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Abstract. Consider the semidefinite relaxation (SDR) of the quadratic integer program (QIP):
γ := max {xT Qx : x ∈ {−1, 1}n} ≤ min {trace(D) : D − Q � 0} =: γ̄ where Q is a given sym-
metric matrix and D is diagonal. We consider the SDR gap γ̄ − γ . We establish the uniqueness of the SDR
solution and prove that γ = γ̄ if and only if γr := n−1 max {xT V V T x : x ∈ {−1, 1}n} = 1 where V is an
orthogonal matrix whose columns span the (r–dimensional) null space of D − Q and where D is the unique
SDR solution. We also give a test for establishing whether γ = γ̄ that involves 2r−1 function evaluations. In
the case that γr < 1 we derive an upper bound on γ which is tighter than γ̄ . Thus we show that ‘breaching’ the
SDR gap for the QIP problem is as difficult as the solution of a QIP with the rank of the cost function matrix
equal to the dimension of the null space of D − Q. This reduced rank QIP problem has been recently shown
to be solvable in polynomial time for fixed r .

Key words. Quadratic integer programming – Semidefinite relaxation – Linear matrix inequalities – Zono-
topes – Hyperplane arrangements

1. Notation

Rn denotes the space of real n-dimensional vectors, {−1, 1}n denotes the set of
n-dimensional vectors whose entries are either 1 or −1 and [−1, 1]n denotes the set
of n-dimensional vectors whose entries have absolute values less than or equal to 1.
Rn×m denotes the space of n × m real matrices. For A ∈ Rn×m, AT denotes the trans-
pose of A, trace(A) the sum of the diagonal elements of A and N (A) the null space of A.
If A = AT ∈ Rn×n, λ(A) denotes the smallest eigenvalue of A and we write A � 0 if
λ(A) ≥ 0 and A � 0 if λ(A) > 0. Corresponding definitions apply to λ̄(A), A � 0 and
A ≺ 0. The m-dimensional identity matrix is denoted by Im and the m×n null matrix is
denoted by 0m,n (0m if m = n) with the subscripts omitted if they can be inferred from
the context. The null set is denoted by φ. If F is a space, dim F denotes the dimension
of F . A ∈ Rm×n is called orthogonal if AT A = In. For A = AT ∈ Rn×n the spectral
decomposition is the decomposition A = U�UT where U ∈ Rn×n is orthogonal and
� ∈ Rn×n is a diagonal matrix of the eigenvalues of A. A “Schur type argument” refers
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to the fact that for X = XT =
[

X11 X12

XT
12 X22

]
, with X22 � 0, then X � 0 if and only if

X11 − X12X
−1
22 XT

12 � 0.

2. Introduction

In this paper we consider the classical NP–hard unconstrained quadratic integer pro-
gramming (QIP) problem in (−1, 1) variables

(QIP) γ := max
x ∈ {−1, 1}n

xT Qx (1)

for given Q = QT ∈ Rn×n [10]. The QIP problem has many applications in combina-
torial optimization. The QIP can be generalized to the zero–one QIP problem using a
simple linear transformation and to problems involving a linear term using a homogeni-
zation procedure [20]. Other optimization problems, such as the Maximum–Cut Problem
[6], can also be transformed to the QIP problem.

For any symmetric Q, D ∈ Rn×n and x ∈ Rn the following identity

xT Qx = −
(

trace(D) − xT Dx
)

− xT (D − Q)x + trace(D) (2)

can be easily verified. Then for all x ∈ {−1, 1}n and diagonal D such that D − Q � 0
we have xT Qx ≤ trace(D) and so γ = max

x ∈ {−1, 1}n
xT Qx ≤ γ̄ where

(SDR) γ̄ := min
D is diagonal
D − Q � 0

trace(D) (3)

so that γ̄ is an upper bound on γ . The semidefinite relaxation problem in (3) is a semi-
definite minimization which is a class of convex optimization problems. It can be solved
efficiently using interior point algorithms [17]. The SDR of the QIP problem is well
known in the literature; see [1, 4, 14, 20, 24], and [19] and the references therein. Here
our contribution is an investigation of the optimality properties of the SDR with a view
to reducing the relaxation gap γ̄ − γ . Other approaches that address this problem can
be found in [11, 16, 26].

