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ON THE GENERAL NOTION OF FULLY NONLINEAR
SECOND-ORDER ELLIPTIC EQUATIONS

N. V. KRYLOV

Abstract. The general notion of fully nonlinear second-order elliptic equation
is given. Its relation to so-called Bellman equations is investigated. A general
existence theorem for the equations like Pm(uxixj) = JJ™^1 ck(x)Pk(uxixj) *s
obtained as an example of an application of the general notion of fully nonlinear
elliptic equations.

We will be dealing with the following question: Given an equation

F(uxixi(x), uxi(x), u(x), x) = 0

in a domain D cW1, under what conditions and in what class of twice contin-
uously differentiable functions u do we call it an elliptic equation?

It may look strange that we address such a question. Indeed, there are even
books [9], [17] and many articles about the general theory of fully nonlinear
elliptic equations. Therefore, very general results are available in the theory.
However, on the other hand, it turns out that if an unexperienced reader meets
a fully nonlinear second-order partial differential equation in his investigations
and tries to get any information about its solvability from the literature, then
almost certainly he fails to find what he needs, unless he considers an equation
that is exactly one which had already been treated. The point is that in the
general theory we consider nonlinear equations only of a special type, say, such
that for any x e D, £ e Rd, uij, w,, u e R

S\{\2 < F(uij+^,z)-F(uij, z) < S~x\c]\2,

where z = (w,, u, x) and S is a positive constant. Obviously, even for the
simplest Monge-Ampere equation, when F = det(w,;) - f(x), conditions of
this type are not satisfied (for instance, for d > 2 the function det(M,;) grows
much faster than linearly). Nevertheless, the general theory applies to this and
many other special equations, and the reason for this is that in an appropriate
class of functions they can be reduced to those considered in the general theory.
We apply some techniques to include into our theory concrete equations such
as the Monge-Ampere equation (real or complex) or more general Weingarten
equations. These techniques are different in different cases, and by answering
our main question here we want to show, in particular, what should be done for
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an arbitrary equation in order to understand if the general theory applies to it,
and if it does, through what part of the theory to look.

In many respects our approach to the definition is very close to the one from
[5]. But since the main purpose there was to prove existence theorems and by
methods known at that time, the class of equations from [5] does not include
many degenerate nonlinear equations. For example, the degenerate Monge-
Ampere equation det(uxixi) = 0 does not fall into the scheme from [5]. In a
sense, our conditions are easier to verify, and they do not exclude this example.

It should be noted that our definitions are adapted for the existing theory
and that so far, if an equation does not fall into our scheme, there is no way to
investigate its solvability. But it is conceivable that other theories will give rise
to other definitions.

The article is organized as follows. In Section 1 we discuss different ap-
proaches to the notion, present main features of our approach, and state The-
orem 1.1 about an analog of the Monge-Ampere equation which we prove in
Section 5 simply by examining the functions defining the equation and by re-
ferring to our general results. Section 2 contains main definitions, based on the
notion of an elliptic branch of the equation, and simple examples of nonlin-
ear equations illustrating the definitions. In Section 3 we write down elliptic
branches in the form of usual equations, and in Section 4 we consider the most
well-understood case when an elliptic branch is defined by a convex domain and
can be described by the Bellman equation. There we also prove Theorem 1.1
in the case when D is strictly convex and lk are constant. The proof is based
on some general results from Section 6, allowing one to recognize when elliptic
branches of nonlinear equations are defined by convex domains.

In a sense, Sections 1 through 4 give the necessary tools to understand if the
general theory applies to a given fully nonlinear equation. We consider there, so
to speak, only the principal part of the equation without independent variables
entering explicitly.

Section 5 deals with the question of how to apply the general theory in some
cases when independent variables do enter the equation. Specifically, we show
how to use properties of an elliptic branch in order to understand if the function
denning its usual form possesses properties required in the general theory. The
trial example here is Theorem 1.1. In total we give proofs of three versions of
this theorem, gradually increasing the generality and checking only one part of
the conditions of a general theorem about Bellman equations at a time. The
purpose of this is to show that whenever one needs a stronger result about an
elliptic nonlinear PDE, one should investigate deeper properties of functions
defining the equation, that is, make a kind of analytical work which has nothing
at all to do with the PDE theory. Naturally, the proofs of these versions rely
upon some analytical facts, specifically, concerning hyperbolic polynomials, and
they are proved in the last Section 6 of the article.

1. Preliminaries

Naturally, the type of equation should be defined only by the dependence of
F on uxiXj; that is, we will call our equation elliptic if for any p eRd, y e D,
and z e R the following equation in D is elliptic: F(uxixj(x), p, z, y) = 0.
Therefore, let us concentrate on the case when F depends only on the matrix
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of second-order derivatives of u; in other words, we will consider the equation

(1.1) F(uxixJ(x)) = 0.

We assume of course that the set

T := {(vu): Vij = Vji,i,j=l,...,d, F(vtj) = 0}

is not empty.
At first sight it seems natural that equation (1.1) should be called elliptic only

if equations F(uxixj(x)) + c = 0 are elliptic for any constant c. Indeed, this
is the case at least for linear equations. Nevertheless, the experience of dealing
with nonlinear elliptic equations shows that, actually, we should not try to keep
this property. For instance, in the future we will see that the equation

(1.2) 2M^l^l  + S"*'*' UX2X* + 2Mx2x2  =  1

is an elliptic and even uniformly elliptic equation and the equation

(1.3) 2w2lx, + 5uxixiuxix2 + 2u2xlxl = -1

does not behave as an elliptic equation at all (see Example 2.21 below). This
means that we should investigate each individual equation like (1.1) separately.

Usually in the literature on nonlinear elliptic equations (see, for instance,
[6], [3], [4], [9], [17]) equation (1.1) is called elliptic if the matrix dF/dUij is
nonnegative (or nonpositive) for all arguments. Of course, this excludes at once
even the simplest Monge-Ampere equation and forces the reader who has come
up with a concrete equation to look where applications are considered.

An attempt to give a better definition is made in [2] where the equation is
called elliptic on a given solution u if at any point x e D the matrix with
entries dF/dUjj(uxixJ(x)) is nonnegative (or nonpositive). After that equation
(1.1) is called elliptic in the given class §* (say, % = C2(D)) of functions if
it is elliptic on any (if there is any) solution u e %. It is worth noting that
only in rare cases we can take ^ = C2(D) in this definition. For example, for
d = 3 the function u(x) = (x1)2 - (x2)2 - (x3)2 is a solution of the simplest
Monge-Ampere equation det (uxixj) = 8, which as we will see later should be
called elliptic, but the matrix (dF/dUij(uxixj)) is indefinite.

This definition has several weak points. For instance, as easy to check
equations (1.2), (1.3) are then both elliptic in the same class of functions
9* defined as the set of all functions for which Au > l/vTS. Furthermore,
somehow we should know a priori in what class of functions (say, convex,
plurisubharmonic,...) the given equation can and should be considered. From
the point of view of this definition the research carried out in [13] appears
somewhat mysterious and looks like the author found a right class of functions
by chance. (An unsuccessful attempt to apply the above definition in the case
of equation (1.3) is given in Example 2.21 below).

It is also worth noting that the objective is not only to give a definition of
a nonlinear elliptic equation but also to find such a definition which could do
the job. For instance, we are usually interested in the uniqueness of solutions,
and we usually prove it via the maximum principle. In other words, if we are
given two solutions ux, u2 of equation (1.1), then by proceeding as usual (cf.,
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for instance, [6, Chapter 4, Section 6.2]) for v = ux - u2 we write

0 = F(uix'xj(x)) ~ Fi.u2x,xi(x)) = aij(x)vxixJ(x),

where
fx dF

a'J = /   £— (tUix,xJ + (1 - t)u2xixJ) dt,
Jo  oUjj

and we expect the matrix a = (a'j) to be positive or negative. If we assume
the above definition from [2], then we know that the matrices dF/dutj are
say, positive on «i and on u2 , but generally speaking, tux + (1 - t)u2 is not
a solution and we do not know anything about the definiteness of a. Actually,
it may even happen that for one function F the matrix a is always positive,
and for another function F, defining an equation equivalent to initial equation
(1.1), the corresponding matrix a is neither positive nor negative. The point is
that we can arbitrarily modify the function F outside the set Y, the only set
where some properties of F are given so far. By the way, this possibility of
modification of a nonlinear equation is the main reason for the radical difference
between linear and nonlinear equations, since for the linear case the set Y is a
hyperplane in the linear space

Sd = Rkn{(uu):Uij = Uji, i,j=l,...,d},

where k = d2, and there are not so many ways to represent a hyperplane as a
null set of a linear function.

One way to overcome the last difficulty is to accept the notion of elliptic
convexity of F from [2], that is, to consider only F such that for any two
solutions (from the class W) the matrix a is positive. In this system of notions,
given an equation, to decide if it is a "legal" elliptic equation, first we should
guess in what class of functions we will look for solutions and then modify (if
it is possible at all) the function F, without changing the equation, in order to
replace it with an elliptically convex F.

Unfortunately, even after this other difficulties still remain. For instance,
assume that at the very beginning we know the appropriate class of functions
^ and our F is elliptically convex in this class. Assume that we even obtained
a priori estimates for solutions of the equation. The question of how to prove
existence theorems arises.

Usually we introduce a parameter t e [0, 1] and try to find functions Ft
continuous in t such that Fx = F and Fq defines an equation for which
everything is known. After this we try to prove the same a priori estimates for
solutions, belonging to the same class &, of equations corresponding to Ft for
all t e [0, 1], and then apply some topological methods to get the solvability of
the equation Ft(uxixJ) = 0 for / = 1 from its solvability for t = 0. But on this
way, in all interesting cases, we cannot afford to take Fo linear since usually
solutions of linear equations have no reason to belong to % . For instance, for
the Monge-Ampere equation det(ux,xJ) = 1 in a strictly convex domain D with
boundary data on dD, one of the right classes of solutions is the class of all
convex functions. At the same time there is no linear equations for which all
solutions with different boundary data are convex.
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In a way, this cuts us off from the linear theory and raises the obscure problem
of finding a "model" nonlinear function F0 for any particular F. For profes-
sionals in the field this problem is not too hard, and many authors prefer to use
model equations while treating concrete equations (see, for instance, [2], [3],
[13]), but for a "ready-to-use" theory this "cut off" is highly undesirable since
applications may advance equations different from those which have already
been investigated. However, in the above system of notions we cannot avoid
this difficulty unless we can either understand how to make the continuation
with respect to the parameter t in the situation when the set 9? of solutions
is evolving with t or "hide" the set f by finding a function F such that any
solution o/(l.l) of class 9P is a solution to the equation

(1.4) F(ux,xJ(x)) = 0,

and vice versa, any solution of (1.4) is a solution of (1.1) and belongs to &.
In this paper we shall explore the latter possibility.

