eigenvalues of A'Vy L(«)Vp A are the
same of Vy L(«)Vy, we can conclude that {(Vo A) = ((Vh). |

Theorem 1 provides a further necessary and sufficient condition to
establish if a given matrix G is a maximal SMR matrix. This condi-
tion is important because it states that the property of being a maximal
SMR matrix is related only to the eigenspace of the minimum eigen-
value, contrary to the condition (11) which involves the whole matrix
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by exploiting the SOS index. Hence, Theorem 1 provides a way to con-
struct maximal SMR matrices.

Observe that ((V5) cannot be easily calculated because the set {« :
|||l = 1} is nonconvex. The following result proposes an alternative
index for V.

Theorem 2: Letw € R™(™?™) w % 0, be any vector and define

(Vo) = max{n(Vo,1),7(Vo,-1)} @n

where

n(Vo,k) = sup  Amin (V‘B’L(Q)Vb). (22)

a:w’a=k
Then, ¢(V5) < 0 if and only if (Vs) < 0. Moreover, n(Vy) does not
depend on the chosen decomposition of G.

Proof: “=" Suppose for contradiction that {(V5) < 0 and
n(Vo) > 0. Then, there exists @ € R™"'*™) such that |w'd| = 1
and Amin (Vi L(&)Vo) > 0. Define @ = ||&||"'da. We have that
&l = 1 and Ain (Vo L(@) Vo) = |67 Amin (VG L(&) Vo) > 0.
This is impossible because {(Vy) < 0.

“«<=" Suppose for contradiction that n(Vg) < 0 and ¢(Vo) > 0.
Then, there exists & € R7*2™ gsuch that ||&]] = 1 and
Amin (Vo L(&)Vo) > 0. Suppose w'a@ # 0 and define & =
|w'a|~ta. We have that ||[w'all = 1 and A\uin(ViL(@)Vy) =
[/ & ™ Amin (VG L(&)Va) > 0. This is impossible because
(Vo) < 0. Suppose now that w'a@ = 0. Then, for all ¢ > 0
there exists @ € R™(™?™ such that ||@|| = 1 and ||&@ — & < &
and w'é # 0. For continuity of the function Amin(VyL(a)Vs)
with respect to «, this & can be chosen to satisfy also the constraint
Awmin (Vg L(&)Vo) > 0. Repeating the procedure by using & instead
of &, we conclude the proof.

Lastly, the choice of V; in the decomposition of & does not affect
n(Vo) for the same reasoning of Theorem 1. O

Theorem 2 provides an alternative index for V4 that can be computed
through two convex optimizations. In fact, it turns out that n(V5, k) is
the solution of the EVP

woa—k=0

V[)'L(d)vo — tfﬂ(n’m),r > 0. 23)

n(Vo, k) = supts.t. {
o
Observe that the free vector w defines the two planes into which the unit
shell {o : ||«|| = 1} used in Theorem 1 is crushed in order to achieve
convexity. Although the sign of 7(V5) does not depend on the choice
of w, the absolute value does. Another difference between ((V5) and
n(Vo) is that the former is bounded whereas the second may be not.

B. PNS Characterization

For f(x) € Z,, ., define the ball with radius § € R centered in f(z)
as

Bs(f) = {f(x) € Znm 1 d(f, ) < 8} (24)

where d : E, ;n X Zn,m — R is the distance in =, ,,, defined as

a(f, ) =1f(x) = f(@)]l.. (25)

Let us start by observing that, contrary to =, 2m and Xy 2m, Ay 2m
can be nonconvex. In fact, consider in A3 ¢ the Motzkin form and the
Stengle form (see [23] and references therein)

(26)

4 2 2 4 6 2 2 2
Mot () = 2125 + 2125 + 25 — 3w 375
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gste(x) = oias + (;E%l‘;} - = ;Upl'%)z . 27)
It can be verified that A(1/2(gmot + gste)) = 0, thatis 1/2(gmot(v) +
gste(x)) is a SOS and not a PNS.

