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1 Introduction

With the discovery of a Higgs-like boson at the LHC [1, 2], the question of the Standard

Model (SM) vacuum stability has received a renewed attention, with several high-precision

analysis on the subject [3–11] (see also [12–23] for earlier works). Absolute vacuum stability

bounds are usually obtained by requiring that the electroweak vacuum is the absolute

minimum of the effective potential, at least up to some cutoff scale, ΛSM, where the SM is

not valid anymore and new physics is required in order to modify the shape of the effective

potential.1 It would be tempting (as it is often done) to identify the physical threshold,

ΛSM, with the SM vacuum instability scale, Λ, which is operatively defined by the field value

at which the effective potential becomes deeper than the electroweak minimum. However,

due to the gauge dependence of the effective potential, Λ suffers from an irreducible gauge

ambiguity which makes its identification with ΛSM problematic.

The gauge dependence of the effective potential is known since long. Soon after the

seminal work of Coleman and Weinberg [24], it was realized by Jackiw [25] that the ef-

fective potential is actually gauge dependent, thus raising the question of its physical

significance. Since then, many authors have dealt with this subject [26–40] and it is now a

1Such a requirement can be relaxed if the tunnelling probability of the electroweak vacuum is small

enough to comply with the age of the universe.
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well-established practice to extract the physical content of the effective potential by means

of the so-called Nielsen identities [30].

In particular, the issue of the gauge dependence of the effective potential in the analysis

of the SM vacuum stability was already pointed out at the end of the 90’s by Loinaz and

Willey [41], which challenged the possibility of setting gauge-independent lower bounds on

the Higgs boson mass from vacuum stability constraints. More recently, the problematic

identification between the cutoff scale of the SM and the instability scale Λ was mentioned

again in ref. [42].

The aim of this paper is to clarify some issues related to the gauge dependence of the

quantities entering the vacuum stability analysis. While the critical value of the Higgs

boson mass, marking the transition between the stable and unstable phase of the SM,

can be formally proven to be gauge independent, the SM instability scale is actually gauge

dependent. This is explicitly shown by a direct calculation of the gauge dependent one-loop

effective potential in the SM.

The SM effective potential is known in the Landau gauge at one [24] and two loops [43,

44] since long. Recently, even the three-loop QCD and top-Yukawa corrections have been

included [45]. On the other hand, calculations of the SM effective potential beyond the

Landau gauge are less explored. Barring few exceptions, like for instance in ref. [46]

where a background-field-dependent gauge fixing with a single gauge-fixing parameter

was employed, the gauge dependence of the SM effective potential is usually not taken

into consideration.

The paper is organized as follows: in section 2 we provide a pedagogical derivation

of the SM one-loop effective potential in the Fermi gauge (generalized Lorentz gauge)

and consider its renormalization group (RG) improvement. In section 3 we discuss the

physical observables entering the vacuum stability analysis. In particular, by using the

Nielsen identity [30], we formally prove that the lower bound on the Higgs boson mass

derived from the electroweak-vacuum-stability condition is gauge independent. On the

other hand, the extrema of the effective potential and, in particular, the instability scale

are in general gauge dependent. In section 4 we numerically quantify at the next-to-leading

order (NLO) accuracy the gauge dependence of Λ in the Fermi gauge by varying the gauge-

fixing parameters in their perturbative domain and comment on the gauge-fixing scheme

dependence of Λ. The interpretation and the physical implications of the gauge dependence

of Λ are discussed in section 5. The two-loop renormalization group equations (RGEs) of

the SM parameters in the Fermi gauge are collected in appendix A, while in appendix B we

report on the calculation of the SM one-loop effective potential in a background Rξ gauge

with the most general set of gauge-fixing parameters. As a by-product we also obtain the

SM one-loop effective potential in the standard Rξ gauge, whose expression might be useful

for broken-phase calculations.

2 The SM effective potential at one loop

In order to set the notation, let us split the classical Lagrangian density of the electroweak

sector of the SM in a gauge, Higgs and fermion part

LC = LYM + LH + LF , (2.1)
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with

LYM = −1

4

(

∂µW
a
ν − ∂νW

a
µ + gǫabcW b

µW
c
ν

)2
− 1

4
(∂µBν − ∂νBµ)

2 , (2.2)

LH = (DµH)† (DµH)− V (H) , (2.3)

LF = QLiγµD
µQL + tRiγµD

µtR +
(

−ytQL(iσ
2)H∗tR + h.c.

)

+ . . . , (2.4)

where W a
µ (a = 1, 2, 3) and Bµ are the SU(2) and U(1) gauge fields, H is the SM Higgs

doublet with hypercharge Y = 1 and QT
L = (tL, bL) is the left-handed third generation

quark doublet. Only the top quark is retained among the fermions and the QCD indices

are suppressed in the quark sector. The covariant derivative is defined as

Dµ = ∂µ − ig
σa

2
W a

µ + ig′
Y

2
Bµ , (2.5)

where σa (a = 1, 2, 3) are the usual Pauli matrices and with the term involving g being

absent for right-handed fermions. The Higgs potential is

V (H) = −m2H†H + λ(H†H)2 . (2.6)

The effective potential can be conveniently computed by means of the background field

method of Jackiw [25]. After homogeneously shifting the scalar fields of the theory by a

background (spacetime independent) field φ, the one-loop effective potential is obtained

by directly evaluating the path integral expression of the effective action in the Gaussian

approximation. After some standard manipulations (see e.g. also [46, 47]), the one-loop

effective potential

V 1−loop
eff (φ) = V

(0)
eff (φ) + V

(1)
eff (φ) , (2.7)

can be recast in terms of the well-known formulas [25]

V
(0)
eff (φ) = V (φ) , (2.8)

V
(1)
eff (φ) = i

∑

n=SM fields

η

∫

d4k

(2π)4
log det iD̃−1

n {φ; k} . (2.9)

The matrix iD̃−1
n {φ; k} denotes the φ-dependent inverse propagators of the SM fields in

momentum space, the determinant acts on all the internal indices and η = −1/2 (1) for

bosons (fermions/ghosts) is the power of the functional determinant due to the Gaussian

path integral.

Gauge invariance allows us to perform the shift of the Higgs doublet in a specific

direction of the SU(2)⊗U(1) space:

H(x) → 1√
2

(

χ1(x) + iχ2(x)

φ+ h(x) + iχ3(x)

)

, (2.10)

where h denotes the Higgs field and χa (a = 1, 2, 3) the Goldstone boson fields. At tree

level, the effective potential reads

V
(0)
eff (φ) = −m2

2
φ2 +

λ

4
φ4 , (2.11)
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while in order to compute the quantum correction, V
(1)
eff , one needs to work out the inverse

propagators of the dynamical fields in the shifted SM Lagrangian. For exemplification, we

consider in the next section the computation of the one-loop SM effective potential in the

Fermi gauge. The calculation of the SM effective potential in a background-field-dependent

Rξ gauge and in the standard Rξ gauge is instead presented in appendix B.

2.1 Fermi gauge

As long as we are interested in the high-energy behaviour of the the effective potential, we

can directly work in the unbroken phase of the SM. Then, the most convenient way to fix

the gauge is by means of the Fermi gauge (generalized Lorentz gauge):

LFermi
g.f. = − 1

2ξW

(

∂µW a
µ

)2 − 1

2ξB
(∂µBµ)

2 . (2.12)

We are thus interested in the determination of the quadratic (φ-dependent) part of the

Lagrangian, LC+LFermi
g.f. , after the shift in eq. (2.10).2 A straightforward calculation yields

Lquad
YM =

1

2
W a

µ (� gµν − ∂µ∂ν) δabW b
ν +

1

2
Bµ (� gµν − ∂µ∂ν)Bν , (2.13)

Lquad
H =

1

2
h
(

−�− m̄2
h

)

h+
1

2
χa
(

−�− m̄2
χ

)

δabχb +
1

2
m̄2

WW a
µW

aµ +
1

2
m̄2

BBµB
µ (2.14)

+ m̄W m̄BW
3
µB

µ − m̄W∂µχ
1W 2µ − m̄W∂µχ

2W 1µ + m̄W∂µχ
3W 3µ + m̄B∂µχ

3Bµ ,

Lquad
F =t

(

i/∂ − m̄t

)

t+ . . . , (2.15)

where � ≡ ∂µ∂
µ and we defined the φ-dependent masses

m̄2
h = −m2 + 3λφ2 , (2.16)

m̄2
χ = −m2 + λφ2 , (2.17)

m̄W =
1

2
gφ , (2.18)

m̄B =
1

2
g′φ , (2.19)

m̄t =
yt√
2
φ , (2.20)

while LFermi
g.f. is already quadratic in the gauge boson fields. The only technical complication

in the Fermi gauge is the presence of a Goldstone-gauge boson mixing already at tree level

(cf. eq. (2.14)). The latter can be treated by defining an extended field vector

XT =
(

V T
µ , χT

)

, (2.21)

where

V T
µ =

(

W 1
µ ,W

2
µ ,W

3
µ , Bµ

)

, χT =
(

χ1, χ2, χ3
)

. (2.22)

2One can easily see that the bilinear ghost terms are φ-independent. Hence, in the Fermi gauge the

ghost contribution decouples from the one-loop effective potential.