In Section 3 we establish the uniqueness of the solution of the SDR problem. Sec-
tion 4 gives necessary and sufficient conditions for the absence of the relaxation gap.
These, together with a recent result on reduced rank QIP problems [2], are used in
Section 5 to derive an algorithm for reducing the relaxation gap. Section 6 outlines
a polynomial–time algorithm for solving a reduced rank QIP problem; this involves
the equivalent combinatorial problem of identifying the extreme points of a zonotope.
Finally, Section 7 presents a numerical example which illustrates our results and outlines
the main conclusions of the work.
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3. Optimality properties of the SDR problem

The next result gives necessary conditions for the optimality of the SDR problem. They
are needed to establish uniqueness and to investigate the relaxation gap.

Lemma 1. Let D be a minimizer for the SDR problem so that D is diagonal, trace(D) =
γ̄ and D − Q � 0. Then

1. dim N (D − Q) ≥ 1, (equivalently, λ(D − Q) = 0) so that

D − Q = [ V V+ ]

[
0r 0
0 �+

]
[ V V+ ]T (4)

is a spectral decomposition for D − Q for some orthogonal [V V+ ]∈Rn×n where
V ∈Rn×r , r =dimN (D−Q)≥1 and �+ � 0.

2. There does not exist diagonal Z∈Rn×n such that trace(Z)=0 and V TZV ≺0.
3. Every row of V has (Euclidean) norm at least 1/

√
n. In particular, none of the rows

of V is zero.

Proof. 1. A proof can be found in Lemma 2.1 in [20]. Here we give an alternative alge-
braic proof. Suppose on the contrary that D − Q � 0 and let λn := λ(D − Q) > 0.
Pick ε such that 0 < ε < λn. Then λ(D − εI − Q) = λn − ε > 0 so that
D − εI − Q � 0, D − εI is diagonal and trace(D − εI ) = γ̄ − nε contradicting
the optimality of D.

2. Suppose on the contrary that such a Z exists and choose α > 0 (sufficiently small)
such that �+ − αV+T ZV+ � 0 and

−V T ZV − αV T ZV+(�+ − αV T
+ ZV+)−1V T

+ ZV � 0.

This is possible since �+ � 0 and V T ZV ≺ 0. A Schur type argument gives
[

V T

V T+

]
(D − αZ − Q)

[
V V+

] =
[−αV T ZV − αV T ZV+

−αV T+ ZV �+ − αV T+ ZV+

]
� 0.

Thus D − αZ − Q � 0. Moreover, trace(D − αZ) = trace(D) since trace(Z) = 0.
Thus D − αZ is optimal and this contradicts Part 1 and proves the result.

3. Suppose on the contrary that V = [V T
11 V T

21 ]T where V11 ∈ R1×r and ‖V11‖2 < 1
n

(if necessary, rearrange the rows of V ). Then

V T
11V11 − 1

n
Ir ≺ 0. (5)

Define

Z =
[

n − 1 0
0 −In−1

]
.

Then Z is diagonal and trace(Z) = 0. However, V T ZV = −Ir + nV T
11V11 ≺ 0

from (5). This contradicts Part 2. 
�
The next result establishes the uniqueness of the SDR optimal solution.
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Theorem 1. The minimizer for the SDR problem is unique.