The following lemma introduces some remarks about the closeness
between A, 2 and Xy o

Lemma 1: Suppose that A,, 2., is not empty. Then

a) there exists g(x) € A, 2,,, such that u(g) > 0;

b) any g(x) € Ap 2m such that u(g) > 0 is an interior point of

Ay, 2m, that is there exists § > 0 such that Bs(g) C An 2:m;

c) for all g(x) € A, 2., there exists § > 0 such that Bs(g) N

(Pn,?,nz C An,Zm-

Proof: First, if A, 2., is not empty, there exists g(z) € A, 2.
such that £(g) > 0. Suppose that (g) = 0 and define g(z) = g(x) +
gll«||*™ . It follows that 1(§) = p(g) + = = =. Moreover, from (6) we
have that G +=I,(,, ) is a SMR matrix of §(). Hence, it follows that
A(g) = X(g) + =. Since A(g) < 0 we conclude that, for all 0 < = <
—A(9),3(2) € Ap om and p(g) > 0.

Second, consider g(x) € A, 2., such that #(g) > 0. For continuity
of u(g) and A(g) with respect to g(z), it follows that there exists § > 0
such that, for all §(x:) € =,, o, satisfying ||§ — g(2)||c < 8, u(§) >0
and A(g) < 0, that is g(z) is an interior point of A, 2,,,.

Third, consider g(z) € Ay, 2., If u(g) > 0, g(x) is an interior point
of Ay, 2., and item 3) is clearly satisfied. Suppose hence p(g) = 0.
For the same reasoning of item 2), there exists 6 > 0 such that, for
all g(z) € =, 2. satisfying || — g(2)]l. < 8,A(g) < 0, that is
Bs(g) N X, 2, = 0. Hence, item 3) holds. O

Lemma 1 states that the set of PNS, if nonempty, contains form with
a strictly positive positivity index, that is positive forms that vanish
only in the origin. These forms are interior points for A, 2., that is
owning a neighborhood included in A, 2,,. Moreover, it is stated that
any PNS form owns a neighborhood where all positive forms are PNS,
hence meaning that arbitrary small variations can not change a PNS
into a SOS.

As we have seen in Section II-B, to establish whether a form g(x) is
a PNS amounts to establishing whether ji(g) > 0 and A(g) < 0. The
following result provides a further characterization of PNS and is the
first step toward the construction of such forms.

Lemma2: LetG € S;(,,m) be any maximal SMR matrix of g(x) €
Ay 2m,and let (Amin (G), 3, Vo, V},) be any decomposition of G. Then

Pae#0:v2lm =0 (28)

Proof: Now, suppose for contradiction that there exists & # 0
such that &™) € ker(V). We have

g(i) = :Z[m] [Vo‘/})] <>\min(G)Irr(n‘n7,)

0 PR TRIL)
17 g ) 12

= )\mm(G>

2
Vyalm

Observe that Amin (G) < 0 since G is a maximal SMR matrix of a
PNS. Moreover, ||Vg ™| # 0 since img(Vy) = ker(V)). Hence,
g(Z) < 0. This is impossible because g(x) is a PNS. O

Lemma 2 provides a necessary condition for a form to be a PNS:
the absence of solutions = # 0 in the polynomial system V}jm[m] =
0. Observe that this condition is equivalent to the absence of vectors
2™ 2 0 in the linear space img(Vp).

The following result presents a way to generate PNS from any PNS.
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Theorem 3: Given g(x) € Ap am,let G € Sq(n,m) be any maximal
SMR matrix of g(z) and let {(Amin (G), 5, Vo, V,,) be any decomposi-
tion of G. For v € R", v > 0, define the SOS s(z;V,,v) € X, om

s(a;Vp,v) = 2] Vo diag(w’)"},’w[m]. (29)
and the cone of forms with vertex in g(x)
Clg) =A{h(x) € En2m : h(x) = g(x) + s(x; Vp.7), v = O}
(30)
Then, C(g) C An 2m. Moreover
36 >0 (g +5(Vio 7)) 2 p(g) + 6 min 5. @D