– 4 –
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Then the quadratic part of the Goldstone-gauge sector can be rewritten as

1

2
XT

(

iD−1
X

)

X =
1

2

(

V T
µ , χT

)

(

i
(

D−1
V

)µ

ν
m̄T

mix ∂
µ

−m̄mix ∂ν iD−1
χ

)(

V ν

χ

)

, (2.23)

with

m̄mix =







0 −m̄W 0 0

−m̄W 0 0 0

0 0 m̄W m̄B






. (2.24)

After Fourier transformation, ∂µ → ikµ, the mixed inverse propagator matrix becomes

iD̃−1
X =

(

i(D̃−1
V )µν ikµm̄T

mix

−ikνm̄mix iD̃−1
χ

)

, (2.25)

where (D̃−1
V )µν is conveniently split into a transversal and a longitudinal part

(D̃−1
V )µν = iD̃−1

T (ΠT )
µ
ν + iD̃−1

L (ΠL)
µ
ν , (2.26)

with

(ΠT )
µ
ν = gµν − kµkν

k2
, (ΠL)

µ
ν =

kµkν
k2

, (2.27)

and

iD̃−1
T =











−k2 + m̄2
W 0 0 0

0 −k2 + m̄2
W 0 0

0 0 −k2 + m̄2
W m̄W m̄B

0 0 m̄W m̄B −k2 + m̄2
B











, (2.28)

iD̃−1
L =











−ξ−1
W k2 + m̄2

W 0 0 0

0 −ξ−1
W k2 + m̄2

W 0 0

0 0 −ξ−1
W k2 + m̄2

W m̄W m̄B

0 0 m̄W m̄B −ξ−1
B k2 + m̄2

B











. (2.29)

The Goldstone boson inverse propagator reads

iD̃−1
χ =







k2 − m̄2
χ 0 0

0 k2 − m̄2
χ 0

0 0 k2 − m̄2
χ






, (2.30)

while those of the Higgs and top quark fields are

iD̃−1
h = k2 − m̄2

h , (2.31)

iD̃−1
t = /k − m̄t . (2.32)

The next step (see eq. (2.9)) is the evaluation of log det iD̃−1
n , for n = X,h, t. Only

the former and the latter present some non-trivial steps. Let us start by expressing the

– 5 –
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determinant of the block matrix in eq. (2.25) as

det iD̃−1
X = det iD̃−1

χ det

(

i(D̃−1
V )µν − kµkνm̄

T
mix

(

iD̃−1
χ

)−1
m̄mix

)

, (2.33)

= det iD̃−1
χ det

(

iD̃−1
T (ΠT )

µ
ν +

(

iD̃−1
L − k2m̄T

mix

(

iD̃−1
χ

)−1
m̄mix

)

(ΠL)
µ
ν

)

,

where in the last step we used eq. (2.26), and perform a Lorentz transformation in d space-

time dimensions,3 kµ → (k0, 0, 0, 0, . . .), such that (ΠL)
µ
ν → (1, 0, 0, 0, . . .) and (ΠT )

µ
ν →

(0, 1, 1, 1, . . .). Using the Loretz invariance of the determinant, we obtain

log det iD̃−1
X = (d− 1) log det D̃−1

T

+ log det iD̃−1
χ det

(

iD̃−1
L − k2m̄T

mix

(

iD̃−1
χ

)−1
m̄mix

)

. (2.34)

The explicit evaluation of the two summands in the right-hand side of eq. (2.34) yields

log det iD̃−1
T = 2 log

(

−k2 + m̄2
W

)

+ log
(

−k2 + m̄2
Z

)

+ . . . , (2.35)

and

log det iD̃−1
χ det

(

iD̃−1
L − k2m̄T

mix

(

iD̃−1
χ

)−1
m̄mix

)

(2.36)

= 2 log
(

k4 − k2m̄2
χ + m̄2

χξW m̄2
W

)

+ log
(

k4 − k2m̄2
χ + m̄2

χ(ξW m̄2
W + ξBm̄

2
B)
)

+ . . .

= 2 log
(

k2 − m̄2
A+

)

+ 2 log
(

k2 − m̄2
A−

)

+ log
(

k2 − m̄2
B+

)

+ log
(

k2 − m̄2
B−

)

+ . . . ,

where the ellipses stand for φ-independent terms and we defined the φ-dependent masses

m̄2
Z = m̄2

W + m̄2
B , (2.37)

m̄2
A± =

1

2
m̄χ

(

m̄χ ±
√

m̄2
χ − 4ξW m̄2

W

)

, (2.38)

m̄2
B± =

1

2
m̄χ

(

m̄χ ±
√

m̄2
χ − 4(ξW m̄2

W + ξBm̄2
B)
)

. (2.39)

For the evaluation of the fermionic determinant of eq. (2.32) we employ a naive treatment of

γ5 in dimensional regularization (i.e. {γ5, γµ} = 0 in d dimensions) and make the standard

choice Tr1Dirac = 4 in d dimensions.4 Explicitly, one has

log det (/k − m̄t) = Tr log (/k − m̄t) = Tr log γ5 (/k − m̄t) γ
5 = Tr log (−/k − m̄t)

=
1

2
[Tr log (/k − m̄t) + Tr log (−/k − m̄t)] =

1

2
Tr log

(

−k2 + m̄2
t

)

=
1

2
4× 3 log

(

−k2 + m̄2
t

)

, (2.40)

3We already anticipate the fact that we are going to regulate the divergent integrals in dimensional

regularization.
4A different choice, e.g. Tr1Dirac = 2d/2, would just lead to a different renormalization scheme [48].
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where the extra factors in the last step are due to the trace in the Dirac and color space.

Including all the relevant degrees of freedom and working in dimensional regularization

with d = 4 − 2ǫ, the one-loop contribution to the effective potential (cf. again eq. (2.9))

can be adjusted in the following way:

V
(1)
eff (φ)|Fermi = − i

2
µ2ǫ

∫

ddk

(2π)d
[

−12 log
(

−k2 + m̄2
t

)

+ (d− 1)
(

2 log
(

−k2 + m̄2
W

)

+ log
(

−k2 + m̄2
Z

))

+ log
(

k2 − m̄2
h

)

+ 2 log
(

k2 − m̄2
A+

)

+ 2 log
(

k2 − m̄2
A−

)

+ log
(

k2 − m̄2
B+

)

+ log
(

k2 − m̄2
B−

)

+ φ-independent
]

. (2.41)

The integrals are easily evaluated after Wick rotation, yielding

− i

2
µ2ǫ

∫

ddk

(2π)d
log(−k2 +m2) =

1

4

m4

(4π)2

(

log
m2

µ2
− 3

2
−∆ǫ

)

, (2.42)

where we introduced the modified minimal subtraction (MS) term [49]

∆ǫ =
1

ǫ
− γE + log 4π . (2.43)

After the ǫ-expansion the one-loop contribution to the effective potential is given by

V
(1)
eff |Fermi

bare =
1

4(4π)2

[

−12m̄4
t

(

log
m̄2

t

µ2
− 3

2
−∆ǫ

)

+ 6m̄4
W

(

log
m̄2

W

µ2
− 5

6
−∆ǫ

)

(2.44)

+3m̄4
Z

(

log
m̄2

Z

µ2
− 5

6
−∆ǫ

)

+ m̄4
h

(

log
m̄2

h

µ2
− 3

2
−∆ǫ

)

+ 2m̄4
A+

(

log
m̄2

A+

µ2
− 3

2
−∆ǫ

)

+ 2m̄4
A−

(

log
m̄2

A−

µ2
− 3

2
−∆ǫ

)

+m̄4
B+

(

log
m̄2

B+

µ2
− 3

2
−∆ǫ

)

+ m̄4
B−

(

log
m̄2

B−

µ2
− 3

2
−∆ǫ

)]

.