We shall present a different approach to the notion of nonlinear elliptic equa-
tion. We shall give a method to decide if a given nonlinear equation is an elliptic
one by looking only at the equation. After this we give the notion of admissi-
ble solutions of the equation and then discuss the possibility of rewriting the
equation with the help of elliptically convex functions F.

The most important concept in this approach is the notion of an admissible
solution which shows the right class of functions in which to look for solutions.
This notion is based on the notion of elliptic branches of the given equation,
which turns out to be meaningful even for viscosity solutions of the jirst-order
nonlinear equations (see Remark 2.25 below).

It is worth noting that in all cases in the literature our class of admissible
solutions coincides with the known ones.

As an example of the application of our general setup we prove the following
new result.

Theorem 1.1. Let d > 2, m be an integer, 1 < m < d, and Pm(X) = Pm>d(X)
be the mth elementary symmetric polynomial of the variables X = (X1,... , Xd).
Define Pq = P0.ttJ = 1. Let D be a bounded domain of class C4 with connected
boundary dD and such that at any point of dD we have

Pm-l,d-l(KX,...,Kd-X)>0,

where kx , ..., Kd~l are the principal curvatures of dD at this point evaluated
with respect to the interior normal to dD (so that for spheres all of them are
positive). Let /0,...,/m_i e C2(Rd), and let <j> e C4(Rd). For any w e
Sd define X(w) as a vector of eigenvalues of w ordered arbitrarily and define
Pm(u>) = Pm(X(w)). Then the equation

m-l
(1.5) Pm(uxtxJ) = zZ(lk')m-k+l(x)Plc(uxixj)   (a.e.) in D

fc=0

with the boundary condition u = 4> on dD has a unique solution u e Cl'X(D)
characterized by the additional property that

Pm(uxixi + tSu) > 0,
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m-l

(1.6)      Pm(uxixi + tSu) > £ dt)m-k+\x)Pk(uxixl + tSu) (a.e.) in D
k=0

for any t > 0. Moreover, if S2kl£ > 0 in D, then u e C2+a(D) for an
ae(0,l).

Remark 1.2. If D = {|x| < 1} and we consider the equation Pd(uxixj) =
Pd-i(ux-xj) with zero boundary condition, then one of the possible solutions
is identically zero. It is important to stress that it is not the one about which
we are talking in the theorem. From the point of view of conditions (1.6) the
admissible solution will be u = -c(l - |x|2), where 2c = Pd_l(Sij)/Pci(Sij).

We could also consider many other equations involving Pm (cf. Remark
6.7 below). The choice of equation (1.5) is caused by the popularity of such
equations in geometry. Equations of type (1.5) with m = d had been first
considered in [2, Section 20] where the existence of a special kind of generalized
solution was established under assumptions different from ours. Results and
comments about the particular case of (1.5) when 4 = 0 for k = 1,... , m - 1
can be found in [5], [14], [20] (in [17] the reader can also find the case when
4 = 0 only for k = 2,..., m-l). It is possible that the powers m — k + 1 in
(1.5) can be replaced by m - k, at least this is the case when 4^0 for one
value of k only (see Remark 5.14 below; for the case when this k = 0 see also,
for instance, [20]). In Remark 5.17 we discuss the issue of better regularity of
solutions.

2. Definitions and examples
Our point of view is based on the observation that every individual equation

(1.1) means and means only that for any x e D

(2.1) (uxixi(x))eY

(recall that Y := {(%•) : Vy = Vji, i, j = \, ... ,d, F(Vif) — 0}). This point
of view allows us to concentrate on properties of the set Y rather than occa-
sional properties of the numerous functions which define the same set Y. Only
properties of the set Y define the type of the equation.

Of course, we assume that F is at least a continuous function, which implies
that T is a closed set of the space Sd. We also keep the assumption from
Section 1 that Y ̂  0. We have already treated the set of all symmetric d xd
matrices as a subspace Sd in the Euclidean space Rk . In the sequel we need
to use the Euclidean norm || • || in this space. Note that for w eRk we have
\\w\\2 := trww*. To finish with notation, we denote by 7 the unit d x d
matrix and define ^+ (JK°) as the set of all nonnegative (respectively, strictly
positive) symmetric dx d matrices.

Definition 2.1. We say that a nonempty open (in Sd) set 8 ^ Sd is a (positive)
elliptic set if

(a) e = e\d(B),
(b) for any (uu) e 96, <*; e Rd it holds that (uu +£'&) eS.

Definition 2.2. We say that equation (1.1) (or, more generally, equation (2.1)
with any nonempty closed Y) is an elliptic equation if there is an elliptic set 8
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such that 9© C Y. In this case we call the equation

(2.2) (uxixJ(x))edG,     xeD,

an elliptic branch of equation (1.1) (or (2.1)) defined by 0.

Definition 2.3. We say that an elliptic set 6 is quasi-nondegenerate if for any
(uu) e dS, £ e Rd \ {0} we have (uu + £'£>) e 0.

Given a number S > 0, we call an elliptic set 6 S -nondegenerate (or uni-
formly elliptic) if for any w ed&, £, e Rd we have

dist(t/7+£<r,0e)><5|f|2.
If equation (2.2) is an elliptic branch of (1.1) (or (2.1)) and 0 is quasi-

nondegenerate (<5-nondegenerate, uniformly elliptic), we call this branch and
equation (1.1) (or (2.1)) quasi-nondegenerate (respectively, ^-nondegenerate,
uniformly elliptic) (cf. Remark 2.5 below).

Remark 2.4. If 0 is an elliptic set and £ € Rd , then w + ££* e 6 not only for
w e 90 but also for w e 0, and in this case we even have that w + ££* € 0.

Indeed, for to € 0 the open set T := {t > 0 : w + t^* & 0} is empty
since if not, then for any interval (a, b) composing T we would have wx :=
w + a&* e dO and wx + etf* <?eif0<e<b-a. Therefore, «)+^*e9,
Actually, w + ££* £ de because we can move the jjoint w a little bit in any
direction without violating the property w + f<!;* e 0.

Moreover, any matrix v e ^+ can be represented as £x£* H-h &€*, with
<*;, € Rd, and therefore, from the above it follows that if w e 0, then w + v ee
for any such v . Since the set J?° is an open set in Sfc and 0 = 0 \ 90, it
follows that for any w e 0, v e ^ we have w + v e 0. In particular, 0 is
necessarily connected.

Furthermore, for any v e J?% there is to > 0 such that tv e 0 for any
t > to. Indeed, it suffices to take awe© and to notice that for sufficiently
large t we have vx = tv - w e ^° .

Remark 2.5. We have just seen that if 0 is an elliptic set, then {w + v : w e
de,ve JH°} c 0. Actually, there is an equality here, and moreover,

0 = {w + ti: w e de, t > 0}.
Indeed, if for a u ee the half line with the equation u-tl, t > 0, does not
intersect 90, then it lies in 0, and the whole set {« - ti + v : t > 0, v e ^}
lies in 0. But this is impossible since the former set coincides with Sd .

In particular, an elliptic set is uniquely defined by its boundary. Specifi-
cally, there is no ambiguity in our Definition 2.3 of quasi-nondegeneracy or
<J-nondegeneracy of an elliptic branch. This issue arises because equation (2.2)
is uniquely defined by 90 rather than 0.

Remark 2.6. Let 0 be an elliptic set. From Remark 2.4 and the fact that
w = (w - &•) + £<*;* it follows that if w e de and f e Rd, then tu-^'^e.
Furthermore, if 0 is quasi-nondegenerate and £ ^ 0, then w - ££,* 0 90 and
w-ssrte.
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Moreover, if the set is ^-nondegenerate, then   dist(w - £<!;*, 90) > S\£\2 ,
since if it were not true, for a point Wi e 90 we would have

S\c;\2 > distO - «•, 90) = |K - (to -{nil
=11(10! +«*)-«>||> dist(wx+^,de).

Remark 2.7. We can restate the conclusions of Remark 2.6 in the following
way. Define negative elliptic sets by replacing («,/ + £,'&) in Definition 2.1
with (ujj - £,'&) and use the same substitution in the definition of quasi-
nondegeneracy and <J-nondegeneracy of negative elliptic sets. Then Remark 2.6
says that if a set 0 is positive elliptic (and quasi-nondegenerate, <5-nondegener-
ate), then its "complement" 0 = Sd \ 0 is negative elliptic (and respectively,
quasi nondegenerate, <5-nondegenerate) too. The converse is also true, and since
de = de, there is no need in appealing to negative elliptic sets in order to get
more elliptic branches of a given nonlinear equation.

We also see that a set 0 is elliptic if and only if the set -(Sd \ 0) is elliptic.

Remark 2.8. For an elliptic set 0 equation (2.2) is, of course, an elliptic equa-
tion. In addition it has only one branch (coinciding with the equation). Indeed,
for any elliptic set ©i such that 9©i c 90 by Remark 2.5 we have ©i C ©.
But the set © is connected, and therefore, from the inclusion 9©i c 9© we
get that, actually, ©] = © and 9©i = 9©.

Specifically, from this argument we also see that elliptic branches have no
proper elliptic subbranches.

Remark 2.9. Similarly to Remark 2.4 by using the notion of negative elliptic
sets from Remark 2.7 we can convince ourselves that for any v e Jf% we have
—tv & © for all sufficiently large t > 0. In particular, now we see that for any
v e J^° there is a to e (-oo, oo) such that tov e de. Since tv e 0 for t > to
and tv 0 © for t < to, this to is unique.