Proof: First of all, s(u; V), v) is a SOS because its SMR matrix
S(Vp.v) =V, diag(y)V}, satisfies S(Vp,v) = 0 forall v > 0.
In order to prove that C(g) contains only PNS, observe that H =
G+ 5(V,,v) is amaximal SMR matrix of h(x) = g(w)+s(x; V), 7).
In fact

H = [VOVP] (Amin(G)I,,(n_’m)
+]° VoV + V5 diag(+)V;
diag(ﬂ) oVp P gLY)Vp

— .1/ Y 0 7171
= [‘0‘])] (Arnln(kG)Io'(n,m) + |:dlag(/ﬁ + ‘}) :|> [‘O‘p]

which clearly implies that {Amin (G), 3 + 7, Vo, V}) is a decompo-
sition of H. Hence, from Theorem 1 it follows that H is a maximal
SMR matrix because ((V5) < 0 being G a maximal SMR matrix.
From the fact that H is a maximal SMR matrix it follows that A(h) =
Amin(H) = Amin(G) = A(g). Moreover, we have that p(h) > u(g)
because s(x; V,, ) is a SOS. Since g(x) € A, 2, we conclude that
Ah) = Xg) < 0and u(h) > p(g) > 0, thatis h(z) € Ay 2m.

Lastly, observe that (g + s(V;, 7)) > p(g) + p(s(Vp, v)). More-
over,

s(@: Vpy ) > ||Vyal™

2
min y;  VaVe.
1<i<r

According to Lemma 2, V2" # 0 for all # # 0. Hence, (31) holds
with & = p(v) > 0 where v(z) = ||V, 2l"™1||2. O

Theorem 3 states that any PNS is the vertex of a cone of PNS. In par-
ticular, the cone is unbounded and its directions correspond to strictly
positive SOS that can be linearly parameterized in a convex set. Ob-
serve also that, according to (31), there exist PNS whose positivity
index p is arbitrarily large, that is arbitrarily large positive forms that
are not SOS.

How to construct PNS? In order to answer to this question, let us
define the set

@n,Qm (’)
(YLYV’L\)

(32)

_

A

IA
q

where

O 2m(r) ={(5,8,V,): 6 €R, 6 € (0,1],
BeER",3>0, andV, € Vy, 2m(7)}

Voo (r) = {V, € RZ™XT vy = 1
¢(cmp(V;)) < 0,and (28)holds}
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and cmp(V,) € R7(™ XM= 45 2 matrix whose columns are an
orthonormal base of kcr(Vp’). For 6 € Oy, 2, () define the form

Y3 8) = s(x; Ve, B) = bp(s (Ve B |27 (35)
The following result provides an answer to the question introducing a
parameterization of A,, 2y,.
Theorem 4: For all g(x) € Ay, 2m, there exists 8 € O, 2., such
that g(x) = +(x; 8). Moreover, ¥ (x; 6) € A, 2., forall 8 € ©,, 2.
Proof: Suppose g(x) € Ay 2m.Let G be amaximal SMR matrix
of g(x), and let (A\min(G), 8, Vo, V,) be a decomposition of G. We
have:

g(l) = ‘L[m][‘/_()‘/tp] <>\min(G)Io-(n,m)

0 IR TA ML
17 gt ) TV

—— ()\min(G)Io-(n,nz) +, diag(,ﬁ)lf;}') 2l
= )\Inin(G)”gf”zm + S(I; ‘fp, 8)
Hence, g(x) = ¢ (x;8) where § = (6,3, V) and

_ Amin (G)
 u(s(V, 8)

Observe that § € (0, 1] because Amin(G) = A(g) < 0 and Amin(G) +
pu(s(Vp, ) = p(g) > 0. Moreover, 5 > 0. Then, from Theorem 1
and Lemma 2, it follows that V,, € V,, 2,,,(7) where r is the length of
3. Therefore, § € ©,, 2...