Proof. Let D be a minimizer for the SDR problem and let D − Q have a spectral
decomposition (4). Suppose that Z is diagonal, trace(Z) = 0 and

D − Z − Q � 0 (6)

so that D − Z is another minimizer. We prove the theorem by establishing that Z = 0.
Now, (6) and (4) imply that

[
V T

V T+

]
(D − Z − Q)

[
V V+

] =
[−V T ZV − V T ZV+

−V T+ ZV �+ − V T+ ZV+

]
� 0, (7)

so that V T ZV � 0. It follows from Part 2 of Lemma 1 that λ̄(V T ZV ) = 0. Let
1 ≤ dim N (V T ZV ) = r1 ≤ r . If r1 = r (i.e. V T ZV = 0) we are done since in
this case ZV = 0 from (7) and, since Z is diagonal and none of the rows of V is zero
from Part 3 of Lemma 1, Z = 0. If 1 ≤ r1 < r we proceed as follows. Introduce an
orthogonal transformation U ∈ Rr×r if necessary on V so that V := V U = [V1 V2 ]
with V1 ∈ Rn×r1 and such that

V T ZV = [ V1 V2 ]T Z [ V1 V2 ] =
[

0r1 0
0 V T

2 ZV2

]
(8)

with V T
2 ZV2 ≺ 0 (e.g. UT V T ZV U is in spectral form). Then ZV1 = 0 from (7) and

(8). Next, we prove that Z = 0 by showing that none of the rows of V1 is zero. Choose
α > 0, sufficiently small, such that �+ − αV T+ ZV+ � 0 and

−V T
2 ZV2 − αV T

2 ZV+(�+ − αV T
+ ZV+)−1V T

+ ZV2 � 0.

This is possible since �+ � 0 and V T
2 ZV2 ≺ 0. A Schur type argument gives

�1,+ :=
[

V T
2

V T+

]
(D − αZ − Q)

[
V2 V+

]=
[−αV T

2 ZV2 − αV T
2 ZV+

−αV T+ ZV �+ − αV T+ ZV+

]
�0.

Define V1,+ = [V2 V+ ]. Then (D − αZ) is diagonal, trace(D − αZ) = γ̄ and

(D − αZ) − Q = [ V1 V1,+ ]

[
0r1 0
0 �1,+

]
[ V1 V1,+ ]T ,

so that D−αZ is optimal and V1 spans N (D−αZ−Q). Hence none of the rows of V1
is zero from Lemma 1 which, together with ZV1 = 0 proves Z=0. 
�

Remark 1. The SDR problem in (3) is related to the minimum trace factor analysis
problem, for which the existence and uniqueness of the optimal solution was proved in
[21–23] utilizing Lagrange multipliers. Here, our proof is algebraic and is given in a
form suitable for analyzing the relaxation gap considered next. 
�
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4. The gap between the QIP and SDR problems

In this section we derive necessary and sufficient conditions for the absence of a relax-
ation gap. Since the optimal solution D of the SDR problem is unique, N (D − Q) and
r = dim N (D −Q) are well defined and depend only on Q. We start with the following
general necessary and sufficient conditions for γ = γ̄ .

Lemma 2. Let D be the (unique) minimizer for the SDR problem and let D − Q have
a spectral decomposition (4). Then the following statements are equivalent:

1. γ = γ̄ .
2. N (D − Q) ∩ {−1, 1}n = φ.
3. Vy ∈ {−1, 1}n for some y ∈ Rr .

Proof. (2 → 1) : Suppose that x ∈ N (D−Q)∩{−1, 1}n. Then trace(D)−xT Dx = 0
and xT (D − Q)x = 0. Substituting the optimal D in the global identity (2)
gives xT Qx = trace(D) = γ̄ and hence γ = γ̄ since γ̄ is an upper bound
on γ .

(1 → 2) : Suppose that γ = γ̄ . Consider again (2) when x ∈ {−1, 1}n. Then the first
term in the RHS of (2) is zero, while the second term xT (D − Q)x ≥ 0 in
view of the condition D−Q � 0. Thus γ = γ̄ implies that xT (D−Q)x = 0
and hence (D − Q)x = 0. Thus x ∈ N (D − Q).

(2 ↔ 3) : This follows from the fact that the columns of V span N (D − Q). 
�

Lemma 2 suggests a simple test for the absence of the relaxation gap.

Corollary 1. Let all variables be as in Lemma 2. By rearranging the rows of V if nec-
essary, let V = [ V T

11 V T
21 ]T with V11 ∈ Rr×r nonsingular. Then γ = γ̄ if and only if

V21V
−1
11 z ∈ {−1, 1}n−r for some z ∈ {−1, 1}r .

