ON THE GAUSS MAP OF NULL SCROLLS

By
Soon Meen Choi, U-Hang Ki and Young Jin Suh

Abstract

The purpose of this paper is to characterize a class of non-degenerate ruled surfaces in \boldsymbol{R}_{1}^{3}, which are said to be null scrolls, satisfying the condition $\Delta \xi=A \xi$, where ξ denote their Gauss maps and $A \in \operatorname{gl}(3, \boldsymbol{R})$.

1. Introduction

Let $\boldsymbol{H}^{2}(-1)$ (resp. $S_{1}^{2}(1)$) be the 2-dimensional hyperbolic space of constant curvature -1 (resp. the 2-dimensional de Sitter space of constant curvature 1) in the 3-dimensional Minkowski space \boldsymbol{R}_{1}^{3}. Let M be a space-like surface (resp. time-like surface) in \boldsymbol{R}_{1}^{3} and ξ a unit vector field normal to M. Then, for any point z in M, we regard $\xi(z)$ as a point in $\boldsymbol{H}^{2}(-1)$ (resp. $\left.S_{1}^{2}(1)\right)$ by the parallel translation to the origin in the ambient space \boldsymbol{R}_{1}^{3}. The map ξ of M into $\boldsymbol{H}^{2}(-1)$ (resp. $\left.S_{1}^{2}(1)\right)$ is called the Gauss map of M. In this paper, we give a geometric characterization for a class of non-degenerate ruled surfaces in \boldsymbol{R}_{1}^{3} satisfying $\Delta \xi=A \xi(A \in g l(3, R))$.

Let \boldsymbol{R}^{n} denote the n-dimensional Euclidean space and $S_{0}^{n-1}\left(1 / r^{2}\right)$ the hypersphere of \boldsymbol{R}^{n} centered at the origin with radius r. In the theory of minimal submanifolds in $\boldsymbol{R}^{\boldsymbol{n}}$, Takahashi's theorem [11] is one of interesting results. The theorem gives an important relationship between the theory of minimal submanifolds in $S_{0}^{n-1}\left(1 / r^{2}\right)\left(\subset \boldsymbol{R}^{n}\right)$ and that of eigenvalues of the Laplacian. From the viewpoint of this result, Chen [3], [4] generalized the notion of minimal submanifolds in $S_{0}^{n-1}\left(1 / r^{2}\right)$ to that of submanifolds of finite type in \boldsymbol{R}^{n}, and developed the theory of them greatly. Let M be an m-dimensional Riemannian manifold, x an isometric immersion of M into R^{m+1} and Δ the Laplacian of M. Generalizing the notion of minimal submanifolds in $S_{0}^{n-1}\left(1 / r^{2}\right)$ another way,

[^0]Garay [8] also studied hypersurfaces in R^{n} satisfying the condition $\Delta x=A x$, where A denotes a constant diagonal $(m+1) \times(m+1)$ matrix.

On the other hand, Chen and Piccinni [2] characterized n-dimensional submanifolds M in R^{m} satisfying $\Delta G=\lambda G(\lambda \in R)$, where $G: M \rightarrow G(n, m) \subset R^{N}$ ($N={ }_{m} C_{n}$) denote the generalized Gauss maps of M. Baikoussis and Blair [1] also characterized surfaces in R^{3} satisfying $\Delta \xi=A \xi(A \in g l(3, R))$, where ξ denote their Gauss maps.

As a Lorentzian version to [1], in [5] and [6], the first author has considered the Gauss maps ξ of space-likes or time-like surfaces in \boldsymbol{R}_{1}^{3} satisfying the following equation

$$
\Delta \xi=A \xi, \quad A \in \operatorname{gl}(3, \boldsymbol{R})
$$

where $\operatorname{gl}(3, \boldsymbol{R})$ denotes the set of all real 3×3-matrices. The first author has proved rigidity theorems only for surfaces of revolution and ruled surfaces along any non-null curve in \boldsymbol{R}_{1}^{3}.

In this paper let us consider a null curve α with null frame $F=\{X, Y, Z\}$. Then (α, F) is called a framed null curve with frame F. A non-degenerate ruled surface M in R_{1}^{3} along α parametrized by

$$
x(s, t)=\alpha(s)+t Y(s)
$$

is called a null scroll. It is a time-like surface. The purpose of this paper is to give a geometric characterization for null scrolls satisfying $\Delta \xi=A \xi$ in terms of the function k_{0} and the third curvature k_{3} (See §2).

Theorem. Let M be a null scroll along the framed null curve with proper frame field. Then the Gauss map ξ of M satisfies

$$
\Delta \xi=A \xi, \quad A \in \operatorname{gl}(3, \boldsymbol{R})
$$

if and only if the mean curvature $H=\left(k_{3} / k_{0}\right)$ is constant. In this case, A is always equal to a scalar matrix.