If a set 0 is convex, there is a simple necessary and sufficient condition for
its ellipticity (cf. [5]).

Theorem 2.10. Let 0 be an open convex set in §rf such that 0 ^ Sd. Then it is
an elliptic set if and only if for every v e J?°, tv ee whenever t > 0 is large
enough.

Proof. The necessity follows from Remark 2.4. To prove the sufficiency of
the condition take w e de, e > 0, £ e Rd. Then for all large t we have
t(el + tf*) e © and w(l - r1) + rl(t(el + {£*)) e ©• When t -* co this
implies that w + el + ££* e ©. At last, as e | 0 we get w + ^* e ©. The
theorem is proved.

Remark 2.11. There is an obvious counterpart of Theorem 2.10 when the set
Sd \ 0 is convex. The reader can state and prove the corresponding asser-
tion himself if he notices that for any function u satisfying (2.2) the function
v = -u satisfies the equation (vxixj) e d[-(Sd \ ©)] and -(Sd \ 0) is elliptic
whenever 0 is elliptic.

In terms of the initial function F Theorem 2.10 leads to the following result.
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Theorem 2.12. Let F be a continuous function on §>d, and assume that for every
vo e J?° there is a neighborhood V of vq and a number to such that we have
F(tv) > 0 if t > to, v e V. Assume that the open connected component 0 of
the set {w : F(w) > 0}, such that ti e © for all large t, is convex and © ^ Sd.
Then equation (1.1) is elliptic and one of its elliptic branches is defined by 0.
Moreover, if there is no w e 9© such that F(w + ?££*) = 0 for a £, e Rd \ {0}
and all t>0, then this branch and equation (1.1) are quasi nondegenerate.

Proof. The last assertion is simply a specification of the definitions for the case
of convex 0 defining an elliptic branch. In order to prove the first one we have
to check that for every v e J£° , tv ee whenever t > 0 is large enough. Fix a
v e J?° and let this be false. Then there is a sequence t„ —► oo such that t„v 0
0. We can assume that t„I e 0, and therefore, there exists e„ e [0, 1] with
the property t„(e„v + (1 - e„)I) e de. Of course, F(t„(e„v + (1 - e„)7)) = 0.
At last, without loss of generality we assume that e„ -*s, e„v + (1 - e„)I —►
vo e J(°, and then we immediately get a contradiction with our hypotheses.
The theorem is proved.

Definition 2.13. Given elliptic equation (1.1), its elliptic branch (2.2) and an
e > 0, we call the following equation the e -elliptic regularization of (1.1)

(2.3) (ux,xJ (x) + eSuAu(x)) e 90,     x e D,

which, as is easy to check, is an elliptic branch of the equation

F(uxiXJ + eSijAu) = 0.

For t e [0, 1] consider the following elliptic branches

(2.4) (tuxixJ(x) + (1 - t)SuAu(x)) e 90,     xeD,

of the equations
F(tux,xJ+ (1 - t)SijAu) = 0.

We call the family of equations (2.4) the right interval between equation (1.1)
and the equation Au = c, where the constant c is defined as a unique constant
(see Remark 2.9) such that c(Su) e 90.

A justification of these definitions can be found in Remark 4.3 below.

Remark 2.14. The e-elliptic regularization (2.3) of (1.1) is £i-nondegenerate
elliptic, where ei = e(l + eVd)~x. Indeed, define ©i = {w : w + el tru; e 0}
and take

wedex,  £eRd\{0},   \\v\\ < ex\c;\2,  vx :=£<T + el\t]\2 + v + el trw.

Then for wx = w + ££,* + v we have

wx + el trwx =w + el trw + vx e 0,       wx e ©i,

since w + el trw e 0 and

vx > ft* + \Z\2I(e -ex- eexVd) = &* > 0.
This implies that   dist (w + <*;^*, 9©i) > £i |<*;|2, as we have claimed.
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It is worth noting that if equation (1.1) is linear (nontrivial) and elliptic in
the ordinary sense, then it is elliptic in the sense of Definition 2.2 too. Also, a
linear elliptic equation nondegenerate in the usual sense is nondegenerate in our
sense as well. The following theorem generalizes this fact. It shows, actually,
that general fully nonlinear elliptic equations studied in the literature are elliptic
in our sense.

Theorem 2.15. (i) If F(uu - ?&) < F(uu) < F(uu + ?#) for any vector
£ e Rd \ {0} and symmetric d xd matrix («,/) (and ifY^Q), then equation
(1.1) coincides with its only elliptic branch.

(ii) If there exists a constant S > 0 such that for any vector £ e Rd and d xd
matrix («,-_,-) we have

(2.5) S\Z\2 < F(utj + W) - F(Uij) < S~l\Z\2,

then equation (1.1) coincides with its S2/Vd-nondegenerate elliptic branch.
Moreover, the function F is elliptically convex in the sense that for any d xd

symmetric matrices Wi, w2 there is a matrix a such that

S\Z\2<aij?Zj <S~X\Z\2

for any £ e Rd and

F(wi) - F(w2) = aij(wUj - w2ij).

Proof, (i) As in Remark 2.4 for any to e Srf and v e J?° we have F(w — v)<
F(w) < F(w + v). Moreover, Jf% is an open set, which implies that Y = de,
where © := {7=* > 0}. In particular, equations (1.1) and (2.2) coincide. It
is easy to see that 9 is an elliptic and even quasi-nondegenerate set, so that
equation (2.2) is an elliptic branch of equation (1.1). It remains to note that
equation (2.2) has only one branch.

(ii) We start with the second assertion in (ii). Observe that condition (2.5)
means (and means only) that for any £ e Rd, w e Sd there exist numbers
a±e[S, S~x] such that

(2.6) F(w±tt*)-F(w) = ±a±\^\2.

Bearing this in mind, take Wi, w2 e Sd and note that for A,, £, defined as
eigenvalues and unit eigenvectors of Wi — w2 we have

d
wi = w2 + Y^hii^l-

1=1

Hence by (2.6) for some numbers a, e [S, S~l] we get

d d
F(wx) = F(w2) + ^atXi = F(w2) + Y,ai trS&(wi - w2),

i=i /=i

and it remains to take a = £ <*&£*.
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Then we prove that the only elliptic branch of (1.1) is <52/>/rf-nondegenerate.
To this end we note that the above argument shows that F is Lipschitz contin-
uous: for any Wi, w2 eSd

\F(wi) - F(w2)\ < S~x £ \Xi\ < S~xVd \\wi - w2\\.

Next, if w, v e Y, £ e Rd, and \\v - (w + tt*)\\ = dist (w + tt*, T), then

S\£\2 = SM2 + F(w) < F(w + tt*) = F(w + tt*) - F(v)
< S~x^/d\\v - (w+tt*)\\ = S~xVd dist(w+tt*,T).

The theorem is proved.

Now let us consider several simple examples of nonlinear equations.

Example 2.16. For d = 1 consider the simplest linear equation 0 • u" = 0.
Here Y = R and we can take as © any set like (c, oo), where c is an arbitrary
constant. We see that our equation is uniformly elliptic and has infinitely many
elliptic branches given by the equations u" = c.

Example 2.17. Take d = 1 and the equation \u"\ = 1 on (0, 1). Here Y =
{1} U {-1}, and it is easy to check that we can take as © any of intervals
(1, oo), (-1, oo). These two sets define two different elliptic branches: u" = 1
and u" = -1. These equations are linear nondegenerate elliptic equations.

Example 2.18. For d = 2 consider the equation uxix\ uxixi = 0. It is easy to
see that this equation has four different elliptic branches corresponding to the
domains {«a > 0, u22 > 0}, {un > 0 orw22 > 0}, {«n > 0}, and {u22 > 0} .
These branches can be written as the following equations

min(uxlxl, uxzxi) = 0,    max(uxxxi, uX2x2) = 0,    uxlxi=0,    uX2x2=0.

All the branches are degenerate elliptic equations.

Example 2.19. Take equation (1.2). In the 3-space of 2 x 2 symmetric matrices
the surface Y = {2m|, + 5uXiU22 + 2u\2 = 1} is a cylinder in the un direction,
whose intersection with the (uu , «22)-plane is a hyperbola with the asymptotes
2«n + u22 = 0 and uxx + 2u22 = 0. Furthermore, one branch, say, Ii , of this
hyperbola intersects the positive quadrant and another one, Y2, intersects the
negative quadrant. Here we have three connected open components of R3 \ Y.
One of them whose intersection with («n , «22)-plane lies "above" Ti defines
the positive elliptic set, and the component opposite to it defines the negative
elliptic one. Equation (1.2) is elliptic having two branches:

("*'*■, «xv) € Ti   and (uxxxi, uX2x2) e Y2.

It is easy to see that we can rewrite these branches differently:

2U2ljc,  + 5UXXXXUX2X2 + 2UX2X2  =   1 ,

(2.7) Am>c,
for the first branch, where c is any number in (-2/3, 2/3]; and

2«L' + 5mx1x1m^2 + 2uX2Xi = 1,
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(2.8) Au < 0

for the second one. As is easy to understand, both branches are uniformly
elliptic.

Remark 2.20. The set of all functions satisfying (2.7) is one of the right sets
(of type ^ from Section 1) where we should look for solutions of (1.2) and
where we can even find them (see Theorem 3.4 below). The only real role of
inequality (2.7) is that it defines a branch of equation (1.2). Inequality (2.8)
defines another "good" class of functions.

Example 2.21. Now take equation (1.3). As in the previous example, here the
set T is also a cylinder with the base having the same asymptotes, but this time
the base lies in negative quadrants where Unu22 < 0. It is easy to check that
there is no combination of the three connected open components satisfying the
requirements of Definition 2.1. Therefore, this equation we do not call elliptic.