In particular, in terms of the SM couplings the divergent part of eq. (2.44) reads

V
(1)
eff |Fermi

bare−pole =
∆ǫ

(4π)2

[

−m4 +

(

3λ− 1

8
ξBg

′2 − 3

8
ξW g2

)

m2φ2 (2.45)

+

(

− 3

64
g′4 − 3

32
g′2g2 − 9

64
g4 +

3

4
y4t − 3λ2 +

1

8
ξBg

′2λ+
3

8
ξW g2λ

)

φ4

]

.

While the m4-dependent pole in eq. (2.45) can be always subtracted by a constant shift

in the effective potential,5 the remaining divergences are canceled by the multiplicative

renormalization of the bare field and couplings appearing in V
(0)
eff (cf. eq. (2.11)):

φ0 = Z
1/2
φ |Fermiφ , m2

0 = Zm2m2 , λ0 = Zλλ , (2.46)

5A constant shift in the effective potential does not affect the equations of motion, as long as gravity

is ignored.
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where the renormalization constants can be conveniently computed in the unbroken phase

of the SM. Their expressions at one loop in the MS scheme read (see e.g. [50, 51]):

Z
1/2
φ |Fermi = 1 +

∆ǫ

(4π)2

(

3

8
g′2 +

9

8
g2 − 3

2
y2t −

1

8
ξBg

′2 − 3

8
ξW g2

)

, (2.47)

Zm2 = 1 +
∆ǫ

(4π)2

(

−3

4
g′2 − 9

4
g2 + 3y2t + 6λ

)

, (2.48)

Zλ = 1 +
∆ǫ

(4π)2

(

−3

2
g′2 − 9

2
g2 + 6y2t + 12λ+

3

16

g′4

λ
+

3

8

g′2g2

λ
+

9

16

g4

λ
− 3

y4t
λ

)

.

(2.49)

It is a simple exercise to check that the renormalization of the tree-level potential, via the

renormalization constants in eqs. (2.47)–(2.49), cancels the φ-dependent poles in eq. (2.45).

Let us point out that in the Fermi gauge the field φ gets only multiplicatively renormalized

by the wavefunction of the Higgs field. This feature is due to the invariance of the complete

SM Lagrangian (including the gauge-fixing term in eq. (2.12)) under the transformation

h → h+a and φ → φ−a, as shown in [52, 53]. As we will see in appendix B, this property

does not hold anymore in the background Rξ gauge.

Hence, after the renormalization procedure, the one-loop contribution to the effective

potential in the MS scheme reads

V
(1)
eff |Fermi =

1

4(4π)2

[

−12m̄4
t

(

log
m̄2

t

µ2
− 3

2

)

+ 6m̄4
W

(

log
m̄2

W

µ2
− 5

6

)

(2.50)

+3m̄4
Z

(

log
m̄2

Z

µ2
− 5

6

)

+ m̄4
h

(

log
m̄2

h

µ2
− 3

2

)

+ 2m̄4
A+

(

log
m̄2

A+

µ2
− 3

2

)

+2m̄4
A−

(

log
m̄2

A−

µ2
− 3

2

)

+ m̄4
B+

(

log
m̄2

B+

µ2
− 3

2

)

+ m̄4
B−

(

log
m̄2

B−

µ2
− 3

2

)]

,

where the definitions of the φ-dependent mass terms are given in eqs. (2.16)–(2.20) and

eqs. (2.37)–(2.39). In particular, for ξW = ξB = 0 one has m̄A+ = m̄B+ = m̄χ and

m̄A− = m̄B− = 0, so that eq. (2.50) reproduces the standard one-loop result in the Landau

gauge [24].

Let us stress that the gauge dependence of V
(1)
eff cannot be removed by a suitable choice

of the renormalization scheme, as it can be verified by adding finite terms in eqs. (2.47)–

(2.49). Notice, however, that on the tree-level minimum, m2 = λφ2 (hence m̄χ = 0 and

m̄A± = m̄B± = 0), the gauge dependence drops from V
(1)
eff |Fermi. We will discuss this aspect

in more detail in section 3.

2.2 Renormalization group improvement

In applications where the behavior of Veff(φ) at large φ is needed, like for the vacuum

stability analysis, one has to deal with potentially large logarithms of the type log(φ/µ)

which may spoil the applicability range of perturbation theory. The standard way to resum

such logarithms is by means of the RGEs. Since Veff is independent of the renormalization

scale µ for fixed values of the bare parameters, one obtains the RGE
(

µ
∂

∂µ
+ βi

∂

∂λi
− γφ

∂

∂φ

)

Veff = 0 , (2.51)
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where the beta functions

βi = µ
dλi

dµ
, (2.52)

correspond to each of the SM coupling λi (including the gauge-fixing parameters) and the

anomalous dimension of the background field is defined by

γ = −µ

φ

dφ

dµ
. (2.53)

The formal solution of the RGE in eq. (2.51) can be obtained by applying the method of

the characteristics [16]:

Veff(µ, λi, φ) = Veff(µ(t), λi(t), φ(t)) , (2.54)

where

µ(t) = µet , (2.55)

φ(t) = eΓ(t)φ , (2.56)

with

Γ(t) = −
∫ t

0
γ(λ(t′)) dt′ , (2.57)

and λi(t) are the SM running couplings, determined by the equation

dλi(t)

dt
= βi(λi(t)) , (2.58)

and subject to the boundary condition λi(0) = λi.

The usefulness of the RG is that t can be chosen in such a way that the convergence

of perturbation theory is improved. For instance, a standard choice in vacuum stability

analyses is µ(t) = φ (see e.g. ref. [6]). Without sticking, for the time being, to any specific

choice of scale, the RG improved effective potential can be rewritten as

Veff(φ, t) = Ωeff(φ, t)−
m2

eff(φ, t)

2
φ2 +

λeff(φ, t)

4
φ4 , (2.59)

where the functional form of the effective couplings in eq. (2.59) depends on the chosen

gauge. In particular, in the limit φ ≫ m the effective potential takes the universal form

Veff(φ, t) ≈
λeff(φ, t)

4
φ4 , (2.60)

with

λeff(φ, t) ≈ e4Γ(t)

[

λ(t) +
1

(4π)2

∑

p

Npκ
2
p(t)

(

log
κp(t)e

2Γ(t)φ2

µ(t)2
− Cp

)]

, (2.61)

since φ is the only massive parameter. The coefficientsNp, Cp and κp appearing in eq. (2.61)

are explicitly listed in table 1 for the Fermi gauge and in table 2 of appendix B for the

background Rξ gauge.

Let us finally note that the gauge dependence of the RG improved effective potential

is twofold. The gauge fixing parameters appear both in the couplings κp (cf. table 1), and

in the anomalous dimension of φ (cf. eq. (A.8) in appendix A) and hence in its integral Γ.
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p t W Z h A± B±

Np −12 6 3 1 2 1

Cp
3
2

5
6

5
6

3
2

3
2

3
2

κp
y2t
2

g2

4
g2+g′2

4 3λ 1
2

(

λ±
√

λ2 − λξW g2
)

1
2

(

λ±
√

λ2 − λ(ξW g2 + ξBg′2)
)

Table 1. The p-coefficients entering the expression of λeff in eq. (2.61) for the Fermi gauge.

Φew Φ
�L

Veff

Φ

Mh
c

Mh<Mh
c

Mh>Mh
c

Figure 1. Schematic representation of the SM effective potential for different values of the Higgs

boson mass. For Mh < M c
h, the electroweak vacuum is unstable.

3 Physical observables in the vacuum stability analysis

The present section is devoted to a general discussion on the gauge depen-

dence/independence of the quantities entering the vacuum stability analysis. To fix the

ideas, let us assume that all the parameters of the SM are exactly determined, but the

Higgs boson mass. After choosing the renormalization scale t, the RG improved effective

potential, Veff(φ,Mh; ξ), is a function of φ, the Higgs pole mass Mh, and the gauge fixing

parameters, which are collectively denoted by ξ. One can think of Mh as an order param-

eter, whose variation modifies the shape of the effective potential, as for instance sketched

in figure 1.