A framed null curve (α, F) with the function $k_{0}=1$ and the first curvature $k_{1}=0$ is said to be a Cartan framed null curve. Moreover, for a Cartan framed null curve α with Cartan frame $F=\{X, Y, Z\}$ this kind of ruled surface is said to be a B-scroll (See Graves [9]).

Corollary. Let M be a B-scroll along the framed null curve (α, F). Then the Gauss map ξ of M satisfies the condition

$$
\Delta \xi=A \xi, \quad A \in \operatorname{gl}(3, \boldsymbol{R})
$$

if and only if the third curvature k_{3} is constant.

2. Null scrolls in the Minkowski 3-space

Let us review the terminology and fundamental properties for a null scroll M in \boldsymbol{R}_{1}^{3}. Here we refer to [7] and [9]. The purpose of this section is to represent the Laplacian Δ on M explicitly in terms of curvatures of the framed null curve, and to calculate the Gaussian curvature K and the mean curvature H of this null scroll.
\boldsymbol{R}_{1}^{3} is by definition the 3 -dimensional vector space \boldsymbol{R}^{3} with the inner product of signature $(1,2)$ given by

$$
\langle x, y\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

for any column vectors $x={ }^{t}\left(x_{1}, x_{2}, x_{3}\right), y={ }^{t}\left(y_{1}, y_{2}, y_{3}\right) \in \boldsymbol{R}^{3}$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be the standard orthonormal basis of \boldsymbol{R}_{1}^{3} given by

$$
e_{1}={ }^{t}(1,0,0), \quad e_{2}={ }^{t}(0,1,0), \quad e_{3}={ }^{t}(0,0,1)
$$

A basis $F=\{X, Y, Z\}$ of \boldsymbol{R}_{1}^{3} is called a (proper) null frame if it satisfies the following conditions:

$$
\begin{gathered}
\langle X, X\rangle=\langle Y, Y\rangle=0, \quad\langle X, Y\rangle=-1 \\
Z=X \times Y=\sum_{i=1}^{3} \varepsilon_{i} \operatorname{det}\left[X, Y, e_{i}\right] e_{i}
\end{gathered}
$$

where $\varepsilon_{1}=-1, \varepsilon_{2}=\varepsilon_{3}=1$. Hence we obtain that

$$
\langle X, Z\rangle=\langle Y, Z\rangle=0, \quad\langle Z, Z\rangle=1
$$

A vector V in \boldsymbol{R}_{1}^{3} is said to be null if $\langle V, V\rangle=0$.
Let $\alpha=\alpha(s)$ be a null curve in R_{1}^{3}, namely, a smooth curve whose tangent vectors $\alpha^{\prime}(s)$ are null. For a given smooth positive function $k_{0}=k_{0}(s)$ let us put $X=X(s)=k_{0}^{-1} \alpha^{\prime}$. Then X is a null vector field along α. Moreover, there exists a null vector field $Y=Y(s)$ along α satisfying $\langle X, Y\rangle=-1$. Here if we put $Z=X \times Y$, then we can obtain a (proper) null frame field $F=\{X, Y, Z\}$ along α. In this case the pair (α, F) is said to be a (proper) framed null curve. A framed null curve (α, F) satisfies the following, so called the Frenet equation:

$$
\left\{\begin{array}{l}
X^{\prime}(s)=k_{1}(s) X(s)+k_{2}(s) Z(s) \tag{2.1}\\
Y^{\prime}(s)=-k_{1}(s) Y(s)+k_{3}(s) Z(s) \\
Z^{\prime}(s)=k_{3}(s) X(s)+k_{2}(s) Y(s)
\end{array}\right.
$$

where $k_{i}=k_{i}(s), i=1,2,3$ are smooth functions defined by

$$
k_{1}=-\left\langle X^{\prime}, Y\right\rangle, \quad k_{2}=\left\langle X^{\prime}, Z\right\rangle, \quad k_{3}=\left\langle Y^{\prime}, Z\right\rangle
$$

The function k_{i} is called an i-th curvature of the framed curve. It follows from the fundamental theorem of ordinary differential equations that a framed null curve $(\alpha, F)=(\alpha(s), F(s))$ is uniquely determined by the functions $k_{0}(>0), k_{1}, k_{2}, k_{3}$ and the initial condition.

A framed null curve (α, F) with $k_{0}=1$ and $k_{1}=0$ is called a Cartan framed null curve and the frame field F is called a Cartan frame.

Let $(\alpha, F)=(\alpha(s), F(s))$ be a null curve with frame $F=\{X, Y, Z\}$. A ruled surface M along α parametrized by

$$
x(s, t)=\alpha(s)+t Y(s), \quad s \in I, t \in J
$$

is called a null scroll. It is a time-like surface. Furthermore, for a Cartan framed null curve α with Cartan frame $F=\{X, Y, Z\}$ the ruled surfaces is called a B-scroll.