Observe that, actually, there is a class of functions W such that for any
u e %? at any point in D the matrix dF/dUij(uxixj(x)) is definite under the
condition that u satisfies (1.3). Indeed, it turns out that the largest such set is
^ = {u : \Au\ > 1/-/18} . Moreover, for some boundary data there even exists
a solution of the equation in f. Nevertheless, the behavior of this equation is
quite unnatural for equations which we would like to call elliptic. For example,
if D = {\x\ < 1} and we take any smooth boundary data which is sufficiently
close to a constant, then in ^ there is no smooth solution of the equation with
this data. The reason for this is that either Am > 1/-/T8 in D or Au < -1/VT8
in D, and if, for instance, Am > l/\/l8, then somewhere in D the function u
will attain its minimum value. At this point ux\x\UX2X2 > 0, and at this point
M cannot satisfy the equation. It is useful to note that all this happens in spite
of the fact that inequality Am > 1/VT8 looks very much like (2.7).

Example 2.22. The equation uxixiUx2x2 = 1 is an elliptic one in a domain
D cR2. It has two branches, which are quasi-nondegenerate but not uniformly
elliptic equations. Adding Am to the left-hand side of this equation does not
make it uniformly elliptic. Indeed, the equation ux\x\ ux2x2 + Am = 1 (equiva-
lent to (uxixi + l)(ux2x2 + 1) = 2) is not a uniformly elliptic equation. To make
a uniformly elliptic perturbation of the equation we should follow Definition
2.13, and then we see, for instance, that system of relations (2.7) is, actually, a
1-elliptic regularization of the equation uxixiux2x2 = 1.

In connection with this example it is useful to note that the equation

uxixlUxix*ux*x> = 1

in a domain D c R3 is also quasi-nondegenerate elliptic and with only one
elliptic branch but that the equation uxix\Ux2x2Uxixi + Am = 1 is not elliptic at
all. The reason for the latter is that the section of the corresponding set Y by
the plane M33 = 1 is defined by the equation (2mn + \)(2u22 + 1) = -1 which
has no elliptic branches.

Example 2.23. We will see later (cf. Remark 6.7) that the Monge-Ampere equa-
tion det(uxixj) = 1 is an elliptic quasi-nondegenerate equation and, moreover,
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that the system
det(uxixJ) = 1,        (uxixi)>0,

describes its elliptic branch corresponding to the elliptic set 0 = {w : w >
0, det w > 1}. This means that we can consider the equation in the set of
all convex functions. According to Definition 2.13 the family of systems of
relations

det(tuxixi + (1 - t)StjAu) = 1,        (tuxixi + (1 - t)SijAu) > 0,

is the right interval between the Monge-Ampere equation and the Laplace equa-
tion Am = 1. The second relation in this system, actually, defines the right
class of functions fft about which we were talking in Section 1. By the way,
a different method of joining our equation with a simpler (or "model") one is
usually applied in the literature (see, for instance, [2], [3]). Namely, one takes
any function y/ which is smooth and strictly convex in D and has the same
boundary data as for the solution we are looking for, and one considers the
family of equations

det(uxixi) = t + (l-t) det(y/xixi).

It is not hard to see that all these equations are quasi-nondegenerate elliptic in
our sense.

Definition 2.24. Given an elliptic equation (1.1) (or (2.1)), we say that a func-
tion u is an admissible solution in D if u is a solution in D of any elliptic
branch of the equation (the branch should be the same in the whole of TJ).

Note, for instance, that m(x , y) = x2 - y2 is not an admissible solution of
the elliptic equation u2xu2y = 16.

Remark 2.25. This definition is sufficient for the purposes of the present arti-
cle. However, in applications the following more general definition might make
sense too.

Take a continuous function F(m,; , m, , m , x) defined on Sd xRd x R xRd
such that the set T(x) = {(m,-> , m, , m) : F(uij, m, , m , x) = 0} is nonempty for
any x e D.

We say that the equation

(2.9) F(uxixJ(x), uxi(x), u(x), x) = 0,        xeD,

is elliptic if for any x e D there exists a nonempty open connected set 0(x) c
Sd x Rd x R, ©(x) ^ Sd x Rd x R, such that

(i) 9©(x) c T(x), ©(x) = 0(x) \ 9(0(x)),
(ii) if (uu, ut, u) e 90(x), c]eRd , then (utJ + £&, ut, u) e ©(x),
(iii) the set 0(x) depends continuously on x e D.
If such a set 0 does exist we call the equation

(2.10) (uxixj(x), uxi(x), u(x)) e 90(x),   x e D,

an elliptic branch of (2.9) defined by ©(x).
We say that a function u e C2(D) is an admissible solution of (2.9) if it is a

solution of one of its elliptic branches.
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We say that a function u e C(D) is an admissible viscosity solution of (2.9)
given an elliptic branch defined by 0(x) if for any function <f> e C2(D)

(a) at any point xo e D where u - <j> attains its local minimum equal to
zero, we have ((?W(*o), <M*o), <t>(x0)) 0 8(x0),

(b) at any point xq e D where u - <f> attains its local maximum equal to
zero, we have (<j>x>xj(xq), <j>xi(x0), <f>(x0)) e 0(xo).

It is easy to check that from the point of view of these definitions the func-
tions 1 - |x|, |x| - 1 are both admissible viscosity solutions of the equa-
tion |m'| - 1 = 0 on (-1,1) but the first one solves its branch defined by
0 = {|m'| < 1, x e (-1, 1)} and the second one solves the branch correspond-
ing to © = {|m'| > 1, x e (-1, 1)}. In our sense the equations |m'| -1=0
and -|m'| + 1 = 0 are equivalent (which is rather reasonable) in contrast to the
situation with the usual definition of viscosity solutions (cf., for instance, [7,
Remark 2.5]).

Note also that, for instance, m(x) = x2 sign x is not an admissible viscosity
solution of the elliptic equation |m"| = 2 since u"(x) e 90(x) for x ^ 0,
where 0(x) = (-2, co) for x < 0 and 0(x) = (2, oo) for x > 0 so that 0(x)
is discontinuous in x.

3. Canonical form of elliptic branches
After the reader has realized that his equation is an elliptic one and under-

stands in which branch of the equation he is interested, he might like to read
corresponding books or articles. Then he sees that in the literature we are not
dealing with equations of the form (2.2) but rather of the usual form like (1.1)
or (2.9). The known results and methods of proving a priori estimates and of
proving existence theorems on the basis of these estimates are all adapted to
equations in the usual form. Here we want to discuss how to convert elliptic
branches like (2.2) into the usual form.

Definition 3.1. Given an elliptic equation (1.1) (or (2.1)) and its elliptic branch
(2.2) defined by an elliptic set 0, we call equation (1.4) a canonical form of
branch (2.2) if the function F has the following properties:

(1) F(Ujj)>0 in 0.
(2) F(uu) < 0 outside 8.
(3) F(uu) = 0 on de.
Obviously, there are infinitely many canonical forms for any given elliptic

branch of an elliptic equation. The following theorem brings to the end the
investigation of the possibility of applying the general theory of fully nonlin-
ear elliptic equations to a given equation like (1.1). This theorem should be
compared with Theorem 2.15.

Theorem 3.2. Let © be an elliptic set and equation (2.2) be elliptic (for instance,
be an elliptic branch of (1.1)). Define

F(Uij) = dist ((uu), de)      far (Uij) e 8,
F(Uij) = - dist ((u^, 98)   for (uu) eSd\e.
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Then
(3.1) iue98  <=>  F(w) = 0,

and in particular, equation (1.4) is equivalent to equation (2.2). Furthermore,
far any £eRd, (uu) e Sd

(3.2) 0<*(Ky+#V/(«(/) <|fl2.
Moreover, the function F is elliptically convex in the sense that for any (m,;),

(Vij) e Sd the difference F(m,/) - F(vij) can be represented as a'j(Uij - Vy)
with a nonnegative symmetric matrix a. Finally, if equation (2.2) is S-nonde-
generate, then

(3.3) S\i\2<F(uu + ^)-F(Uij).
Proof. Assertion (3.1) is obvious, and the second inequality in (3.2) follows eas-
ily from the fact that the distance from a set is a Lipschitz continuous function
with the Lipschitz constant 1. To prove the first one for u = («,/) € 8 it suf-
fices to introduce w ede such that ||(m + tt*) ~w\\ = F(u + tt*) and to note
that since w - tt* 0 8 (see Remark 2.6), we have F(u) < \\u - (w - tt*)\\ •
Practically the same argument proves inequality (3.3) for u e 8 if equation
(2.2) is ^-nondegenerate.

If M + ^*GSrf\8,then ue Sd\e, and for w e de such that ||u-to|| =
-F(u) we have w + tt* € 8 and ||« - w|| = ||(m + tt*) - (w + tt*)\\ >
-F(u + tt*) ■ In the same way we get (3.3) for u + tt* € Sd \ 8 if equation
(2.2) is ^-nondegenerate. But if (u(j) e Sd \ 8 and (utj + ?&) e 8, these
inequalities are almost obvious (consider the straight segment [(M,y), (uij +

The remaining assertion about the difference F(uij) - P(Vij) can be obtained
exactly as in the proof of Theorem 2.15. The theorem is proved.

An immediate consequence of this theorem and of results from [7] is the
following

Theorem 3.3. Let D be a bounded smooth domain and (j> be a continuous func-
tion on dD. Assume that equation (1.1) has a uniformly elliptic branch. Then
this equation with the boundary condition u = <j> on dD has an admissible vis-
cosity solution u e C(D) (see Remark 2.25). Moreover, every uniformly elliptic
branch o/ (1.1) has its own unique admissible viscosity solution u e C(D).

Note that in Theorem 3.2 the function F is obviously concave if 8 is convex
and is convex if the complement of 8 is convex. If we combine this with results
from [17], then we obtain

Theorem 3.4. Let D be a bounded domain of class C2+a where ae(0, 1), and
let <l> e C2+a(Rd). Assume that equation (1.1) has a uniformly elliptic branch
defined by a domain 8 such that either 8 or its complement is convex. Then this
equation with the boundary condition u = tf> on dD has an admissible solution
u e C2+fi(D), where /3e(0,l). Moreover, the elliptic branch (2.2) with the
given boundary condition has its own unique admissible solution u e C2+fi(D).