The absolute stability bound on the Higgs boson mass can be obtained by defining

a “critical” mass, M c
h, for which the value of the effective potential at the electroweak

minimum, φew, and at a second minimum, φ̃ > φew, are the same. Analytically, this
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translates into the three conditions:

Veff(φew,M
c
h; ξ)− Veff(φ̃,M

c
h; ξ) = 0 , (3.1)

∂Veff

∂φ

∣

∣

∣

∣

φew,Mc
h

=
∂Veff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

= 0 . (3.2)

In the φ ≫ φew limit, the RG improved SM effective potential is well approximated by

Veff(φ) =

(

Ωeff(φ)

φ4
− 1

2

m2
eff(φ)

φ2
+

1

4
λeff(φ)

)

φ4 ≈ 1

4
λeff(φ)φ

4 . (3.3)

Indeed, at the leading order in the m2/φ2 expansion, where m2 ∼ φ2
ew is the electroweak

parameter of the Higgs potential, the effective couplings Ωeff andm2
eff turn out to be propor-

tional tom4 andm2 respectively.6 Hence, the absolute stability condition in eqs. (3.1)–(3.2)

can be equivalently rewritten in the following way [5]:

λeff(φ̃,M
c
h; ξ) = 0 , (3.4)

∂λeff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

= 0 , (3.5)

up to φ2
ew/φ̃

2 ≪ 1 corrections.

On the other hand, due to the explicit presence of ξ in the vacuum stability condition,

it is not obvious a priori which are the physical (gauge-independent) observables entering

the vacuum stability analysis. The basic tool, in order to capture the gauge-invariant

content of the effective potential is given by the Nielsen identity [30]

∂

∂ξ
Veff(φ, ξ) = −C(φ, ξ)

∂

∂φ
Veff(φ, ξ) , (3.6)

where C(φ, ξ) is a correlator involving the ghost fields and the gauge-fixing functional,

whose explicit expression will not be needed for our argument. Eq. (3.6) is valid for the

class of linear gauges and can be derived from the BRST non-invariance of a compos-

ite operator involving the ghost field and the gauge fixing functional (see e.g. [37] for a

concise derivation).

The identity in eq. (3.6) carries the following interpretation: the effective potential is

gauge independent where it is stationary and hence spontaneous symmetry breaking is a

gauge-invariant statement. In the rest of this section we will use the Nielsen identity, in

combination with the vacuum stability condition in eqs. (3.1)–(3.2), in order to formally

prove that the critical Higgs boson mass, M c
h, is a gauge-independent quantity, while the

position of the extrema of the effective potential (e.g. φ̃) or the point where Veff takes a

special value (for instance zero) are essentially gauge dependent.

Our arguments are similar to those presented in ref. [46], about the gauge independence

of the critical temperature of a first order phase transition in the context of the finite

temperature effective potential.

6Moreover, since the beta function of m is proportional to m itself, the value of m does not change much

even after a scale running of many orders of magnitude.
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3.1 Gauge independence of the critical Higgs boson mass

Let us assume that simultaneously inverting eqs. (3.1)–(3.2) would yield gauge dependent

field values and critical Higgs boson mass: φew = φew(ξ), φ̃ = φ̃(ξ) and M c
h = M c

h(ξ). The

total differential of eq. (3.1) with respect to ξ then reads

∂Veff

∂φ

∣

∣

∣

∣

φew,Mc
h

∂φew

∂ξ
+

∂Veff

∂Mh

∣

∣

∣

∣

φew,Mc
h

∂M c
h

∂ξ
+

∂Veff

∂ξ

∣

∣

∣

∣

φew,Mc
h

=
∂Veff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

∂φ̃

∂ξ
+

∂Veff

∂Mh

∣

∣

∣

∣

φ̃,Mc
h

∂M c
h

∂ξ
+

∂Veff

∂ξ

∣

∣

∣

∣

φ̃,Mc
h

. (3.7)

The first term in both the left-hand side (lhs) and the right-hand side (rhs) of eq. (3.7)

vanishes because of the stationary conditions in eq. (3.2). The third term in both the l.h.s.

and the r.h.s. of eq. (3.7) vanishes for the same reason, after using the Nielsen identity.

Hence, we are left with
(

∂Veff

∂Mh

∣

∣

∣

∣

φew,Mc
h

− ∂Veff

∂Mh

∣

∣

∣

∣

φ̃,Mc
h

)

∂M c
h

∂ξ
= 0 . (3.8)

Since the expression in the bracket of eq. (3.8) is in general different from zero, one con-

cludes that
∂M c

h

∂ξ
= 0 , (3.9)

namely, the critical Higgs boson mass is gauge independent. Let us notice, however, that

the statement above formally holds at all orders in perturbation theory.

3.2 Gauge dependence of the extrema of the effective potential

Let us consider now the total differential with respect to ξ of the second expression in

eq. (3.2)

∂2Veff

∂φ2

∣

∣

∣

∣

φ̃,Mc
h

∂φ̃

∂ξ
+

∂2Veff

∂Mh ∂φ

∣

∣

∣

∣

φ̃,Mc
h

∂M c
h

∂ξ
+

∂2Veff

∂ξ ∂φ

∣

∣

∣

∣

φ̃,Mc
h

= 0 . (3.10)

The second term is zero due to eq. (3.9). By differentiating the Nielsen identity with respect

to φ, and evaluating it at the point (φ̃,M c
h), we get

∂2Veff

∂φ ∂ξ

∣

∣

∣

∣

φ̃,Mc
h

= − ∂C

∂φ

∣

∣

∣

∣

φ̃,Mc
h

∂Veff

∂φ

∣

∣

∣

∣

φ̃,Mc
h

− C(φ̃, ξ)
∂2Veff

∂φ2

∣

∣

∣

∣

φ̃,Mc
h

. (3.11)

The first term in the r.h.s. of eq. (3.11) vanishes because of the stationary condition in

eq. (3.2). Hence, we can substitute the third term in eq. (3.10), by means of eq. (3.11),

and get:
(

∂φ̃

∂ξ
− C(φ̃, ξ)

)

∂2Veff

∂φ2

∣

∣

∣

∣

φ̃,Mc
h

= 0 . (3.12)

Since the curvature at the extremum is in general different from zero, eq. (3.12) implies

∂φ̃

∂ξ
= C(φ̃, ξ) . (3.13)
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The same holds for any extremum of the effective potential, like e.g. the maximum in

figure 1 or the electroweak minimum φew. This latter fact should not actually come as

a surprise. The explicit gauge dependence of the unrenormalized φew in the Rξ gauge

was discussed for instance in [54] and in the case of the SM it can be found in [55]. A

renormalized gauge-invariant φew can always be defined by subtracting the divergent and

gauge-dependent contributions to φew at on-shell points in terms of physical quantities.

3.3 Gauge dependence of the SM vacuum instability scale

The SM vacuum instability scale is operatively defined as the field value φ = Λ, for which

the effective potential has the same depth of the electroweak minimum (see e.g. figure 1).