From the Frenet equation (2.1), the natural frame $\left\{x_{s}, x_{t}\right\}$ on the null scroll M is obtained by

$$
x_{s}=k_{0} X-k_{1} t Y+k_{3} t Z, \quad x_{t}=Y
$$

and the first fundamental form g on M is given by

$$
\begin{gathered}
g=g_{11}(d s)^{2}+2 g_{12} d s \cdot d t+g_{22}(d t)^{2} \\
g_{11}=2 k_{0} k_{1} t+k_{3}^{2} t^{2}, \quad g_{12}=-k_{0}, \quad g_{22}=0
\end{gathered}
$$

Hence the null scroll M is a time like surface, namely, $\operatorname{det} g<0$ everywhere on M. Let $g^{i j}(i, j=1,2)$ denote the components of the inverse matrix g^{-1} :

$$
g^{-1}=-\frac{1}{k_{0}^{2}}\left(\begin{array}{cc}
0 & k_{0} \tag{2.2}\\
k_{0} & \left(k_{3} t\right)^{2}+2 k_{0} k_{1} t
\end{array}\right) .
$$

One can show that the Laplacian Δ of M is expressed as

$$
\begin{align*}
\Delta & =-\frac{1}{\sqrt{|\mathfrak{G}|}} \sum_{i, j} \frac{\partial}{\partial x_{i}}\left(\sqrt{|\mathfrak{G}|} g^{i j} \frac{\partial}{\partial x_{j}}\right) \tag{2.3}\\
& =-\frac{1}{k_{0}}\left[\frac{\partial}{\partial s}\left(-\frac{\partial}{\partial t}\right)+\frac{\partial}{\partial t}\left\{\left(-\frac{\partial}{\partial s}\right)-\left(\frac{k_{3}^{2} t^{2}+2 k_{0} k_{1} t}{k_{0}}\right) \frac{\partial}{\partial t}\right\}\right] \\
& =\frac{2}{k_{0}} \frac{\partial^{2}}{\partial s \partial t}+\frac{2}{k_{0}^{2}}\left(k_{3}^{2} t+k_{0} k_{1}\right) \frac{\partial}{\partial t}+\frac{1}{k_{0}^{2}}\left(k_{3}^{2} t^{2}+2 k_{0} k_{1} t\right) \frac{\partial^{2}}{\partial t^{2}}
\end{align*}
$$

where \mathfrak{G} denotes the determinant of $\left(g_{i j}\right)$.

Let ξ be the unit normal vector field on the null scroll M in \boldsymbol{R}_{1}^{3} defined by

$$
\begin{equation*}
\xi=-\frac{k_{3}}{k_{0}} t Y-Z \tag{2.4}
\end{equation*}
$$

Then, it is a space-like normal vector field to M. Thus, for any point x in M, we can regard $\xi(s)$ as a point in $S_{1}^{2}(1)$ by the parallel translation to the origin in the ambient space R_{1}^{3}. The map ξ of M into $S_{1}^{2}(1)$ is called the Gauss map of M in \boldsymbol{R}_{1}^{3}. So, the components $h_{i j}, i, j=1,2$, of the second fundamental form of M in \boldsymbol{R}_{1}^{3} are given by

$$
h_{12}=g\left(x_{s t}, \xi\right)=-k_{3}, \quad h_{22}=g\left(x_{t t}, \xi\right)=0
$$

since $x_{s t}=x_{t s}=Y^{\prime}=-k_{1} Y+k_{3} Z, x_{t t}=0$. Accordingly, the Gaussian curvature K and the mean curvature H of the null scroll M is given by respectively

$$
H=\frac{1}{2} \Sigma_{i j} g^{i j} h_{i j}=g^{12} h_{12}=\frac{k_{3}}{k_{0}}
$$

and

$$
K=\frac{-h_{11} h_{22}+h_{12}^{2}}{g_{11} g_{22}-g_{12}^{2}}=-\left(\frac{k_{3}}{k_{0}}\right)^{2}
$$

From the last formula we can assert
Proposition. A null scroll M along the framed null curve α in \boldsymbol{R}_{1}^{3} is flat if and only if the third curvature k_{3} of α vanishes identically.