This theorem applies to Examples 2.17 and 2.19.
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4. The case of convex domains 8 and Bellman equations

Theorem 3.4 is one in a whole series of results related to a very important
and so far the only case of fully nonlinear elliptic equations for which a "good"
theory of existence of smooth solutions is developed. In this theory we need
not only conditions like (3.2) and (3.3) about the function F from (1.1) but
also convexity or concavity of F with respect to (u,j) . Therefore, after coming
from equation (1.1) to equation (1.4) with F defined in Theorem 3.2, we want
the function F to be concave or convex. This reduces to the situation when
either 8 or its complement is convex. In what follows we consider only the
case when 8 is convex. The reader can easily reformulate all our results for
the other case if he replaces the unknown function u by -u and notices that
by Remark 2.4 the set -Sd \ 8 is an elliptic set if the set 8 is elliptic.

In the case of convex 8 we can find a different formula for the function F
from Theorem 3.2.

Recall that given a convex open set B c Sd and a e Sd, f e R, we say that
the plane in Sd defined by the equation tr aw + f = 0 is a supporting plane
of Ti if inffl tr aw = -/.

Theorem 4.1. Let equation (2.2) be an elliptic branch of (I.I) defined by a convex
domain 8. Define stf as the set of all a e J£+ with tr(a2) = 1 such that for
a number f the plane in Sd described by the equation tr aw + f = 0 is a
supporting plane of 8. Such an f is defined uniquely, and if we denote it as
f(a), then

f(a) = - inf tr aw,
u>€©

and the function F from Theorem 3.2 admits the representation

(4.1) F(Uij)= inf (a^Uij+f (a)).

Proof For any a e srf , ux € 8, u2 eSd \ 8, and wt defined as the point of
the plane a'JWy + f(a) = 0 closest to m, we have

dist(Mi, 90) < ||mi -t«i|| = tra(ux -wx) = traux + f(a),
dist (u2, de) > tra(w2 - u2) = - trau2 - f(a).

It follows that the right-hand side of (4.1) is not less than its left-hand side.
To show the opposite inequality recall that, as is well known, the graph of

the function F coincides with the concave hull of the family of graphs of
linear functions z = a'-'My + / on Sd touching 0 x {0} and such that each
function a'->Uij + f has a unit gradient (in variables My) looking "inside" 8 for
(U{j) e de. Therefore, we must only show that given any such linear function,
we have a = (a'J) e srf .

The fact that tr (a2) = 1 is true since the length of the gradient of a^Uy +
f(a) equals one. Moreover, if (m,/) e de and aiJUjj + f(a) = 0, then for any
(Vij) e Sd we have a'j(Uij + Vij) + f(a) > 0 whenever (m,; + Vy) e 8. Since
(un)+Jf° e 8, it follows that a}'(uij + £*#) + f(a) > 0 and

«'W = «"(«« + €'«') + / - (aijUij + f) > 0.
for any £, e Rd . Thus the theorem is proved.
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Remark 4.2. Theorem 4.1 allows us to express the function F explicitly in
terms of the initial function F (and the domain 8 once 8 is convex) in
the following way: If F is continuously differentiable in a neighborhood of
98, F > 0 in 8, and (FUiJ) ̂ 0 on 98, then

F(uu)=  inf■ \\(FUlj(w))\\-x{FUij(w)Uij-FUij(w)Wij}.

Remark 4.3. Observe that for a e ^+ with tra2 = 1 we have 1 < tra < y/d.
Therefore, equation (1.4), which is equivalent to (2.2) by virtue of Theorem 3.2,
by Theorem 4.1 is also equivalent to

(4.2) F(ux,xJ) = 0,

where

F(Uij) := inf (<y,7M,;- + g(co)),

Q.:={(tra)-Xa:aesf},
(4-3) g(( tr a)~xa) = (tra)~xf(a) = - inf (tra)"1 tr aw.

w 6©

Moreover,

(4.4) (utJ)ede   <=»   F(uu) = 0.
An advantage of equation (4.2) is that for co e Q we have trey = 1, and in
terms of the function F the e-elliptic regularization (2.3) of equation (1.1) (see
Definition 2.13) looks quite natural:

F(uxixi) + eAu = 0.

Moreover, the right interval between equation (1.1) and the Laplace equation
Am = c, as introduced in the same definition, now looks natural as well:

F(tux,xi) + (\ -t)Au = 0.

This is the main reason why we introduced Definition 2.13.
Equations with functions F, defined as in (4.1) as an upper (or lower) bound

of a set of linear functions, first arose in the theory of controlled diffusion
processes, where they are called Bellman equations.

Definition 4.4. Let Q be a set, and for every co e fi let a matrix a(co) e J?+
and a function f(co, x) on D be defined. Define

(4.5) 77(My, x) = inf (fl'>(ta)«y + f(co, x)).

Then the equation

(4.6) TT(m^;(x),x) = 0,        xeD,

is called a Bellman equation with constant coefficients (and without lower order
terms). If for any unit I; eRd we have

supa'7(cu)^>0,
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the equation is called weakly nondegenerate, and if for any constant TV > 0
there is a S > 0 such that

j;H(u,j + t?#,x)\rt>S

whenever ||(«y)|| < TV, 7T(My, x) = 0, x e D, |£| = 1, then the equation is
called quasi-nondegenerate.

Remark 4.5. After converting equation (2.2) into the Bellman equation

(4.7) maVuxuix) + /(a)) = 0,       x G D,
aesf

the reader can look, for example, in the book [17] for further information about
the solvability of such equations. Then he will find that it is usually assumed
there that f(a) is bounded on srf . However, there are many cases when for
sf taken from Theorem 4.1 the function /(fl) is unbounded. In connection
with this, it is worth mentioning Lemma 6.3.6 of [15] which says that in the
situation of Theorem 4.1 equation (4.7) is equivalent to the equation

inf (1 + \f(a)\)-l(aiJux,xJ(x) + f(a)) = 0,       xeD,
a€sf

which is called normalized Bellman equation.

Remark 4.6. If the elliptic branch (2.2) (with convex 8) of equation (1.1) is
quasi-nondegenerate in the sense of Definition 2.1, then considered as a Bellman
equation this branch is quasi nondegenerate in the sense of Definition 4.4 too.

To show this we note that for w satisfying F(w) = 0 and a unit £, the func-
tion F(w + ttt*) is concave, equals zero for 7 = 0, and is strictly bigger than
zero for t > 0 (w + ttt* G 8). Therefore, its right derivative at zero is strictly
positive and remains only to use that this derivative is lower semicontinuous in
w, (.

Remark 4.7. The same argument involving the semicontinuity shows that if
T7(My, x) is a continuous function on Sd x D and if

j^H(Uij + t^,x)\t=0>0

whenever TT(My, x) = 0, x e D, and |£| = 1, then equation (4.6) is quasi-
nondegenerate.

Remark 4.8. The weak nondegeneracy of (4.6) is equivalent to the fact that the
function 77 actually depends on all second-order derivatives of u, that is, there
is no proper subspace of Rd such that H(uxixj, x) can be expressed in terms
of the second-order derivatives of u along this subspace only (see [17, Section
2.2]).
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Remark 4.9. If equation (4.6) is quasi-nondegenerate and a(co) is bounded,
then for any TV we have

inf (aiJ(co)Uij + f(co, x)) = 0,
co€£l(S)

whenever ||(My)|| < TV, x e D, T7(My, x) = 0, where for the S taken from
Definition (4.3)

Sl(S) = {coeQ: ^(co)?? > \S\Z\2   V£ e Rd}.
Indeed, fix My, x and take co„ such that

(4.8) fl'V'(W„)My + f(con, X) -+ H(Uij , X) = 0.

Then for any unit t,, for the following (concave) functions of t

h„(t) := a^(con)(Uij + £'#) + f(con, x),   h(t) := H(uu +1?#, x)

we have hn>h and hn(0) -» h(0). It follows easily that

liminf JU„(0) > |^(0) >S,
n-nx  at at

which implies that for all large n (perhaps depending on £,) we have

aij(co„)^ > 3S/4.
Taking a finite number of vectors £ dense enough on the unit sphere we will
see that the same inequality with S/2 instead of 3<J/4 holds for all unit £,
and this along with (4.8) implies that the value of the left-hand side in (4.5)
will not change (at our particular My, x) if we replace fi by Q(£).

Remark 4.10. Utilizing the fact that the difference of minimums is less than the
maximum of differences, one sees that if there is at least one couple (My, x)
such that T7(m,; , x) = 0 and the Bellman equation is quasi-nondegenerate, then
it is weakly nondegenerate too.

Sometimes the set fi and the function g from (4.3) can be characterized
differently. In many cases the following theorem gives, in particular, the possi-
bility to prove that a given equation is a weakly nondegenerate Bellman equation
with constant and bounded coefficients.

Theorem 4.11. Let 8 be an open convex set, and let equation (2.2) be elliptic.
Let C be an open cone in Sd with vertex at the origin, and let to be a number.
Assume that tol + 8 c C and that for any w e C we have tw e 8 far all t
large enough. Then for the objects introduced in (4.3) we have

(4.9) £L = {coeJ?+:trco=l, tr cow > 0 Viu e C},

(4.10) g(co) = - inf oiijWij.

In particular,
w e de  <=>   inf (conWij + g(co)) = 0.
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Moreover, -ti < g(co) < t0, where tx is the least t such that ti ee. Finally,
if tr w > 0 for all w e C, then the Bellman equation

inf (coijUx,xl + g(co)) = 0
weo.

is weakly nondegenerate.

Proof. Denote by fij the right-hand side in (4.9). If co e fi, then there is
an a e sf such that wtra = a, g(co) tra = -infea'-'wy. In particular,
tr co = 1. Furthermore, for any w e C and all large t we have tw ee, and
-g(co) tra < ta'jWij. It follows that a'-'twy > 0, co e fii and fi c fii.

To prove the opposite inclusion take co e fii and define a = co( tr co2)~xl2 .
Then cotj(toSij + tuy) > 0 for w e 8. This implies that the function aijwtj
is bounded from below on 8, and thus a esf, and co = a( tr a)-1 g fi. We
have proved (4.9).