This is analytically expressed by

Veff(Λ; ξ) = Veff(φew; ξ) . (3.14)

The r.h.s. of eq. (3.14) is a gauge-independent quantity, since φew is by definition a minimum

and we can apply the Nielsen identity. Hence, by solving eq. (3.14), one has in general

Λ = Λ(ξ). In particular, by taking the total differential of eq. (3.14) with respect to ξ,

we get

∂Veff

∂φ

∣

∣

∣

∣

Λ

∂Λ

∂ξ
+

∂Veff

∂ξ

∣

∣

∣

∣

Λ

= 0 . (3.15)

By using the Nielsen identity, we can substitute back the second term in eq. (3.15),

thus obtaining
(

∂Λ

∂ξ
− C(Λ, ξ)

)

∂Veff

∂φ

∣

∣

∣

∣

Λ

= 0 . (3.16)

Since, in general, Λ is not an extremum of the effective potential, eq. (3.16) yields

∂Λ

∂ξ
= C(Λ, ξ) . (3.17)

4 Numerical analysis

In this section we numerically estimate the gauge dependence of the SM vacuum instability

scale Λ. Let us first focus on the case of the Fermi gauge. Since in the SM Λ ≫ φew, the

condition in eq. (3.14) is well approximated by (see also eq. (3.3))

λeff(Λ) = 0 , (4.1)

up to corrections of O(φ2
ew/Λ

2) . For the onset of the RG running, we choose µ(0) = Mt

(hence µ(t) = Mte
t), where Mt = 173.35 GeV is the pole mass of the top quark and we
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consider the central values of the SM parameters taken from [9]:7

λ(Mt) = 0.12710 , (4.2)

yt(Mt) = 0.93697 , (4.3)

g3(Mt) = 1.1666 , (4.4)

g(Mt) = 0.6483 , (4.5)

g′(Mt) = 0.3587 . (4.6)

In order to resum possible large logs in eq. (2.61) due to the growth of the anomalous

dimension, we make the scale choice

µ(t) = eΓ(t)φ , (4.7)

which implicitly defines t as a function of φ. Then the effective quartic coupling can be

written as

λeff(φ) = e4Γ(t(φ))
[

λ(t(φ)) +
1

(4π)2

∑

p

Npκ
2
p(t(φ))

(

log κp(t(φ))− Cp

)

]

. (4.8)

Since the overall exponential factor in eq. (4.8) never changes the zeros of λeff(φ), in order

to find the instability scale, Λ, it is equivalent (and also numerically more convenient) to

seek directly the zeros of λeff(φ)e
−4Γ(t(φ)) in terms of the parameter tΛ ≡ t(Λ), defined by8

λ(tΛ) +
1

(4π)2

∑

p

Npκ
2
p(tΛ)

(

log κp(tΛ)− Cp

)

= 0 , (4.9)

and then relate it to the instability scale by inverting eq. (4.7)

Λ = µ(tΛ)e
−Γ(tΛ) = Mte

tΛ−Γ(tΛ) , (4.10)

where we recall the definition (see eq. (2.57))

Γ(tΛ) = −
∫ tΛ

0
γ(t) dt . (4.11)

Before discussing in more detail the gauge dependence of Λ, let us turn to the issue of the

UV behaviour of the gauge fixing parameters ξW and ξB for the Fermi gauge. Their RGEs

are collected in appendix A and can be easily integrated at one loop (see appendix A.1).

While the running of the Abelian gauge-fixing parameter ξB is very simple (ξBg
′2 is actu-

ally constant under the RG flow, as a consequence of a Ward identity) two peculiar RG

behaviours can be identified for ξW . For ξW (Mt) ≫ 1
6 one has a quasi-fixed point in the

UV (cf. left panel in figure 2), while, for ξW (Mt) < 0, the running can easily generate a

Landau pole (cf. right panel in figure 2).

The gauge dependence of Λ (cf. eq. (4.10)) comes both from tΛ and Γ(tΛ). The former

is due to the couplings κp, when p runs over A± and B± (cf. eq. (4.9) and table 1), while

the latter is because of the gauge dependence of the anomalous dimension. The running
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Figure 2. Two-loop running of the gauge-fixing parameters ξW and ξB in the Fermi gauge, for

different values of ξ ≡ ξW (Mt) = ξB(Mt): ξ = 20 (left panel) and ξ = −5 (right panel).
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Figure 3. Two-loop running of −γ (left panel) and Γ (right panel) for different values of ξ ≡
ξW (Mt) = ξB(Mt).

of the anomalous dimension and its integral, Γ, are shown in figure 3 for three different

initial values of ξ ≡ ξB(Mt) = ξW (Mt).

From the right panel in figure 3 one can see that if |ξ| is large enough, Γ can easily

be of O(1) at intermediate scales below the Planck mass. This justifies the choice of scale

done in eq. (4.7), which resums the potentially large logs in eq. (2.61).

The gauge dependence of the instability scale is shown in figure 4. For simplicity, we

set ξW (Mt) = ξB(Mt) ≡ ξ. In addition, we employ two-loop RGEs for all the parameters

in eq. (4.9) and eq. (4.11) that determine Λ. The higher-order RGEs allow us to resum the

leading and next-to-leading logarithms implicitly contained in eq. (4.10). For illustration,

we depict with a dashed line in figure 4 the gauge dependence of the instability scale

obtained without running the gauge-fixing parameters (βξ = 0 case). As it can be read from

7Notice that these values are extracted from experimental data with two-loop accuracy. However, we

will not perform a NNLO analysis, since the issue of the gauge dependence of the instability scale already

arises at the NLO level.
8It may actually happen that λ turns negative before approaching the instability scale. In such a case,

log κp develops an imaginary part for p = h,A±, B± (see table 1). Though the imaginary part of the effective

potential might have an interpretation in terms of a decay rate of an unstable state [56], the role of such

an imaginary component in the determination of the instability scale is not clear. Hence, we pragmatically

require only the real part of eq. (4.9) to be zero and notice that this problem has nothing to do with the

issue of the gauge dependence, since it occurs also in the standard analysis in the Landau gauge.
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Figure 4. Instability scale as a function of ξ ≡ ξW (Mt) = ξB(Mt) for the Fermi gauge. The dashed

line corresponds to the case where the gauge-fixing parameters are not run. The full line encodes

the resummation of the next-to-leading logs by means of two-loop RGEs.

the figure the difference between the resummed (full line) and not resummed one (dashed

line) amounts to more than three orders of magnitude. However, even after performing

the resummation, the instability scale in the Fermi gauge increases by almost an order

of magnitude when the gauge-fixing parameters are varied in the interval [0, 300]. Let us

also mention that by varying the SM parameters within their experimental uncertainties

(e.g. for a lower top mass) the gauge dependence of the scale Λ is always found to be of

about one order of magnitude.

Another important aspect for the analysis of the gauge dependence of Λ is the deter-

mination of the perturbativity domain of the gauge fixing parameters ξW,B. For instance,

for the gauge-fixing parameter ξW one can require that the two-loop correction to its

beta function is smaller than the one-loop contribution, thus obtaining (cf. eq. (A.7) in

appendix A):
∣

∣

∣

∣

ξ2Wα2
2

(4π)2

∣

∣

∣

∣

<

∣

∣

∣

∣

ξWα2

4π

∣

∣

∣

∣

, (4.12)

which sets the absolute upper bound

|ξW | < 4π

α2
. (4.13)

Taking α2(Mt) ≈ 0.033,9 one gets |ξW (Mt)| < 376. Notice, however, that this estimate

does not take into account the running of ξW . For ξW (Mt) . −5 a Landau pole can be

developed before the Planck scale (cf. right panel in figure 2), and perturbation theory

starts soon to break down. This is why we do not show the negative branch of the plot in

figure 4. On the contrary, the running behaviour for ξ ≫ 0 is smoother, with a quasi-fixed

9For α2(µ > Mt) the bound becomes less stringent, due to the asymptotic freedom of α2 in the SM.
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point in the UV for ξW (cf. left panel in figure 2). By studying the evolution of the gauge-

dependent anomalous dimension at one, two and three loops we verified, for instance, that

ξ ≈ 300 is still in the perturbative regime. Nonetheless, for a more solid statement about

the perturbative domain of ξ, one should inspect the gauge dependent two-loop effective

potential, whose calculation goes beyond the scope of the present paper and it is postponed

for a future work. One can imagine, however, that a similar condition as in eq. (4.12) will

be at play, since the gauge-fixing parameters are always associated with the square of the

gauge couplings, both in the propagators and in the vertices of the theory.

Finally, for a comprehensive analysis one should also vary the gauge-fixing condition

itself. In appendix B we report on the calculation of the SM one-loop effective potential in

a background Rξ gauge. A numerical study, similar to the one presented in this section,

shows that the instability scale decreases by another order of magnitude when the gauge-

fixing parameters are varied in their perturbative domain. Such a qualitatively different

behaviour in the background Rξ gauge can be understood by noticing the sign flip (with

respect to the case of the Fermi gauge) in the contribution of the gauge-fixing parameters

to the one-loop anomalous dimension of φ in eq. (A.9). We can thus conclude that the

gauge dependence of the instability scale materializes in a variation of about two orders

of magnitude, depending on the choice of the gauge condition and of the gauge-fixing

parameters. This strengthens our statement that the instability scale Λ as defined in

eq. (4.1) should not be interpreted as a physical quantity.