3. Proof of Theorem

In this section, let us prove the Theorem in the introduction.
Since $\xi=-\left(k_{3} / k_{0}\right) t Y-Z$, by applying the Frenet equation (2.1), the Laplacian of ξ is calculated as follows:

$$
\begin{align*}
\Delta \xi & =\frac{2}{k_{0}} \frac{\partial^{2} \xi}{\partial s \partial t}+\frac{2}{k_{0}^{2}}\left(k_{3}^{2} t+k_{0} k_{1}\right) \frac{\partial \xi}{\partial t}+\frac{1}{k_{0}^{2}}\left(k_{3}^{2} t^{2}+2 k_{0} k_{1} t\right) \frac{\partial^{2} \xi}{\partial t^{2}} \tag{3.1}\\
& =\frac{2}{k_{0}}\left\{\frac{1}{k_{0}^{2}}\left(k_{0}^{\prime} k_{3}-k_{0} k_{3}^{\prime}+k_{0} k_{1} k_{3}\right) Y-\frac{k_{3}^{2}}{k_{0}} Z\right\}+\frac{2}{k_{0}^{2}}\left(k_{3}^{2} t+k_{0} k_{1}\right)\left(-\frac{k_{3}}{k_{0}} Y\right) \\
& =-\frac{2}{k_{0}}\left(\frac{k_{3}}{k_{0}}\right)^{\prime} Y+2\left(\frac{k_{3}}{k_{0}}\right)^{2} \xi .
\end{align*}
$$

This implies that if the mean curvature $H=\left(k_{3} / k_{0}\right)$ is constant, then the Gauss map ξ of M is of 1-type:

$$
\Delta \xi=2 H^{2} \xi
$$

namely, the Gauss map $\xi: M \rightarrow S_{1}^{2}(1)$ is harmonic (cf. [10]). Thus the Gauss map satisfied the following formula in Theorem

$$
\begin{equation*}
\Delta \xi=A \xi, \quad A \in g l(3, \boldsymbol{R}) \tag{3.2}
\end{equation*}
$$

Now let us consider the converse. Assume that the Gauss map ξ of the null scroll M satisfies (3.2). Then, for the matrix A we have by (2.4), (3.1) and (3.2)

$$
\frac{k_{3}}{k_{0}} t A Y+A Z=2\left\{\frac{1}{k_{0}}\left(\frac{k_{3}}{k_{0}}\right)^{\prime}+\left(\frac{k_{3}}{k_{0}}\right)^{3} t\right\} Y+2\left(\frac{k_{3}}{k_{0}}\right)^{2} Z
$$

for the parameter t. Then we have

$$
\begin{gather*}
\frac{k_{3}}{k_{0}} A Y=2\left(\frac{k_{3}}{k_{0}}\right)^{3} Y, \tag{3.3}\\
A Z=\frac{2}{k_{0}}\left(\frac{k_{3}}{k_{0}}\right)^{\prime} Y+2\left(\frac{k_{3}}{k_{0}}\right)^{2} Z . \tag{3.4}
\end{gather*}
$$

We put $k=\left(k_{3} / k_{0}\right)$. Differentiating (3.3) with respect to the parameter s, we get

$$
\begin{equation*}
k^{\prime} A Y+k(A Y)^{\prime}=2\left(3 k^{2} k^{\prime} Y+k^{3} Y^{\prime}\right) \tag{3.5}
\end{equation*}
$$

On the other hand, the Frenet equation (2.1) gives

$$
(A Y)^{\prime}=A Y^{\prime}=-k_{1} A Y+k_{3} A Z
$$

From this together with (3.3), (3.4) and (3.5) we have $k k^{\prime} Y=0$, which implies that k^{2} is constant. It completes the proof of Theorem.

References

[1] C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow. Math. J. 3416 (1992), 355-359.
[2] B. Y. Chen and Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 11 (1987), 161-186.
[3] B. Y. Chen, Submanifolds of finite type and applications, Proc. of TGRC. 3 (1993), 1-48.
[4] -, Total curvature and submanifolds of finite type, World Sciences, Singapore, 1984.
[5] S. M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 285-304.
[6] S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351-367.
[7] M. Dajczer and K. Nomizu, On flat surfaces in S_{1}^{3} and H_{1}^{3}, Manifolds and Lie Groups, Univ. Notre Dame, Birkhäuser, 1981, pp. 71-108.
[8] O. J. Garay, An extension of Takahashi's Theorem, Geometriae Dedicata 34 (1990), 105-112.
[9] L. K. Graves, Codimension one isometric immersions between Lorentz space, Trans. Amer. Math. Soc. 252 (1979), 367-392.
[10] E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573.
[11] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Topology and Geometry Research Center, Kyungpook National University, 702-701, KOREA

Department of Mathematics,
Kyungpook National University, 702-701, KOREA

Department of Mathematics, Kyungpook National University, 702-701, KOREA

[^0]: 1991 Mathematics Subject Classification. Primary 53C40; Secondary 53C15.
 Key Words: framed null curve, null scroll, third curvature, Gauss map, Cartan framed curve. This paper was supported by the grants from BSRI-97-1404 and TGRC-KOSEF.
 Received November 22, 1996.
 Revised February 10, 1997.