Formula (4.10) follows immediately from (4.9) and (4.3). Our estimates of
g are consequences of the inequalities

tx = cotjtxSij > inf WijWij > inf <«y(t/J,y - toSij) > -t0.
t/;€0 w£C

The last assertion of the theorem is obvious since I/d e fi. The theorem is
proved.

If we combine this theorem with Theorem 5.3 and Remark 5.4 (below), then
we immediately get

Corollary 4.12. If the conditions of Theorem 4.11 are satisfied, if tr w > 0 for
any w e C, and if D is a strictly convex domain of class C4, then for any
<p e C4(Rd) there is a unique function u e C(D) n CX'X(D) such that u = cj>
on dD and (uxtxi) e de (a.e.) in D. If, in addition, equation (2.2) is quasi-
nondegenerate, then u e C2+a(D) for an a e (0, 1).

The first part of this corollary for the case when D is a ball has been known
for a long time (see [16]).

Remark4.X3. This corollary obviously applies to Example 2.22, to the first
equation in Example 2.18, and to the second equation if we pass to negative
branches or simply make a change of the unknown function u —► —u. In these
last examples the requirement of convexity of D can be considerably relaxed
if one uses the general theorem from [20] or Theorem 5.3 below. Then it turns
out that we can take any C4 bounded domain D which is strictly convex in a
neighborhood of every one of its boundary point where the tangent line is either
horizontal or vertical.

Remark 4.14. In Theorem 4.11 we can obviously replace the unit matrix I by
any symmetric strictly positive matrix vq ; this is simply equivalent to a change
of independent variables in the Bellman equation. This change allows us to
replace the requirement trw > 0 by XtvqW > 0 in the last assertion of the
theorem. Then we see that our Bellman equation is weekly nondegenerate if
(and only if) for a v0 e J^° the cone C lies in the "positive" half space of the
Euclidean space Sd divided into two parts by the plane orthogonal to vq and
passing through zero.
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For the third and fourth equations in Example 2.18 we cannot find such a
plane and these equations are not weakly nondegenerate.

To end this section we give a proof of Theorem 1.1 in the particular case of
strictly convex domains D and constant coefficients 4 •

Theorem 4.15. Under the hypotheses of Theorem 1.1 assume that the domain D
is strictly convex and the functions lk are constant. Then the assertions of this
theorem hold true.

We need the following lemma whose proof is deferred until Section 6 (see
there the note preceding Lemma 6.6).

Lemma 4.16. Define Cm as the open connected component containing I of the
set {w eSd : Pm(w) > 0}. Then

(i) Cm is an open convex cone in Sd with vertex at the origin containing Jf%.
(ii) For k = 0,..., m-l we have Pk(w) > 0 on Cm, and for any v edCm

we have (Pk/Pm)(w) ->c© as w -*v, w eCm.
(iii) For k = I,... , m- I the functions (Pk/Pm)(w) are convex in Cm.

Proof of Theorem 4.15. We will apply Lemma 4.16 to check the conditions of
Corollary 4.12. Denote ck - (l^)m~k+x and define

8 = I w e Cm : Pm(w) > £ ckPk(w) 1 = I w e Cm : 1 > £) ckj±(w) \.

Note that by the last assertion of the lemma the open set 8 is convex, and by
the second one Px(w) = trw > 0 on Cm , so that in particular, 8 / Sd . Since
for any v G Jt£ the function Pm(tv) = tmPm(v) > 0 grows to infinity faster
than Pk(tv) whenever k < m, by Theorem 2.10 equation (2.2) is elliptic. By
definition 8 c Cm, and the corresponding assumption of Theorem 4.11, are
satisfied with to = 0. Furthermore, as we already mentioned trw > 0 on
Cm . Thus, all conditions of Corollary 4.12 are satisfied, and to prove the first
assertion of Theorem 1.1 it remains to prove that for

r = \w e Sd : Pm(w) = £ ckPk(w) 1
I k=o J

we have
(4.11)

98 = \ w e Y: Pm(w + tl)>0, Pm(w + ti) > JT ckPk(w + tl) Vr > 0 L

If w e de, then, of course, w e Y and by the ellipticity of (2.2) we have
w + ti e 8 for all t > 0. Therefore, the left set in (4.11) is a subset of the
right one.

On the other hand, if Pm(w + ti) > 0 for all t > 0, then the function
Pm(sw + 7) does not change sign for s > 0, and since T G Cm, we have
sw + I e Cm, w + ti e Cm for s, t > 0. If in addition Pm(w + ti) >
XXTn1 CkPk(w + tl) for all t > 0, then w + ti e 8, and also, if else w eY,
then w ede, which proves the opposite inclusion between the sides of (4.11).
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To prove the second assertion of Theorem 1.1 we check that equation (2.2) is
quasi-nondegenerate provided that max c, > 0. By definition we have to show
that w + ttt* G 8 if u; G 98, |£| = 1, and t > 0. Recall that in any case by
ellipticity w + ttt* G 8, and by convexity of 8 we have w + ttt* ce for all
t > 0 whenever this inclusion holds at least for one t > 0.

Next note that when max c, > 0,

(4.12) 8cCm.

Indeed, Pm > 0 on 8, and if Pm(w) = 0 for a wee, then w e dCm,
and for all t > 0 we have w + ti e 8 and

m-l      p

l>Y,cklir(w + tI),       (w + tlee),
fc=o    tm

which contradicts Lemma 4.16(h) for small t.
Now if it; G 98, |<^| = 1, and the number of t such that w + ttt* G

98 is infinite, then the polynomials Pm(w + ttt*) and Y,ckPk(w + ttt*) as
polynomials in t are identical. But we can find a ti < 0 such that
Pi(w + htt*) < 0> which by Lemma 4.16(h) implies that w + titt* & Cm ■
On the other hand w e 8 C Cm . Therefore, on (ti, 0) there is the largest
to such that w + tott* G dCm, and by the same lemma the above-mentioned
identity cannot hold for t close to to from the right. Thus the number of t > 0
for which w + ttt* G 98 is finite (actually, empty as explained above), and we
get the quasi-nondegeneracy of (2.2). The theorem is proved.

5.  A THEOREM ABOUT BELLMAN EQUATIONS AND ITS APPLICATION

Corollary 4.12 relates to the case when the independent variable x does
not enter equation (1.1); with other results from Sections 1 through 4 it shows
what to expect from a given fully nonlinear equation at least if we "freeze
coefficients" and disregard the dependence on ux,u of the function defining
the equation. If these results look satisfactory for a given equation the reader
might like to investigate the equation further, and here we want to show how
deeper investigations into properties of domains 8 allow us to apply the general
theory to some equations with the independent variable x entering explicitly.

At first we state a general theorem about Bellman equations. Then we show
how some properties of domains 8 defining elliptic branches are related to
properties required in this theorem. As an example of applications we prove
Theorem 1.1 in one more particular case. After this we translate other properties
of domains 8 into properties of functions defining Bellman equations, and this
enables us to prove Theorem 1.1 in its full generality.

Thus, our general manner of treating concrete fully nonlinear equations is to
go from them to domains 8, to try to get as much information of special kinds
as possible about these domains, and then to refer to results from the general
theory of fully nonlinear elliptic equations.

Let fi be a set, integers a*i, fl*o > 1, D be a bounded domain in Rrf, a
function y/ e C4(Rd), constants K e (1, co), S e (0, 1). Assume that for
any co e fi, p G Rdo we are given a d x di matrix o(co, p) and functions
f(co, p, x), <p(x) defined on Rd . Denote by ok the kth column of o and
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a = (1/2)£TC7*. By the way, in the preceding section we did not introduce the
matrix a, and it is worth noting that when we mentioned there the results of
the present section we always meant a = V2a.

Assumption 5.1. (a) D = {x G Rd : y/(x) > 0},   |jv||c4(R^) ̂  K ■
(b) For any co e fi on dD

I Vx I > S,    aij(co,0) yrxiXJ < -S.
(c) For any co e fi, p e Rd', xeRd

S< tra(co,p)< K,    \f(co,p,x)\<K.
(d) The first- and second-order generalized derivatives of a with respect to p

are bounded by K. The function f(co, p, x) satisfies the Lipschitz condition
in (p, x) with the constant K and f(co, p, x) — 7(T(|p|2 + |x|2) is concave in
(p, x) for any co. We have H^Hc^r*) < K.

(e) For x eD, w eSd we have

H(wtj, x) := inf [a'j(co, 0)wn +f(co, 0, x)]
Q>€fJ

=     inf    [aij(co,p)Wij + f(co,p,x)].
wen,peR?o

(f) For any unit £ e Rd we have

sup a"(co, ())?&> S.
w

We also assume that we are given a function 77(x) on D with values in ^+
and a function P(co, x) on fi x 73 with values in the set of all a*o x d matrices.

Define the following operator of differentiation of functions depending on
(p, x) along the vector field (P£,, I;) e Rdo+d :

We also put u^ = £luxi. Note that by Assumption 5.1(d) the function a is
continuously differentiable.

Assumption 5.2. (a) \\P\\ <K, the function T7, and its first- and second-order
derivatives are bounded by K.

(b) For x G dD, £, ± y/x(x), \£\ = 1, co e fi, p = 0 we have (Ti^ ,<*;)> S,

(5.1) aij[y/xixJ + Bu] <-S + K(ay/X, y/x),

(5.2)
(B£, Z)aV¥xixJ + ^(9(^)^))2 + 2(Ti£, ff*)d(OlV) ^ ~s + K^- • M

k

with d(£)y/(ak) := 9(^)[^<r*)] (and with summation in i, j, k).

Theorem 5.3. Under the above assumptions there exists a unique function u e
C(D)nCl-x(D) such that u = <j> on dD and H(uxtxi,x) = 0 (a.e.) in
D. Furthermore, the function u and its first and second generalized derivatives
in D are bounded by a constant depending only on S, K, d, dx, do, and
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the diameter of D. If the Bellman equation (4.6) is quasi-nondegenerate, then
u e C2+a(D) for some a e (0, 1).