5 Discussion and conclusions

Once a calculable UV completion of the SM is specified (for instance, the SM itself ex-

trapolated at extremely high energies10) the fate of the electroweak vacuum, whether it is

absolutely stable or not, is a physical statement which does not depend on the choice of

the gauge. This is equivalent to say that the critical Higgs boson mass (or, in general, the

critical values of the SM parameters) distinguishing between the stable and unstable phase

of the SM is a gauge-independent quantity, as we formally proved in section 3.1. In this

respect, it is worth to recall that the tunnelling probability of the electroweak vacuum is

formally gauge independent as well [21, 37, 57].

On the other hand, the absolute stability condition is sometimes formulated by requir-

ing that the electroweak minimum, φew, is the global minimum of the effective potential

over the range of validity of the SM

Veff(φew) < Veff(φ) for φ < ΛSM , (5.1)

where ΛSM is a physical threshold (e.g. the Planck scale). Above this scale new physics

is supposed to alter the shape of the effective potential. However, since Veff(φ) is gauge

dependent (unless φ is an extremum), the condition in eq. (5.1) is clearly gauge depen-

dent too.

10Under the assumption that Planck-scale physics decouples from the SM even at energies beyond the

Planck mass and that the Laundau pole of the hypercharge does not pose any conceptual problem.
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From a low-energy point of view, it is a relevant question to seek a connection be-

tween the instability scale, Λ, and the scale of new physics, ΛSM. The latter being, of

course, of utmost importance for experiments. The irreducible gauge dependence of Λ,

however, makes its identification with ΛSM ambiguous, since we are not comparing two

physical quantities.

Though the gauge dependence of Λ amounts to about one order of magnitude in the

case of the Fermi gauge (cf. figure 4), this result cannot be used to give an absolute upper

bound on the gauge dependence of Λ. The reason is that, on one hand, different gauge-fixing

schemes generally lead to different results (as, for instance, in the case of the background

Rξ gauge discussed in appendix B) and, on the other hand, we cannot say much beyond

perturbation theory. Notice, indeed, that there is no physical principle that restricts the

range of the gauge-fixing parameters. Hence, we rather stick to the conclusion that ΛSM is

a model dependent parameter which cannot be determined by just extrapolating the SM

parameters at high energies.11

Let us finally recall that, given the central values of the SM parameters and assuming

that new physics at e.g. the Planck scale does not affect the tunnelling computation [11],

the lifetime of the electroweak vacuum turns out to be much longer than the age of the

universe [9]. A metastable electroweak vacuum can comply with the data and new physics

is not necessarily implied. Hence, the problem of the gauge dependence of the SM vacuum

instability scale and its connection with the scale of new physics might seem an academic

one. However, this does not need to be necessarily the case. For instance, we would

like to mention the recent measurement of the primordial tensor fluctuations in the cosmic

microwave background by the BICEP2 collaboration [60] which suggests a high inflationary

scale of about 1014GeV. As pointed out in [61–66] the Higgs field might be subject to

quantum fluctuations generated during the primordial stage of inflation which can easily

destabilize the electroweak vacuum. In particular, since the quantity Λ (or, more precisely,

the field value where the effective potential reaches its maximum) enters in the calculation of

the electroweak vacuum survival probability, its physical identification should be addressed

with care.
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A Renormalization group equations

In terms of the parameters α1 = 5
3
g′2

4π , α2 = g2

4π , α3 =
g23
4π , αt =

y2t
4π and αλ = λ

4π , the two-

loop RGEs used in the numerical analysis for the case of the Fermi gauge are [51, 67–69]

µ2 d

dµ2

α1

π
=

41

40

α2
1

π2
+

199

800

α3
1

π3
+

27

160

α2
1

π2

α2

π
+

11

20

α2
1

π2

α3

π
− 17

160

α2
1

π2

αt

π
, (A.1)

11Even without considering the issue of the gauge dependence, the connection between Λ and the maxi-

mum allowed value of the scale of new physics required to stabilize the electroweak vacuum is anyway not

so direct, due to the presence of extra parameters (e.g. couplings and masses) in any UV completion of the

SM [58, 59].
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µ2 d

dµ2

α2

π
= − 19

24

α2
2

π2
+

9

160

α1

π

α2
2

π2
+

35

96

α3
2

π3
+

3

4

α2
2

π2

α3

π
− 3

32

α2
2

π2

αt

π
, (A.2)

µ2 d

dµ2

α3

π
= − 7

4

α2
3

π2
+

11

160

α1

π

α2
3

π2
+

9

32

α2

π

α2
3

π2
− 13

8

α3
3

π3
− 1

8

α2
3

π2

αt

π
, (A.3)

µ2 d

dµ2

αt

π
=

αt

π

(

9

8

αt

π
− 17

80

α1

π
− 9

16

α2

π
− 2

α3

π

)

+
αt

π

(

3

8

α2
λ

π2
− 3

4

αλ

π

αt

π
− 3

4

α2
t

π2

+
393

1280

α1

π

αt

π
+

225

256

α2

π

αt

π
+

9

4

α3

π

αt

π
+

1187

9600

α2
1

π2
− 23

64

α2
2

π2
− 27

4

α2
3

π2

− 9

320

α1

π

α2

π
+

19

240

α1

π

α3

π
+

9

16

α2

π

α3

π

)

, (A.4)

µ2 d

dµ2

αλ

π
=

27

1600

α2
1

π2
+

9

160

α1

π

α2

π
+

9

64

α2
2

π2
− 3

4

α2
t

π2
+

αλ

π

(

− 9

40

α1

π
− 9

8

α2

π
+

3

2

αt

π
+ 3

αλ

π

)

− 3411

64000

α3
1

π3
− 1677

12800

α2
1

π2

α2

π
− 171

3200

α2
1

π2

αt

π
+

1887

6400

α2
1

π2

αλ

π
− 289

2560

α1

π

α2
2

π2

+
63

320

α1

π

α2

π

αt

π
+

117

640

α1

π

α2

π

αλ

π
− 1

20

α1

π

α2
t

π2
+

17

64

α1

π

αt

π

αλ

π
+

27

40

α1

π

α2
λ

π2

+
305

512

α3
2

π3
− 9

128

α2
2

π2

αt

π
− 73

256

α2
2

π2

αλ

π
+

45

64

α2

π

αt

π

αλ

π
+

27

8

α2

π

α2
λ

π
− α3

π

α2
t

π2

+
5

2

α3

π

αt

π

αλ

π
+

15

16

α3
t

π3
− 3

32

α2
t

π

αλ

π
− 9

2

αt

π

α2
λ

π2
− 39

4

α3
λ

π3
, (A.5)

µ2 d

dµ2

ξB
π

=
ξB
π

(

−41

40

α1

π

)

+
ξB
π

(

−199

800

α2
1

π2
− 27

160

α1

π

α2

π
− 11

20

α1

π

α3

π
+

17

160

α1

π

αt

π

)

, (A.6)

µ2 d

dµ2

ξW
π

=
ξW
π

(

1

24

α2

π
− 1

4

ξWα2

π

)

+
ξW
π

(

− 9

160

α1

π

α2

π
− 43

64

α2
2

π2
− 3

4

α2

π

α3

π

+
3

32

α2

π

αt

π
− 11

32

α2

π

ξWα2

π
− 1

16

ξ2Wα2
2

π2

)

, (A.7)

µ
d

dµ
φ = − φ

(

− 9

80

α1

π
− 9

16

α2

π
+

3

4

αt

π
+

3

80

ξBα1

π
+

3

16

ξWα2

π

)

− φ

(

3

8

α2
λ

π2
+

1293

12800

α2
1

π2
+

27

1280

α2

π

α1

π
− 271

512

α2
2

π2
+

17

128

α1

π

αt

π
− 27

64

α2
t

π2

+
45

128

α2

π

αt

π
+

5

4

α3

π

αt

π
+

3

16

ξWα2
2

π2
+

3

128

ξ2Wα2
2

π2

)

. (A.8)

In the case of the background Rξ gauge (see appendix B), the one-loop running of the field

φ is found to be

µ
d

dµ
φ = −φ

(

− 9

80

α1

π
− 9

16

α2

π
+

3

4

αt

π
− 3

80

ξBα1

π
− 3

16

ξWα2

π

)

. (A.9)

