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ON THE GAUSS MAP OF NULL SCROLLS

By

Soon Meen CHOI, U-Hang KI and Young Jin SUH

Abstract. The purpose of this paper is to characterize a class of
non-degenerate mled surfaces in $R_{1}^{3}$ , which are said to be null scrolls,
satisfying the condition $\Delta\xi=A\xi$ , where $\xi$ denote their Gauss maps
and $A\in gl(3, R)$ .

1. Introduction

Let $H^{2}(-1)$ (resp. $S_{1}^{2}(1)$ ) be the 2-dimensional hyperbolic space of constant
curvature $-1$ (resp. the 2-dimensional de Sitter space of constant curvature 1)

in the 3-dimensional Minkowski space $R_{1}^{3}$ . Let $M$ be a space-like surface (resp.

time-like surface) in $R_{1}^{3}$ and $\xi$ a unit vector field normal to $M$. Then, for any
point $z$ in $M$, we regard $\xi(z)$ as a point in $H^{2}(-1)$ (resp. $S_{1}^{2}(1)$ ) by the parallel
translation to the origin in the ambient space $R_{1}^{3}$ . The map $\xi$ of $M$ into $H^{2}(-1)$

(resp. $S_{1}^{2}(1)$ ) is called the Gauss map of $M$. In this paper, we give a geometric
characterization for a class of non-degenerate ruled surfaces in $R_{1}^{3}$ satisfying
$\Delta\xi=A\xi(A\in gl(3, R))$ .

Let $R^{n}$ denote the n-dimensional Euclidean space and $S_{0}^{n-1}(1/r^{2})$ the
hypersphere of $R^{n}$ centered at the origin with radius $r$ . In the theory of minimal
submanifolds in $R^{n}$ , Takahashi’s theorem [11] is one of interesting results. The
theorem gives an important relationship between the theory of minimal sub-
manifolds in $S_{0}^{n-1}(1/r^{2})(\subset R^{n})$ and that of eigenvalues of the Laplacian. From
the viewpoint of this result, Chen [3], [4] generalized the notion of minimal
submanifolds in $S_{0}^{n-1}(1/r^{2})$ to that of submanifolds of finite type in $R^{n}$ , and
developed the theory of them greatly. Let $M$ be an m-dimensional Riemannian
manifold, $x$ an isometric immersion of $M$ into $R^{m+1}$ and $\Delta$ the Laplacian of $M$.
Generalizing the notion of minimal submanifolds in $S_{0}^{n-1}(1/r^{2})$ another way,
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Garay [8] also studied hypersurfaces in $R^{n}$ satisfying the condition $\Delta x=Ax$,
where $A$ denotes a constant diagonal $(m+1)\times(m+1)$ matrix.

On the other hand, Chen and Piccinni [2] characterized n-dimensional
submanifolds $M$ in $R^{m}$ satisfying $\Delta G=\lambda G(\lambda\in R)$ , where $G:M\rightarrow G(n,m)\subset R^{N}$

$(N={}_{m}C_{n})$ denote the generalized Gauss maps of $M$. Baikoussis and Blair [1]

also characterized surfaces in $R^{3}$ satisfying $\Delta\xi=A\xi(A\in gl(3, R))$ , where $\xi$ denote
their Gauss maps.

As a Lorentzian version to [1], in [5] and [6], the first author has considered
the Gauss maps $\xi$ of space-likes or time-like surfaces in $R_{1}^{3}$ satisfying the fol-
lowing equation

$\Delta\xi=A\xi$ , $A\in gl(3, R)$ ,

where $gl(3, R)$ denotes the set of all real $3\times 3$-matrices. The first author has
proved rigidity theorems only for surfaces of revolution and mled surfaces along
any non-null curve in $R_{1}^{3}$ .

In this paper let us consider a null curve $\alpha$ with null frame $F=\{X, Y, Z\}$ .
Then $(\alpha, F)$ is called a framed null curve with frame $F$. A non-degenerate ruled
surface $M$ in $R_{1}^{3}$ along $\alpha$ parametrized by

$x(s, t)=\alpha(s)+tY(s)$

is called a null scroll. It is a time-like surface. The purpose of this paper is to give
a geometric characterization for null scrolls satisfying $\Delta\xi=A\xi$ in terms of the
function $k_{0}$ and the third curvature $k_{3}$ (See \S 2).