The first two assertions of this theorem follow from Theorem 1.1 in [20] if we
take there Di = D, Bq = I, Bx = B, y/x = y/, y/0 = (2R)2 - |x -xo|2, where
R is the diameter of D and xo is a point in D. The last assertion follows
from Remark 4.9 and from results in [17] (see, for instance, Example 8.2.2
there). The reader can also find there a generalization of the last assertion of the
theorem, namely, that nondegeneracy of the Bellman equation in a subdomain
of D implies the better smoothness of solutions in the same subdomain.

Remark 5.4. If we want to apply Theorem 5.3 to an example of the Bellman
equation with constant coefficients as in Definition 4.4 (with no dependence on
p and with a = V2a), everything is smooth and bounded, and the number
of independent variables cannot be reduced (see Remark 4.8), then the only
assumptions to check are Assumption 5.2(b) along with Assumption 5.1(b), (c).
It is worth noting (cf. [19]) that if in addition the domain D is strictly convex,
then the first assumption is fulfilled automatically. Indeed, in this case the
matrix y/xx can be taken strictly negative on the boundary, and if we take as B
a suitable continuation of the function -(\/2)y/xx from dD to D (and T" = 0
if there are any p), then on dD we have

aij[yxixj + Bij] =\al^x,xi, (B£, Z)aijwXiXi + £(««;) W))2
L k

< + 2(B£,, <Tk)d(Z)y,{ak) = -\(WxxZ, Z)aijy,xixj,

where the right-hand sides are strictly negative once   tra > S.
Theorem 5.3 says that Bellman equation (4.6) is a "good" one if the function

f(co, x) is Lipschitz continuous in x with a constant independent of co and if
it is such that f(co, x) — K\x\2 is concave in x for a constant K independent
of co. It turns out that the concavity of f(co, x) - K\x\2 is easy to obtain
when the function / can be represented as a composition of a concave and a
twice continuously differentiable function. In these cases the following theorem
is useful.

Theorem 5.5. Let Sf be a convex set in Rn, and for every I e Sf let an open
domain 8(/) in Sd be defined.

(i) If ©(/) is convex in I in the sense that for any lx,l2eSf, Wi e ©(/,),
we have

Wi+w2 ^Ckfh+h\

then for any co eSd the function

(5.3) g(co,l) = -   inf oiijWij
we&(t)

is concave in Sf. In particular, if it is finite for an co e Sd and Sf has a
nonempty interior Sf°, then in addition g(co, I) satisfies the Lipschitz condition
in I on any compact subset of Sf° for the same co eSd.
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(ii) Take a constant K >0, Iq , lx eSf, and assume that for any w e 90(/o)
there is a matrix v eSd such that \\v\\ < K\lx - Iq\ and w + v e 0(/i). Then
for any co G fi we have

(5.4) g(co, Iq) < g(co, /,) + K\h - l0\ • ||o||.

(iii) If for some l0,1 eSf we have 0(/) c 0(/o), then g(co, I) < g(co, Iq) ,
and if for a lo e Sf and any e > 0 there is a I e Sf such that I ^ Iq,
\h - l\ < £, and ©(/) c ©(/o), then for any coe€l

(5.5) g(co, Iq) > liminfg(co, I).

Proof. To prove assertion (i) it suffices to note that for any h , l2 e Sf, wt e
©(/,) we have

Wm + w2a     .        .  .
COijWuj + COijW2ij = 2cOij—i-=-J- > 2 inf        OyWy

i wee((/i+/2)/2)

Under conditions in (ii) for w e 98(/o) we have

COijWij = COij(Wij + Vij) - COijVtj >    inf   COy-tOy - \\co\\ • ||v||,
u)66(/i)

and this yields (5.4).
Assertion (iii) is obvious since for the point / we have

-g(l, co) =   inf COijWij >   inf. eoytuy = -g(l0,co).
weO(l) tu€6(/0)

The theorem is proved.
The following theorem allows us to check the conditions of Theorem 5.5 if

the domains 8(/) are defined with the help of functions on Sd . This theorem
plays a crucial role in connecting branches (2.10) with Bellman equations. To
state the theorem we need the following

Assumption 5.6. We are given a convex set Sf in R" with nonempty interior
Sf° and an open convex cone C cSd with vertex at the origin containing ^°
and such that C ^ Sd . On C x Sf we are given a finite continuous function
F(w, I) which is convex in w . Define

e(l) = {w e C : F(w, I) < 1}.

For a number tx and any w e C, I eSf it holds that

(5.6) lim F(tw, I) < 1,   .F(fiT,/)<l.
t—>oo

Theorem 5.7. Let Assumption 5.6 be satisfied. Then
(i) The sets 8(/) are convex, and for any I eSf the equation (uXixi) e 98(/)

is elliptic.
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(ii) For weSd, leSf
(5.7) w e 98(/) <=> H(w , /) := inf (ft),,™,, + g(co, /)) = 0,

<o€£2

where
(5.8)
fi = {co e ^+ : tr co = 1, tr ora; > 0 Viu g C},        g(w, I) = -  inf couWu.

weB(i)

Moreover, —ti < g(co, /) < 0.
(iii) If for any (wi ,li), (w2 ,l2)eCxSf we have

F{^^,l^)<m*x(F(wi,h),F(w2,l2))

(quasiconvexity of F(w, 1) in (w, I)), then the function g(co, I) is concave in
I and, in particular, on any compact subset of Sf° satisfies a Lipschitz condition
in I with a constant independent of co.

Proof. Assertion (i) follows from Theorem 2.10 since the sets 8(/) are open
and obviously convex and since by virtue of (5.6) for any w e J?° c C we
have tw e 8(/) if t is large enough.

(ii) The equivalence in question follows from Theorem 4.11. We get the
inequalities -tx < g(co, /) < 0 from Theorem 4.11 and from the second con-
dition in (5.6), which implies that til e 8(/).

(iii) Observe that quasiconvexity of F implies the convexity of 8(/), and
we get the concavity of g in / from Theorem 5.5, which along with its bound-
edness gives an estimate of the Lipschitz constant. The theorem is proved.

Remark 5.8. Sometimes the case in which the domains 8(/) are defined with
the help of concave functions F(w , I) can be reduced to the one considered in
Theorem 5.7 if we notice that F~l(w, I) is convex for positive concave F.

Let us apply this theorem along with Theorem 5.3 in the proof of one more
version of Theorem 1.1.

Theorem 5.9. Under the hypotheses of Theorem 1.1 assume that for any k =
0,... , m- 1 the function lk is either strictly positive in D or identically zero.
Then the assertions of this theorem hold true.

We will use simple
Lemma 5.10. If a function F(w) is convex and homogeneous of degree -a < 0
in a cone C c Sd, then the Junction la+xF(w) is a convex function of (w, I)
in CxR+.
Proof. Bearing in mind obvious approximations we can confine ourselves to the
case of smooth F. In this case for w e C we have

F(w) = sup(FViJ(v)Wij + F(v) - FViJ(v)Vij) = sup(FViJ (v)Wij + (a + l)F(v)),
vec vec

where we applied the Euler theorem about homogeneous functions. Multiplying
the extreme terms by /a+1 and replacing v by vl we get

la+xF(w) = sup(FVij(v)Wij + l(a + \)F(v)),
vec
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which is indeed convex in (w, I) as an upper envelope of linear functions. The
lemma is proved.

Proof of Theorem 5.9. For simplicity of notation we assume that e~x > Iq , ...,
/„_!>£ in D, where the constant e > 0, and /«,..., lm-i identically equal
zero (if n = 0 we assume that all lk = 0). We could achieve this by taking
an appropriate e and by renumbering Pk since we do not rely on any specific
properties of them depending on k.

For I e Sf = (e, e~x)n take Cm from Lemma 4.16 and define

(5.9)

C = Cm,  F(w,l) = Y^l^-k+x^(w),  e(l) = {weC:F(w,l)<\}
k=o m

(if n = 0, by definition F = 0). With these objects Assumption 5.6 is satisfied
due to obvious reasons and to Lemma 4.16. By using Theorem 5.7 and formula
(4.11) we see that our theorem, actually, relates to the Bellman equation

(5.10) H(uxixj,l(x))=0,
where TT is taken from (5.7). Below we also use the objects fi, g(co, I) from
Theorem 5.7.

By Lemmas 5.10 and 4.16 the function F(w, I) is convex in (w, I) and,
in particular, quasi-convex. Theorem 5.7(iii) says that the function g(co, I)
is uniformly bounded and concave in I e Sf. Next, for unit Z e Rd in any
reasonable sense

(5.11)
(g(C0, HxMxixiZ't1 = gk(C0, l(x))lkxiXJZiZi + glklr(C0, l(x))lk(i)lr((),

where the last term is negative and the first is bounded since the range of
l(x), x e D, is a compact subset of the open set Sf. It follows easily that for
the function f(co, x) := g(co, l(x)), which is uniformly bounded in fi x Rd ,
there exists a constant TV such that f(co, x) - TV|x|2 is concave in x for any
co e fi. It is also seen that f(co, x) satisfies the Lipschitz condition in x with
a constant independent of co.

Naturally, we want to apply Theorem 5.3 to equation (5.10). So far we do
not introduce parameters p, and we put a(co) = co and a = y/2a. Next, take
a constant t > 0 to be specified later, and near dD let y/(x) = dist (x, dD) if
x G D, ip(x) = -dist(x, dD) if x & D, y/ = y? - ty?2 and continue y/ in an
appropriate manner to satisfy Assumption 5.1(a).

We know that the normal second-order derivative of y/ on dD is -2t
and that the matrix of its tangential second-order derivatives has eigenvalues
-Kl,..., -Kd~x. Therefore, for large t on dD we have

Pm(-Vxx)~2tPm_ud_i(KX,...,Kd-X),

which is strictly positive. We fix t such that Pm(~Wxx) > 0 on 9D. According
to a nice observation from [5, p. 274], there is at least one point on dD at
which all k, are nonnegative. At this point -y/xx e Cm , and since Pm(-¥xx)
is strictly positive on the connected set dD, we have -yxx e Cm not only at
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this point but everywhere on dD. The set of all values of -y/xx(x), x e dD,
is a compact subset of Cm , which by definition (5.8) of fi implies that for a
S > 0 Assumption 5.1(b) is satisfied (recall that a(co) = co). The nontrivial
parts in statements (c) and (d) of this assumption have been checked above.