Notice that, by perturbatively expanding the RGE satisfied by the effective potential in

eq. (2.51) at the first non-trivial order, the gauge-dependent parts of the one-loop anoma-

lous dimension can be extracted from the µ-dependent terms of V
(1)
eff , which provides a

non-trivial check of the calculation.
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A.1 On the UV behaviour of ξB and ξW

To better understand the running properties of ξB and ξW , it turns out to be useful to

solve analytically eqs. (A.1)–(A.2) and eqs. (A.6)–(A.7). At one loop we have

α1(µ) =
α1(Mt)

1− 41
20

α1(Mt)
π log µ

Mt

, (A.10)

α2(µ) =
α2(Mt)

1 + 19
12

α2(Mt)
π log µ

Mt

, (A.11)

ξB(µ) = ξB(Mt)

(

1− 41

20

α1(Mt)

π
log

µ

Mt

)

, (A.12)

ξW (µ) =

ξW (Mt)
1−6ξW (Mt)

(

1 + 19
12

α2(Mt)
π log µ

Mt

) 1

19

1 + 6 ξW (Mt)
1−6ξW (Mt)

(

1 + 19
12

α2(Mt)
π log µ

Mt

) 1

19

. (A.13)

The main features of the system of equations above can be summarized as follows:

• From eq. (A.1) and eq. (A.6) (or, equivalently, from eq. (A.10) and eq. (A.12)) it

follows that α1ξB is constant under the RG flow. This property is true at all orders in

perturbation theory and is a consequence of the Ward identity ZB
3 Zα1

= 1, where ZB
3

and Zα1
are respectively the hypercharge wavefunction and vertex renormalization

constants.

• The values ξB = 0 and ξW = 0 are fixed points of the RG flow. This property is true

at all orders in perturbation theory and guarantees that in the Landau gauge ξB 6= 0

and ξW 6= 0 are not radiatively generated.

• The value ξW = 1
6 is a fixed point of the RG flow at one loop (cf. eq. (A.7)). However,

such a property does not hold anymore at higher orders.

• For ξW (Mt) ≫ 1
6 and µ ≫ Mt, eq. (A.13) reaches the asymptotic value

ξW (µ) ≈
−1

6

(

1 + 19
12

α2(Mt)
π log µ

Mt

) 1

19

1−
(

1 + 19
12

α2(Mt)
π log µ

Mt

) 1

19

, (A.14)

which is independent from the initial condition ξW (Mt) and always > 0. A typical

RG solution in such a case is plotted in the left panel of figure 2.

• For ξW (Mt) < 0, eq. (A.13) can develop a Landau pole. See e.g. the right panel in

figure 2.

B Background Rξ gauge

In this appendix we consider the calculation of the SM one-loop effective potential in a

generalization of the renormalizable ’t Hooft gauge (see e.g. [70]) where the Higgs vac-

uum expectation value (vev) is promoted to the background field φ. This is obtained by
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considering the following Lagrangian density

LBKGD
g.f. = −1

2

[

2F̄+F̄− +
(

F̄ 3
)2

+
(

F̄B
)2
]

, (B.1)

where the gauge-fixing functionals are defined as

F̄± = ξ̄
−1/2
1,W ∂µW±

µ ∓ iξ̄
1/2
2,W m̄Wχ± , (B.2)

F̄ 3 = ξ̄
−1/2
1,3 ∂µW 3

µ − ξ̄
1/2
2,3 m̄Wχ3 , (B.3)

F̄B = ξ̄
−1/2
1,B ∂µBµ − ξ̄

1/2
2,Bm̄Bχ

3 , (B.4)

with W±
µ and χ± conforming to the standard definitions

W±
µ =

1√
2

(

W 1
µ ∓ iW 2

µ

)

, (B.5)

χ± =
1√
2

(

χ1 ± iχ2
)

. (B.6)

In eqs. (B.2)–(B.4), m̄W and m̄B are background-field-dependent masses (see eqs. (2.18)–

(2.19)) and the gauge-fixing parameters ξ̄1,α, ξ̄2,α (for α = W, 3, B) are denoted differently,

since they have a different renormalization constant already at one loop [70].

As long as we are not interested in the running properties of ξ̄1,α and ξ̄2,α, they can

be chosen equal at a given renormalization scale. This simplifies the calculation of the

one-loop effective potential, since the mixed Goldstone-gauge boson propagators do not

appear at tree level. In a first step, we set for simplicity ξ̄1,W = ξ̄2,W = ξ̄1,3 = ξ̄2,3 ≡ ξ̄W
and ξ̄1,B = ξ̄2,B ≡ ξ̄B. For the full result with general gauge-fixing parameters we refer to

appendix B.1.12

A new feature, with respect to the Fermi gauge, is the non-trivial contribution of

the ghost fields, which must be taken into account by means of the compensating ghost

Lagrangian associated to the gauge-fixing functionals in eqs. (B.2)–(B.3)

LBKGD
ghost =

∑

αβ

c†α
δF̄α

δθβ
cβ , (B.7)

where cα, c
†
α (α = +,−, 3, B) are the Feddeev-Popov ghost fields and δ/δθβ denotes the

derivative with respect to the parameter of the gauge transformation. Following the defi-

nition of the covariant derivative in eq. (2.5), the quadratic part of the ghost Lagrangian

is found to be

LBKGD/quad
ghost = c†+

(

−ξ̄
−1/2
W �− ξ̄

1/2
W m̄2

W

)

c+ + c†−

(

−ξ̄
−1/2
W �− ξ̄

1/2
W m̄2

W

)

c−

+ c†3

(

−ξ̄
−1/2
W �− ξ̄

1/2
W m̄2

W

)

c3 + c†B

(

−ξ̄
−1/2
B �− ξ̄

1/2
B m̄2

B

)

cB

+ c†3

(

−ξ̄
1/2
W m̄W m̄B

)

cB + c†B

(

−ξ̄
1/2
B m̄W m̄B

)

c3 . (B.8)

12We are aware of a similar calculation in the background Rξ gauge where all the gauge-fixing parameters

in eqs. (B.2)–(B.4) are taken equal [46].
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Correspondingly, the inverse propagator matrix of the ghost fields in momentum space is

given by

iD̃−1
ghost =












ξ̄
−1/2
W k2 − ξ̄

1/2
W m̄2

W 0 0 0

0 ξ̄
−1/2
W k2 − ξ̄

1/2
W m̄2

W 0 0

0 0 ξ̄
−1/2
W k2 − ξ̄

1/2
W m̄2

W −ξ̄
1/2
W m̄W m̄B

0 0 −ξ̄
1/2
B m̄W m̄B ξ̄

−1/2
B k2 − ξ̄

1/2
B m̄2

B













,

(B.9)

defined on the complex field vector basis, cT = (c+, c−, c3, cB). Then from eq. (B.9) one gets

log det iD̃−1
ghost = 2 log

(

k2 − ξ̄W m̄2
W

)

+ log
(

k2 − ξ̄W m̄2
W − ξ̄Bm̄

2
B

)

+ . . . , (B.10)

where the ellipses stand for φ-independent terms. The rest of the calculation proceeds as

in section 2.1, with only two differences: the absence of the Goldstone-gauge boson mixing

term, m̄mix, and the presence of an extra, gauge-dependent, contribution to the Goldstone

boson masses

iD̃−1
χ =







k2 − m̄2
χ − ξ̄W m̄2

W 0 0

0 k2 − m̄2
χ − ξ̄W m̄2

W 0

0 0 k2 − m̄2
χ − ξ̄W m̄2

W − ξ̄Bm̄
2
B






. (B.11)

Including all the relevant degrees of freedom, the one-loop effective potential is given by

(cf. eq. (2.9))

V
(1)
eff (φ)|BKGD = − i

2
µ2ǫ

∫

ddk

(2π)d

[

− 12 log
(

−k2 + m̄2
t

)

+ (d− 1)
(

2 log
(

−k2 + m̄2
W

)

+ log
(

−k2 + m̄2
Z

))

+ log
(

k2 − m̄2
h

)

+ 2 log
(

k2 − m̄2
χ+

)

+ log
(

k2 − m̄2
χ0

)

− 2 log
(

k2 − m̄2
cW

)

− log
(

k2 − m̄2
cZ

)

+ φ-independent
]