Proof. Note that the required rearrangement of the rows of V is possible since V is
orthogonal and hence has rank r . From Lemma 2, γ = γ̄ if and only if there exists y ∈ Rr

such that [ V T
11 V T

21 ]T y = [ Ir (V21V
−1
11 )T ]T V11y ∈ {−1, 1}n. That is, γ = γ̄ if and

only if there exists y ∈ Rr such that V11y ∈ {−1, 1}r and V21V
−1
11 V11y ∈ {−1, 1}n−r

and the result follows by setting z = V11y. 
�

Remark 2. The test involves enumerating all z ∈ {−1, 1}r and evaluating V21V
−1
11 z for

each. There are 2r such z (actually, 2r−1 since only one of z and −z need be tested). This
is useful when r is sufficiently small for this calculation to be feasible. Our experience
indicates that r is generally much smaller than n. 
�

The next result gives another necessary and sufficient condition for the absence of
the relaxation gap. It will prove useful for reducing this gap.

Corollary 2. Let all variables be as in Lemma 2. Then γ = γ̄ if and only if
maxx ∈ {−1, 1}n xT V V T x = n.
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Proof. Note that for any x ∈ {−1, 1}n, xT x = n and xT V V T x ≤ xT x = n since V is
orthogonal. Thus maxx ∈ {−1, 1}n xT V V T x ≤ n. Suppose there exists x ∈ {−1, 1}n
such that xT V V T x = n. Then, ‖[ V V+ ]T x‖ = ‖x‖ = √

n = ‖V T x‖. Hence
‖V T+ x‖ = 0 so that V T+ x = 0 and so x ∈ N (D − Q). Thus γ = γ̄ from Lemma 2.
Conversely suppose that γ = γ̄ . Then Lemma 2 implies there exists y ∈ Rr such that
Vy ∈ {−1, 1}n. Since yT V T Vy = n and V T V = Ir , then yT y = n. Setting x = Vy,
we have xT V V T x = yT y = n, as required. 
�

A simple sufficient condition for γ = γ̄ is that dim N (D − Q) = 1.

Corollary 3. Let all variables be as defined in Lemma 2. Then γ = γ̄ if r = 1.

Proof. Let x = √
nV ∈ Rn so that x ∈ N (D − Q). We prove the lemma by showing

that x ∈ {−1, 1}n. Since V T V = 1 and every row of V has norm at least 1/
√

n from
Part 3 of Lemma 1, it follows that every row of V has norm equal to 1/

√
n and so

x ∈ {−1, 1}n and the corollary follows from Lemma 2. 
�
Remark 3. An alternative proof of this result was given in [20] using properties of the
trust region subproblem. 
�

5. Reducing the relaxation gap

In this section we consider the problem of reducing the relaxation gap. That is, we seek
an upper bound on γ that is tighter than γ̄ .

It follows from Corollary 2 that γ = γ̄ if and only if the maximum of the reduced
rank QIP (RRQIP)

(RRQIP) γr := 1

n
max

x ∈ {−1, 1}n
xT V V T x (9)

is equal to 1. Suppose that γr < 1. Then γ < γ̄ and the question arises as to whether
γr can induce an upper bound on γ that is tighter than γ̄ . The following result derives
such a bound.

Lemma 3. Let all variables be as in Lemma 2 and suppose that γr < 1. Then

γ ≤ γ̄ − n(1 − γr)λ(�+) < γ̄ . (10)

Proof. Let x ∈ {−1, 1}n. Then n = xT x = xT V V T x + xT V+V T+ x, since V V T +
V+V T+ = In so that

x ∈ {−1, 1}n ⇒ xT V+V T
+ x = n − xT V V T x. (11)

Now,

γ := max
x ∈{−1, 1}n

xT Qx = max
x ∈{−1, 1}n

−
(

trace(D)−xT Dx
)
−xT (D−Q)x+γ̄ (12)