THEOREM. Let $M$ be a null scroll along the framed null curve with proper
frame field. Then the Gauss map $\xi$ of $M$ satisfies

$\Delta\xi=A\xi$ , $A\in gl(3, R)$

if and only if the mean curvature $H=(k_{3}/k_{0})$ is constant. In this case, $A$ is always
equal to a scalar matrix.

A framed null curve $(\alpha, F)$ with the function $k_{0}=1$ and the first curvature
$k_{1}=0$ is said to be a Cartan framed null curve. Moreover, for a Cartan framed
null curve $\alpha$ with Cartan frame $F=\{X, Y, Z\}$ this kind of mled surface is said to
be a B-scroll (See Graves [9]).

COROLLARY. Let $M$ be a B-scroll along the framed null curve $(\alpha, F)$ . Then the
Gauss map $\xi$ of $M$ satisfies the condition
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$\Delta\xi=A\xi$ , $A\in gl(3, R)$

if and only if the third curvature $k_{3}$ is constant.

2. $NuU$ scrolls in the Minkowski 3-space

Let us review the terminology and fundamental properties for a null scroll $M$

in $R_{1}^{3}$ . Here we refer to [7] and [9]. The purpose of this section is to represent the
Laplacian $\Delta$ on $M$ explicitly in terms of curvatures of the framed null curve, and
to calculate the Gaussian curvature $K$ and the mean curvature $H$ of this null
scroll.

$R_{1}^{3}$ is by definition the 3-dimensional vector space $R^{3}$ with the inner product
of signature $(1,2)$ given by

$\langle x,y\rangle=-x_{1\mathcal{Y}1}+x_{2\mathcal{Y}2}+x_{3\mathcal{Y}3}$

for any column vectors $x={}^{t}(x_{1},x_{2}, x_{3}),$ $y={}^{t}(y1,y2,y3)\in R^{3}$ . Let $\{e_{1}, e_{2}, e_{3}\}$ be
the standard orthonormal basis of $R_{1}^{3}$ given by

$e_{1}={}^{t}(1,0,0)$ , $e_{2}={}^{t}(0,1,0)$ , $e_{3}={}^{t}(0,0,1)$ .

A basis $F=\{X, Y, Z\}$ of $R_{1}^{3}$ is called a (proper) null frame if it satisfies the
following conditions:

\langle X, $ X\rangle$ $=\langle Y, Y\rangle=0$ , \langle X, $ Y\rangle$ $=-1$ ,

$Z=X\times Y=\sum_{i=1}^{3}\epsilon_{j}\det[X, Y, e_{j}]e_{i}$ ,

where $\epsilon_{1}=-1,$ $\epsilon_{2}=\epsilon_{3}=1$ . Hence we obtain that

\langle X, $Z\rangle$ $=\langle Y, Z\rangle=0$ , $\langle Z, Z\rangle=1$ .

A vector $V$ in $R_{1}^{3}$ is said to be null if \langle V, $ V\rangle$ $=0$ .
Let $\alpha=\alpha(s)$ be a null curve in $R_{1}^{3}$ , namely, a smooth curve whose tangent

vectors $\alpha^{\prime}(s)$ are null. For a given smooth positive function $k_{0}=k_{0}(s)$ let us put
$X=X(s)=k_{0}^{-1}\alpha^{\prime}$ . Then $X$ is a null vector field along $\alpha$ . Moreover, there exists a
null vector field $Y=Y(s)$ along $\alpha$ satisfying \langle X, $ Y\rangle$ $=-1$ . Here if we put
$Z=X\times Y$ , then we can obtain a (proper) null frame field $F=\{X, Y, Z\}$ along
$\alpha$ . In this case the pair $(\alpha, F)$ is said to be a (proper) framed null curve. A framed
null curve $(\alpha, F)$ satisfies the following, so called the Frenet equation:

(2.1) $\left\{\begin{array}{l}X^{/}(s)=k_{1}(s)X(s)+k_{2}(s)Z(s),\\Y^{/}(s)=-k_{1}(s)Y(s)+k_{3}(s)Z(s),\\Z(s)=k_{3}(s)X(s)+k_{2}(s)Y(s),\end{array}\right.$
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where $k_{i}=k_{i}(s),$ $i=1,2,3$ are smooth functions defined by

$ k_{1}=-\langle X^{\prime}, Y\rangle$ , $ k_{2}=\langle X^{\prime}, Z\rangle$ , $ k_{3}=\langle Y^{\prime}, Z\rangle$ .