, (B.12)

where we defined the field-dependent masses:

m̄2
cW

= ξ̄W m̄2
W , (B.13)

m̄2
cZ

= ξ̄W m̄2
W + ξ̄Bm̄

2
B , (B.14)

m̄2
χ+ = m̄2

χ + ξ̄W m̄2
W , (B.15)

m̄2
χ0 = m̄2

χ + ξ̄W m̄2
W + ξ̄Bm̄

2
B . (B.16)
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By performing the integral in eq. (2.41) and by expanding in ǫ, we get

V
(1)
eff |BKGD

bare =
1

4(4π)2

[

− 12m̄4
t

(

log
m̄2

t

µ2
− 3

2
−∆ǫ

)

+ 6m̄4
W

(

log
m̄2

W

µ2
− 5

6
−∆ǫ

)

(B.17)

+3m̄4
Z

(

log
m̄2

Z

µ2
− 5

6
−∆ǫ

)

+ m̄4
h

(

log
m̄2

h

µ2
− 3

2
−∆ǫ

)

+ 2m̄4
χ+

(

log
m̄2

χ+

µ2
− 3

2
−∆ǫ

)

+ m̄4
χ0

(

log
m̄2

χ0

µ2
− 3

2
−∆ǫ

)

− 2m̄4
cW

(

log
m̄2

cW

µ2
− 3

2
−∆ǫ

)

− m̄4
cZ

(

log
m̄2

cZ

µ2
− 3

2
−∆ǫ

)]

,

whose divergent part is explicitly given by

V
(1)
eff |BKGD

bare−pole =
∆ǫ

(4π)2

[

−m4 +

(

3λ+
1

8
ξ̄Bg

′2 +
3

8
ξ̄W g2

)

m2φ2 (B.18)

+

(

− 3

64
g′4 − 3

32
g′2g2 − 9

64
g4 +

3

4
y4t − 3λ2 − 1

8
ξ̄Bg

′2λ− 3

8
ξ̄W g2λ

)

φ4

]

.

Notice that the divergent structure of eq. (B.18) can be identified with that in eq. (2.45)

of the Fermi gauge, after the replacement ξW,B → −ξW,B. Hence, in order to cancel the

gauge-dependent poles in eq. (B.18), the same substitution must be made in the field

renormalization constant in eq. (2.47), which implies

Z
1/2
φ |BKGD = 1 +

∆ǫ

(4π)2

(

3

8
g′2 +

9

8
g2 − 3

2
y2t +

1

8
ξBg

′2 +
3

8
ξW g2

)

. (B.19)

The renormalization constants of m2 and λ are gauge independent and hence are given by

the expressions in eqs. (2.48)–(2.49).

After the subtraction of all the poles due to the renormalization prescription, the

one-loop contribution to the effective potential in the MS scheme reads

V
(1)
eff (φ)|BKGD =

1

4(4π)2

[

− 12m̄4
t

(

log
m̄2

t

µ2
− 3

2

)

+ 6m̄4
W

(

log
m̄2

W

µ2
− 5

6

)

(B.20)

+3m̄4
Z

(

log
m̄2

Z

µ2
− 5

6

)

+ m̄4
h

(

log
m̄2

h

µ2
− 3

2

)

+ 2m̄4
χ+

(

log
m̄2

χ+

µ2
− 3

2

)

+m̄4
χ0

(

log
m̄2

χ0

µ2
− 3

2

)

− 2m̄4
cW

(

log
m̄2

cW

µ2
− 3

2

)

− m̄4
cZ

(

log
m̄2

cZ

µ2
− 3

2

)]

,

where the definition of the φ-dependent mass terms can be found in eqs. (B.13)–(B.16)

(see also eqs. (2.16)–(2.20)). For ξW = ξB = 0, eq. (B.20) reproduces the standard one-

loop result in the Landau gauge [24], while, for ξW = ξB, it reproduces the result of [46].

Moreover, on the tree-level minimum, m̄χ = 0, one has m̄χ+ = m̄cW and m̄χ0 = m̄cZ , so

that the gauge dependence drops from V
(1)
eff .

By expanding eq. (B.20) in the φ ≫ m limit, one gets the RG improved λeff coupling

defined in eq. (2.61), with the p-coefficients explicitly given in table 2.
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p t W Z h χ+ χ0 cW cZ

Np −12 6 3 1 2 1 −2 −1

Cp
3
2

5
6

5
6

3
2

3
2

3
2

3
2

3
2

κp
y2t
2

g2

4
g2+g′2

4 3λ λ+ ξ̄W g2

4 λ+ ξ̄Bg′2

4 + ξ̄W g2

4
ξ̄W g2

4
ξ̄Bg′2

4 + ξ̄W g2

4

Table 2. The p-coefficients entering the expression of λeff in eq. (2.61) for the background Rξ gauge.

B.1 Full result

The expression of the effective potential in the background Rξ gauge for a general set of

gauge-fixing parameters ξ̄1,α, ξ̄2,α (α = W, 3, B) is found to be

V
(1)
eff |BKGD =

1

4(4π)2

[

− 12m̄4
t

(

log
m̄2

t

µ2
− 3

2

)

+ 6m̄4
W

(

log
m̄2

W

µ2
− 5

6

)

+3m̄4
Z

(

log
m̄2

Z

µ2
− 5

6

)

+ m̄4
h

(

log
m̄2

h

µ2
− 3

2

)

+ 2m̄4
A+

(

log
m̄2

A+

µ2
− 3

2

)

+ 2m̄4
A−

(

log
m̄2

A−

µ2
− 3

2

)

+ m̄4
B+

(

log
m̄2

B+

µ2
− 3

2

)

+ m̄4
B−

(

log
m̄2

B−

µ2
− 3

2

)

−4m̄4
cW

(

log
m̄2

cW

µ2
− 3

2

)

− 2m̄4
cZ

(

log
m̄2

cZ

µ2
− 3

2

)]

, (B.21)

where we employed the φ-dependent masses in eqs. (2.16)–(2.20) and further defined

m̄2
A± =

1

2

(

m̄2
χ + 2

√

ξ̄1,W ξ̄2,W m̄2
W ± m̄χ

√

m̄2
χ − 4

(

ξ̄1,W −
√

ξ̄1,W ξ̄2,W

)

m̄2
W

)

, (B.22)

m̄2
B± =

1

2

(

m̄2
χ + 2

√

ξ̄1,3ξ̄2,3m̄
2
W + 2

√

ξ̄1,B ξ̄2,Bm̄
2
B

±m̄χ

√

m̄2
χ − 4

(

ξ̄1,3 −
√

ξ̄1,3ξ̄2,3

)

m̄2
W − 4

(

ξ̄1,B −
√

ξ̄1,B ξ̄2,B

)

m̄2
B

)

, (B.23)

m̄2
cW

=
√

ξ̄1,W ξ̄2,W m̄2
W , (B.24)

m̄2
cZ

=
√

ξ̄1,3ξ̄2,3m̄
2
W +

√

ξ̄1,B ξ̄2,Bm̄
2
B . (B.25)

While for the gauge-dependent part of the one-loop anomalous dimension we get

γ(1)
∣

∣

∣

BKGD

gauge dep.
=

1

(4π)2

(

1

2

(

ξ̄1,W − 2
√

ξ̄1,W ξ̄2,W

)

g2 +
1

4

(

ξ̄1,3 − 2
√

ξ̄1,3ξ̄2,3

)

g2

+
1

4

(

ξ̄1,B − 2
√

ξ̄1,B ξ̄2,B

)

g′2
)

. (B.26)

Notice that in the ξ̄1,α → ξ̄2,α limit (α = W, 3, B) and for 3 = W one reproduces the

background Rξ gauge results in eq. (B.20) and eq. (A.9), while for ξ̄2,α → 0 (α = W, 3, B)

and 3 = W one obtains the expressions in eq. (2.50) and eq. (A.8) for the Fermi gauge.

– 24 –
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Let us finally point out that the SM effective potential in the standard Rξ gauge can

be obtained by replacing

ξ̄
1/2
2,α → ξ̄

1/2
2,α v/φ , (B.27)

in the φ-dependent mass terms of eq. (B.21), where α = W, 3, B and v =
√

m2/λ denotes

the tree-level vev of the Higgs doublet. In the limit relevant for the study of the SM vacuum

stability, namely φ ≫ v, the Rξ gauge reduces to the Fermi gauge. On the other hand,

the expression of the SM effective potential in the standard Rξ gauge is more suited for

broken-phase calculations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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