= max
x ∈ {−1, 1}n

γ̄ − xT (D − Q)x (13)
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= max
x ∈ {−1, 1}n

xT

(
γ̄

n
I − (D − Q)

)
x (14)

= max
x ∈ {−1, 1}n

xT [ V V+ ]

[
γ̄
n
Ir 0
0 γ̄

n
I − �+

]
[ V V+ ]T x (15)

≤ max
x ∈ {−1, 1}n

γ̄

n
xT V V T x +

(
γ̄

n
− λ(�+)

)
xT V+V T

+ x (16)

= n

(
γ̄

n
−λ(�+)

)
+λ(�+) max

x ∈ {−1, 1}n
xT V V T x = γ̄ −nλ(�+)(1−γr) (17)

where we have used

– the identity (2) in (12),
– the fact that γ̄ = trace(D) = xT Dx for all x ∈ {−1, 1}n in (13),
– the fact that xT x = n for all x ∈ {−1, 1}n in (14),
– the spectral decomposition (4) in (15),
– the fact that zT Zz ≤ λ̄(Z)zT z for all z ∈ Rn and Z ∈ Rn×n in (16),
– (11) and (9) in (17).

This proves the first inequality in (10). The second inequality follows from the fact that
λ(�+) > 0 and the assumption that γr < 1. 
�

It follows that the relaxation upper bound γ̄ can be ‘breached’ provided that there
exists a simple solution to the RRQIP in (9) (in fact, an upper bound on γr is sufficient
provided it is less than 1). Although this is similar to the original QIP, the difference is
that the matrix V V T in the cost function in (9) has a potentially low rank. The question
then arises as to whether low rank quadratic integer programming problems are any
easier to solve than full rank problems.

Remark 4. As pointed out to us by an anonymous reviewer, the main results of the paper
can also be obtained by considering the dual of the SDR problem (3), given as:

(DSDR) max
Xii = 1 for all i

X � 0

trace(QX).

For example, from SDP duality we know that the SDR and DSDR problems have the
same optimal value (γ̄ in our notation) and that trace((D − Q)X) = 0 for the optimal
D and X. Hence, if V is an orthogonal matrix spanning the null-space of D − Q, then
X must be of the form X = V X̃V T . Now, the SDR is exact (zero duality gap γ̄ − γ ) if
there exists x ∈ {−1, 1}n such that X = xxT is optimal for the DSDR problem. From
the optimality conditions, this means that x = Vy and hence the SDR is exact if there
exists x = Vy ∈ {−1, 1}n, proving the equivalence of (1) and (3) in Lemma 2. To prove
Corollary 3 in the dual setting, suppose that x is a general vector in {−1, 1}n. Decom-
pose x along R(V ) and R(V )⊥ (where V is an orthogonal matrix whose columns span
N (D − Q) for D optimal), i.e. write x = Vy + w where V T w = 0. We then have:

xT V V T x = ‖y‖2 = ‖Vy‖2 = ‖x‖2 − ‖w‖2 = n − ‖w‖2 ≤ n
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with equality only if w = 0, i.e. x = Vy, which means that the SDR problem is exact.
Thus the SDR is exact if and only if

max
x ∈ {−1, 1}n

xT V V T x = n.

The bound given in Lemma 3 also follows using similar arguments. 
�

6. A polynomial time solution to the RRQIP problem

The RRQIP problem in (9) has been considered in a modified form (V replaced by V T

and x ∈ {0, 1}n) in [2]. In our notation, [2] argue that the solution of the problem reduces
to the enumeration of the extreme points of the zonotope

Z = {V T x : x ∈ [−1, 1]n} (18)

since

nγr = max
x ∈ {−1, 1}n

xT V V T x = max
x ∈ [−1, 1]n

xT V V T x = max
z ∈ Z zT z

and the last maximization is achieved at an extreme point of Z since Z is convex.
Different versions of the RRQIP problem have also been considered in [12, 13, 15] in
connection with real and complex structured singular value problems in robust control
applications. The problem of enumerating the extreme points of Z is well known, see [5,
7, 8, 18, 25], although the treatment is given in the dual setting of finding arrangements
of hyperplanes. It is shown in [2] that this mapping gives the number of vertices of Z as
nZ ≤ 2

∑r−1
i=0

(
n−1

i

)
and allows their enumeration in an O(nr−1) algorithm for r ≥ 3

and O(nr) algorithm for r ≤ 2.