The function $k_{i}$ is called an i-th curvature of the framed curve. It follows from the
fundamental theorem of ordinary differential equations that a framed null curve
$(\alpha,F)=(\alpha(s), F(s))$ is uniquely determined by the functions $k_{0}(>0),$ $k_{1},$ $k_{2},$ $k_{3}$

and the initial condition.
A framed null curve $(\alpha,F)$ with $k_{0}=1$ and $k_{1}=0$ is called a Cartan framed

null curve and the frame field $F$ is called a Cartan frame.
Let $(\alpha, F)=(\alpha(s),F(s))$ be a null curve with frame $F=\{X, Y, Z\}$ . A mled

surface $M$ along $\alpha$ parametrized by

$x(s, t)=\alpha(s)+tY(s)$ , $s\in I,$ $t\in J$

is called a null scroll. It is a time-like surface. Furthermore, for a Cartan framed
null curve $\alpha$ with Cartan frame $F=\{X, Y, Z\}$ the mled surfaces is called a B-scroll.

From the Frenet equation (2.1), the natural frame $\{x_{s}, x_{t}\}$ on the null scroll
$M$ is obtained by

$x_{s}=k_{0}X-k_{1}tY+k_{3}tZ$ , $x_{l}=Y$ ,

and the first fundamental form $g$ on $M$ is given by

$g^{=g1\mathfrak{l}(ds)^{2_{+2g\downarrow 2}}ds\cdot dt+g22(dt)^{2}}$ ,

$g_{11}=2k_{0}k_{1}t+k_{3}^{2}t^{2}$ , $g_{12}=-k_{0}$ , $g22=0$ .

Hence the null scroll $M$ is a time like surface, namely, $\det g<0$ everywhere
on $M$. Let $g^{ij}(i,j=1,2)$ denote the components of the inverse matrix $g^{-1}$ :

(2.2) $g^{-1}=-\frac{1}{k_{0}^{2}}\left(\begin{array}{ll}0 & k_{0}\\k_{0} & (k_{3}t)^{2}+2k_{0}k_{l}t\end{array}\right)$ .

One can show that the Laplacian $\Delta$ of $M$ is expressed as

(2.3) $\Delta=-\frac{1}{\sqrt{|\mathfrak{G}|}}\sum_{i,j}\frac{\partial}{\partial x_{i}}(\sqrt{|\mathfrak{G}|}g^{ij}\frac{\partial}{\partial x_{j}})$

$=-\frac{1}{k_{0}}[\frac{\partial}{\partial s}(-\frac{\partial}{\partial t})+\frac{\partial}{\partial t}\{(-\frac{\partial}{\partial s})-(\frac{k_{3}^{2}t^{2}+2k_{0}k_{1}t}{k_{0}})\frac{\partial}{\partial t}\}]$

$=\frac{2}{k_{0}}\frac{\partial^{2}}{\partial s\partial t}+\frac{2}{k_{0}^{2}}(k_{3}^{2}t+k_{0}k_{1})\frac{\partial}{\partial t}+\frac{1}{k_{0}^{2}}(k_{3}^{2}t^{2}+2k_{0}k_{1}t)\frac{\partial^{2}}{\partial t^{2}}$ ,

where (& denotes the determinant of $(g_{ij})$ .
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Let $\xi$ be the unit normal vector field on the null scroll $M$ in $R_{1}^{3}$ defined by

(2.4) $\xi=-\frac{k_{3}}{k_{0}}tY-Z$ .