Now, consider § = (8, 3, V},) € ©,, 2,,. We have that a SMR matrix
of ¥(z; 8) is given by

V() =V, diag(5)Vy = 005 (Vis ) Lo (nm)

i 0
= [emp(V};,)V}] <[ diag(ﬁ)}
_ 6,[1,(8("117 /3))1'5(1177")) [Cnlp(‘/})vp]’.

Since V,V, = I, and > 0, it follows that
(=6p(s(Vp, 3)),8,emp(V,),V,) is  a  decomposition  of
¥(8). From Theorem 1 we have that ¥(#) is a maximal SMR matrix
because ((cmp(Vp)) < 0. Moreover, from Lemma 2 it follows
that u(s(Vy, 3)) > 0. Hence, A(¥(8)) = —u(s(Vy,3)) < 0 and
p((8)) = (1 = 6)p(s(Vy, 8)) > 0. Therefore, ¢ (;8) € Ay, 20, O

Theorem 4 states that the set of PNS is the image of ©,, 21, through
the function ¢(x; #). This result provides hence a technique to con-
struct all existing PNS that amounts to finding matrices V, in V., 2, (7)
and calculating the positivity index u(s(V;, 3)).

Unfortunately, the set Vi, 2,»(r) can not be explicitly described at
present. A method to find elements in this set consists of looking for
matrices V), with a fixed structure for which the property (28) and the
positivity index p(s(V},, 3)) can be easily assessed, and using the re-
maining free parameters to satisfy ((cmp(V},)) < 0.

IV. ILLUSTRATIVE EXAMPLES

A. Example 1

Let us consider the Stengle form in (27). Let us obtain a maximal
SMR matrix G of this form as done in (12) by selecting

oM = |:;L’?, V3aiws, V3xtws, V3w s

/
« 2 3 2 « 2 3
'\/6:1713}23}37 \/E:clx3, Ty, '\/5;1723337 \/EIQIE-J, ’L‘J:I
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and L(«) as the matrix returned by the algorithm in [20], which is a ma-
trix in S1¢ depending linearly on o € R*". Let us compute a decompo-
sition (Amin (G), 8, Vo, V,) of this maximal SMR matrix according to
(13)—(15) via simple eigenvalue and eigenvector computation. We find
that ‘/}jm[m] = [wi(x), wa(x), ws(x)] with wi(x), ws(x),ws(x) as
shown in the equation at the bottom of the page. Hence, from Theorem
3 one has that

3
gste() + Z viw, (z)?
i=1

is a PNS for all ¥ > 0, which can be used as a Lyapunov function
candidate in stability and performance problems.

B. Example 2

We show here the construction of a simple PNS by using Theorem
4 with n = m = 3. Choose /™ and L(«) as in Example 1. Select
r = 3 and

6 0 0 -2 0 -3 0 0 0

Observe that V,V, = I.. Moreover, we find n(cmp(V,)) = —0.041
(by selecting w = [1,0,---,0]" in (22)) which allows us to conclude
from Theorem 2 that {(cmp(V;)) < 0. Now, the structure of V;,
allows us to easily assess the property (28) and the positivity index
11(5(Vy, 3)). In fact, Vo™ = 1/7[w: (x), wa (), ws(x)]" where

wi(z) =1 (6$% — 233 — 3\/§x3)
wa(x) = x2 (—3\/§$f + 622 — 2\/31%)
ws(x) = a3 (—2’\/5.1% —3v3:2 4+ 6L§) .

It is straightforward to see that w (z) = we(x) = wz(z) = 0 if and
only if = 0, that is (28) holds. Hence, V,, € Vy, 2 (r) and

9 =50V, €Onaom Y6€(0,1¥3> 0.

Select 3 = [49,49, 49]". We have that

s(23 Vo, ) = wi(@)” + wa () + ws ().