Remark 5. The success of our method depends on two factors. The first involves the
dimension r of N (D − Q), which defines the complexity of the RRQIP. Even if r

is small (so that the RRQIP problem is tractable), the reduction in the upper bound
n(1 − γr)λ(�+) may be small if either λ(�+) is small or γr is close to one (of course,
if γr = 1, then γ = γ̄ ). Moreover, the problem of determining the numerical nullity of
D − Q for large scale problems may be ill-posed. 
�

7. Numerical example and Conclusions

In this section the main results of the paper are illustrated by means of a simple numer-
ical example. All results were obtained with a numerical accuracy of 10−12 (although
for simplicity they are reported here truncated to four decimal places). Consider the
symmetric positive-definite matrix:

Q =




3.2368 1.8290 −0.8646 −0.4653 1.8528
1.8290 5.2224 −0.6692 −1.4772 −0.3376

−0.8646 −0.6692 4.7965 −1.8219 −1.6190
−0.4653 −1.4772 −1.8219 1.4809 0.2846

1.8528 −0.3376 −1.6190 0.2846 4.6822
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generated randomly using Matlab. Direct enumeration over {−1, 1}5 gives γ = 32.7409.
The semidefinite relaxation bound obtained using the Linear Matrix Inequality (LMI)
toolbox was found as γ = 34.5436 and the corresponding matrix D has diagonal ele-
ments (7.1588, 7.6476, 8.3973, 3.4801, 7.8598). The eigenvalues of D − Q were
λ(D − Q) = {0.0000, 0.0000, 3.2898, 5.4270, 6.4081} giving r = 2. The spectral
decomposition of D − Q shows that the rows of

V T =
[

0.5287 0.3780 −0.5131 0.1424 0.5423
−0.2183 −0.5561 −0.2809 0.7378 0.1410

]

form an orthonormal basis of N (D − Q). The norms of the rows of V were:
{0.5720, 0.6724, 0.5849, 0.7514, 0.5603} which are all greater than 1/

√
5, illus-

trating Part (3) of Lemma 1. The reduced rank integer quadratic optimisation problem
maxx∈{−1,1}5 xT V V T x was next solved by direct enumeration. The maximum cost was
4.5773 < n = 5 which indicates the existence of a non-zero duality gap γ̄ − γ . The
improved bound on γ evaluated via (10) was obtained as 33.1528, narrowing the gap to
approximately 23% of its original range.

To test the efficiency of polynomial-time algorithms in solving reduced-rank integer
quadratic optimisation problems the “reverse-enumeration” algorithm [3, 9] was pro-
grammed and tested in Matlab. The algorithm identifies the extreme points of zonotope
Z defined in (18); see [3, 9] for details. Our programme was extensively tested for small
and medium–size problems and found to perform well. In this example the 10 extreme
points of Z were identified correctly and are shown in Figure 1 along with the remain-
ing 22 interior points. Thus the improved upper bound can be obtained using only five
extreme–point evaluations.

There are some issues related to this work which we intend to pursue in the future.
These include: (a) Investigation of numerical issues associated with the technique for

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
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−1.5
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−0.5

0

0.5
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1.5

2

Fig. 1. Zonotope and its extreme points
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large-scale problems; (b) Investigating potential implications of the reduced–rank inte-
ger quadratic theory in graph theory, especially in connection to the “max–cut” problem;
(c) Detailed investigation of the reverse–enumeration algorithm and similar techniques
for the efficient solution of the reduced–rank integer–quadratic problem; and, (d) Exten-
sion of our results for the efficient solution of the structured–singular value problem
arising in robust control.

Acknowledgements. We wish to thank an anonymous reviewer for pointing out the fact that some of our results
can be more easily established by appeal to SDP duality theory.
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