Then, it is a space-like normal vector field to $M$. Thus, for any point $x$ in $M$, we
can regard $\xi(s)$ as a point in $S_{1}^{2}(1)$ by the parallel translation to the origin in the
ambient space $R_{1}^{3}$ . The map $\xi$ of $M$ into $S_{1}^{2}(1)$ is called the Gauss map of $M$ in
$R_{1}^{3}$ . So, the components $h_{ij},$ $i,$ $j=1,2$ , of the second fundamental form of $M$ in
$R_{1}^{3}$ are given by

$h_{12}=g(x_{sl}, \xi)=-k_{3}$ , $h_{22}=g(x_{tl}, \xi)=0$

since $x_{sl}=x_{ts}=Y^{\prime}=-k_{1}Y+k_{3}Z,$ $x_{tt}=0$ . Accordingly, the Gaussian curvature
$K$ and the mean curvature $H$ of the null scroll $M$ is given by respectively

$H=\frac{1}{2}\Sigma_{ij}g^{ij}h_{ij}=g^{12}h_{12}=\frac{k_{3}}{k_{0}}$ ,

and

$ K=\frac{-h_{11}h_{22}+h_{12}^{2}}{g1lg22-g_{12}^{2}}=-(\frac{k_{3}}{k_{0}}I^{2}\cdot$

From the last formula we can assert

PROPOSITION. A null scroll $M$ along the framed null curve $\alpha$ in $R_{1}^{3}$ is flat $lf$

and only if the third curvature $k_{3}$ of $\alpha$ vanishes identically.

3. Proof of Theorem

In this section, let us prove the Theorem in the introduction.
Since $\xi=-(k_{3}/k_{0})tY-Z$ , by applying the Frenet equation (2.1), the

Laplacian of $\xi$ is calculated as follows:

(3.1) $\Delta\xi=\frac{2}{k_{0}}\frac{\partial^{2}\xi}{\partial s\partial t}+\frac{2}{k_{0}^{2}}(k_{3}^{2}t+k_{0}k_{1})\frac{\partial\xi}{\partial t}+\frac{1}{k_{0}^{2}}(k_{3}^{2}t^{2}+2k_{0}k_{1}t)\frac{\partial^{2}\xi}{\partial t^{2}}$

$=\frac{2}{k_{0}}\{\frac{1}{k_{0}^{2}}(k_{0}^{\prime}k_{3}-k_{0}k_{3}^{\prime}+k_{0}k_{1}k_{3})Y-\frac{k_{3}^{2}}{k_{0}}Z\}+\frac{2}{k_{0}^{2}}(k_{3}^{2}t+k_{0}k_{1})(-\frac{k_{3}}{k_{0}}Y)$

$=-\frac{2}{k_{0}}(\frac{k_{3}}{k_{0}})^{\prime}Y+2(\frac{k_{3}}{k_{0}})^{2}\xi$ .
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This implies that if the mean curvature $H=(k_{3}/k_{0})$ is constant, then the Gauss
map $\xi$ of $M$ is of l-type:

$\Delta\xi=2H^{2}\xi$ ,

namely, the Gauss map $\xi$ : $M\rightarrow S_{1}^{2}(1)$ is harmonic (cf. [10]). Thus the Gauss
map satisfied the following formula in Theorem

(3.2) $\Delta\xi=A\xi$ , $A\in gl(3, R)$ .

Now let us consider the converse. Assume that the Gauss map $\xi$ of the null
scroll $M$ satisfies (3.2). Then, for the matrix $A$ we have by (2.4), (3.1) and (3.2)

$\frac{k_{3}}{k_{0}}tAY+AZ=2\{\frac{1}{k_{0}}(\frac{k_{3}}{k_{0}})^{\prime}+(\frac{k_{3}}{k_{0}})^{3}t\}Y+2(\frac{k_{3}}{k_{0}})^{2}Z$

for the parameter $t$ . Then we have

(3.3) $\frac{k_{3}}{k_{0}}$ A $Y=2(\frac{k_{3}}{k_{0}})^{3}Y$ ,

(3.4) $AZ=\frac{2}{k_{0}}(\frac{k_{3}}{k_{0}})^{\prime}Y+2(\frac{k_{3}}{k_{0}})^{2}Z$ .

We put $k=(k_{3}/k_{0})$ . Differentiating (3.3) with respect to the parameter $s$,

we get

(3.5) $k^{\prime}AY+k(AY)^{\prime}=2(3k^{2}k^{\prime}Y+k^{3}Y^{\prime})$ .

On the other hand, the Frenet equation (2.1) gives

$(A Y)^{\prime}=AY^{\prime}=-k_{1}AY+k_{3}AZ$ .

From this together with (3.3), (3.4) and (3.5) we have $kk^{\prime}Y=0$ , which implies
that $k^{2}$ is constant. It completes the proof of Theorem.
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