In order to compute x(s(V,,3)), one has to find the minimum of
s(x; V,, 3) subject to ||x|| = 1. Let us observe that, since s(x; V,, 3)
depends directly on 7, 23, 23, one can first substitute 5 = 1—z3 —a3
in s(2;Vp, 3), and then find the minimum by computing the points
where the derivatives of s(x; V,, 3) with respect to = and x3 vanish.
This operation amounts to solving a system of two quadratic equations
in two variables, and can be done by finding the roots of a polynomial

equation of degree four in one variable via the resultants method. We
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find p(s(Vp, 3)) = 0.7433. Therefore, from Theorem 4, it follows
that
Y(0;0) = wi(2)” + wa () + ws(w)® — 0.7433|«||*™6

is a PNS for all § € (0,1].
Lastly, from Theorem 3 it follows that the cone

C(¥(8))
= {h(x) € s 2m :

= {h(w) €L om: h(l) = Z(l + W/i)u’i(I)Q

h(z) = §(x:8) + s(2: Vo 7). v > 0}

— 0.7433||||*™8, v > 0}

with vertex ¢(z; 8) contains only PNS, that is C(¢/(8)) C A, 21,

V. CONCLUSION

The gap existing between positive polynomials and SOS of polyno-
mials has been investigated in this paper by proposing a matrix charac-
terization of the PNS, that is the homogeneous forms that are not SOS.
This characterization is based on eigenvectors and eigenvalues decom-
position, and provides new results about the structure of these forms.
In particular, it is shown that any PNS is the vertex of an unbounded
cone of PNS. Moreover, a complete parametrization of the set of PNS
is introduced which allows one to construct PNS.

These results can allow one to achieve less conservative results in
analysis and synthesis problems by providing new Lyapunov function
candidates which are not SOS. Moreover, it is expected that the pro-
posed characterization play a significant role in future investigations of
this gap which affects several analysis and synthesis tools in control
systems and about which almost nothing is known.
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Stability Analysis of a Class of PWM Systems

Stefan Almér, UIf Jonsson, Chung-Yao Kao, and Jorge Mari

Abstract—This note considers stability analysis of a class of pulsewidth
modulated (PWM) systems that incorporates several different switched
mode dc-dc converters. The systems of the class typically have periodic
solutions. A sampled data model is developed and used to prove stability
of these solutions. Conditions for global and local exponential stability
are derived using quadratic and piecewise quadratic Lyapunov functions.
The state space is partitioned and the stability conditions are verified by
checking a set of coupled linear matrix inequalities (LMIs).

Index Terms—dc-dc converter, Lyapunov methods, pulsewidth modu-
lated (PWM) systems, sampled data modeling, stability analysis.

I. INTRODUCTION

This note presents a method for stability analysis of a class of
pulsewidth modulated (PWM) systems. The systems switch periodi-
cally between two affine vector fields to create a periodic solution at
stationarity. The only control variable is the so called duty ratio which
determines the fraction of time each vector field is active.

Our motivation for the analysis comes mainly from switched mode
dc-dc converters [1] which are used extensively in power supplies of
various electronic circuits. However, PWM systems are found in a wide
range of applications, ranging from power conversion to hydraulic sys-
tems.

Conventionally, dc-dc converters are controlled using analog PWM
techniques that rely on a comparator ramp function. In this note we
consider a switching technique referred to as digital PWM where the
switching is based on the sampled state. Digital PWM offers advan-
tages such as being less sensitive to noise and aging of components and
has received much attention recently, see e.g., [2]. It should be noted
that analog PWM can also be treated in our framework. (See [3] for a
detailed description.)

Much of the reported analysis on PWM systems is based on the aver-
aging approach [4], [5]. However, averaging is only an approximation
of the low frequency system dynamics and it requires sufficiently high
switching frequency to be adequate. Furthermore, in many applications
the averaged model will be nonlinear and difficult to analyze. The con-
tribution of this note is to provide a systematic method for stability
analysis which does not resort to averaging or linearization.

Our starting point is a stationary periodic solution and we proceed
to derive criteria for stability and uniqueness of such a solution. The
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