The weak nondegeneracy of (5.10) (Assumption 5.1(f)) follows from the last
statement of Theorem 4.11 as in the proof of Theorem 4.15.

Finally, the function f(co, x) is uniformly continuous in x G Rd uniformly
in co, so that the function H(w, l(x)) is continuous on Sd xD. Furthermore,
in the proof of Theorem 4.15 we saw that if 4 are constant and X) 4 > 0, then
the equation (2.2) is quasi-nondegenerate. By Remark 4.6 this yields the nonde-
generacy of the corresponding Bellman equation. The continuity of H(w, l(x))
along with Remark 4.7 allows us to affirm that Bellman equation (5.10) is quasi-
nondegenerate under the condition that ]T) 4 > 0 in D.

We conclude that if Assumption 5.2 was satisfied, the assertions of our present
theorem would follow directly from Theorem 5.3.

Of course, if D were strictly convex or close to a strictly convex domain,
we could refer to Remark 5.4 without appealing to any kind of parameters.
But in the general case we do not know if it is possible not to use parameters in
checking Assumption 5.2. The way to introduce appropriate parameters p (say,
such that Assumption 5.1(e) is satisfied) is prompted by the observation that
the main term Pm(uxixi) of our equation (1.5) is invariant under any orthogo-
nal transformation in Rd , which is reflected in the relations epCme~p = Cm ,
epQ.e~p = fi valid for any skew-symmetric d xd matrix p.

That is why we revise the above arguments, introducing Rd° as the space of
all skew-symmetric matrices and taking this time

o(co,p) :=epa(co) = ep\[2ao,   f(co,p, x) = f(co, x).

Now observe that a(co, p) = epcoe~p , and since epile~p = fi, Assumption
5.1(e) is indeed satisfied. The same argument shows that we need not repeat
checking the other requirements in Assumption 5.1. Therefore, to finish the
proof it remains again to check Assumption 5.2, or if we take there TJ := f (<5y)
with a constant t > 0, then we need only to find a t and a uniformly bounded
function P(co, x) with values in the space of linear operators acting from Rd
into Rrf° such that for some constants K, S > 0 and all x G dD, Z J- Vx(x),
\Z\ = 1, co e fi inequalities (5.1) and (5.2) are satisfied, where

d(Z)y/(ak)(x) = jfiVAx + hZ)aik(co, hP(co, x)Z)\h=o-

(We prefer a different representation for the same operator d(Z), because the
space Rd° is a matrix space and the original formula looks confusing.)

We find that

d(Z)y/(^)(x) = y/xi(i)(x)aik(co) + y/xi(x)[P(co, x)Z]iTark(co).

Now as in [18] we define P(co, x)Z = P(x)Z by the formula

[PZ]ir = VxHaVx' ~ ¥x>¥x^iy
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Notice that on dD we have \y/x\2 = 1, so that y/x ± y/x^ for our Z -^ Vx-
Therefore,

y/xi (x)[P(co, x)Z]ir = - Vx'it),  9(Z)y/iak} = 0,
which along with Assumption 5.1(b), which has already been checked, implies
that inequality (5.2) with K = 0 holds for any constant t, whereas to satisfy
(5.1) it suffices to take the constant t small enough.

We finally succeeded in verifying the assumptions of Theorem 5.3, and thus
our theorem is proved.

Remark 5.11. In this proof we needed the specific assumption that either 4 is
strictly positive or identically zero, only to be able to use relations like (5.11)
to derive that the function

f(co,x) = g(co,l+(x),...,i;_l(x))

is Lipschitz continuous in x and that / - TV|x|2 is concave for a constant
TV, by using the fact that g(co, I) is concave in Sf and, in particular, has
bounded first derivatives in / on any compact subset of Sf. Approximating
/ by g(co, e +1£,..., e + l+_x), we easily see that if Sf has the form, say,
[0, M)n ,and l(x) run through all of Sf, then to get these properties of /,
along with concavity and continuity of g(co, I) in Sf ,we need in addition an
estimate of its first derivatives with respect to / in Sf° and the inequalities
gi, < 0, i = 1,..., n, to be true.

It turns out that we can obtain these additional properties of first derivatives
of g without using the convexity of g but instead relying on two last general
statements of Theorem 5.5, versions of which for the situation of Theorem
5.7 we present in the following theorem. In this theorem we also discuss a
nondegeneracy condition for Bellman equations.

Theorem 5.12. Let Assumption 5.6 be satisfied, and assume the notation from
Theorem 5.7. We assert that

(i) If for some Iq, I e Sf we have F(w, I) > F(w, Iq) for all w e C, then
g(co, I) < g(co, l0) for any coeil.

(ii) If (a) for any I e Sf° we have 8(/) c C; (b) the function F is differ-
entiable in C x Sf° and for a constant K we have

d
\F,(w, 7)| < -KY,Fwtt(w,l),

(=i
provided that (w, I) e C x Sf° and F(w, I) = 1; and (c) for any lo e Sf
and any e > 0 there is a I eSf such that I ^ Iq, \lo- l\ < e, and F(w, I) >
F(w, lo) for all w eC,

then \g(co, /,) - g(co, l2)\ < K\h -12\ for any co g fi, /, eSf.

(iii) If (d) the function g(co, I) is uniformly continuous with respect to I
uniformly in co, (e) the set Sf is closed and bounded, and 8(/) c C for any
leSf; and (f) there is no I eSf, w e C, Z cRd such that F(w + tZZ*, I) =
1 for all r>0,
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then far the function 77 from (5.7) and for any constant N > 0 there exists a
S > 0 such that

^-F(w + tZZ*,l)\t=o<S,
(5.12) °[

^jH(w + tZZ*,l)\<=o>S

whenever \\w\\ < N, I e Sf, H(w, /) = 0, \Z\ = 1 (or equivalently, whenever
IN|<TV, weC, leSf,F(w,l) = l,\Z\ = l).
Proof. Assertion (i) is trivial because 8(/) c 8(/o).

(ii) As we mentioned above we apply the second and third assertions of
Theorem 5.5. First note that by the continuity of F we have F(w, I) < 1
if F(w, lo) < 1 and / is close enough the lo. Therefore, g(co, I) is lower
semicontinuous. This along with assumption (c), where 8(/) c 8(/o), and with
Theorem 5.5(iii) gives us equality in (5.5) and allows us to investigate g(co, I)
for / G Sf° only.

Note that by (a) for any / G Sf° we have

(5.13) de(l) = {weC:F(w,l) = 1}.

Now we take lo, h G Sf°, wq e 98(/0) and claim that for any t e [0, 1]
we have F(wt, lt) < 1 where wt = w0 + tK\lt - l0\I, lt = l0 + t(lx - Iq) .
To establish this it actually suffices to show that if to e [0, 1], Iq ^ h , and
F(wt0, lto) = 1, then p(t0) < 0, where p(t) = dF(wt, lt)/dt. But lto e Sf°
and wto e 98(/,0). Therefore, from (b) we see that indeed

d

p(tQ) = K\h - lo\J2F^W'o . 1-) + Fl'(W'o > W - A))* < 0.
<=1

Thus, for v = K\lx - /o|T we have F(wo + v, /i) < 1, and the assertion in
(ii) follows from Theorem 5.5(ii).

To prove (iii) we actually repeat the corresponding part of the proof of Theo-
rem 5.9. First, observe that by virtue of (d) the function H(w, I) is continuous
in (w, I). Therefore, the set {(w, I): \\w\\ < TV, 77(it;, /) = 0} is closed and
bounded. As in Remark 4.7 we conclude that to prove the second inequality in
(5.12) we must only show that its left-hand side is strictly positive for any given
w, I, Z such that T7(u;, /) = 0, |^| = 1. But this can be done exactly as in
Remark 4.6 since by Theorem 5.7(ii) we have w e 98(/), from Theorem 5.7
(i) we know that w + tZZ* G 8(/) for t > 0, and (5.13) along with (f) leaves
the only possibility that w + tZZ* G 8(/) for a (actually, for all) t > 0. The
first inequality in (5.12) can be proved quite similarly with the only difference
that F(w + tZZ*, I) < 1 for t > 0 and H(w + tZZ*, /) > 0 for r > 0. The
theorem is proved.

Before we show the application of the above theorem to the proof of Theorem
1.1 we state the following lemma, which will be proved in Section 6. We use
the notation of Lemma 4.16.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERAL NOTION OF FULLY NONLINEAR SECOND-ORDER ELLIPTIC EQUATIONS      887

Lemma 5.13. (i) For any m = 1, ... , d, k = 0, \,..., m, w eCm, the func-
tion

pl/m

fjk^ + tD
rk

is a nondecreasingfunction of t on [0, co).
(ii) If we normalize Pk with the help of constant factors so as to have that

Pk(I) = 1, then the function logPk(w) is a concave function on the integers
k = 0, I, ... , m for any w eCm.

Proof of Theorem 1.1. Define M as the maximum of lk(x) over k, x, and
let Sf = [0, M + l)m . Next, take Cm from Lemma 4.16, for n = m assume
notation (5.9) and the notation fi, g(co, I) from Theorem 5.7.

As we explained in Remark 5.11, we must only show that g(co, I) decreases
in every /, and satisfies the Lipschitz condition in / G Sf with a constant
independent of co. Obviously, F(w, I) increases in each /,, which by Theorem
5.12(i) yields that g is decreasing indeed.

By the same theorem, to show that g is Lipschitz continuous in / G Sf it
suffices to check conditions (a), (b), (c) in its assertion (ii). It turns out that
it is more natural to prove a more general result that the function g(co,la),
where ak = (m - k)/(m - k + 1) < 1 and l" = (/£°,..., ££.-,'), is Lipschitz
continuous in / with a constant independent of co (and M). Of course, the
function g(co, la) corresponds to F(w, la) in the same way as g(co, I) corre-
sponds to F(w, I). Therefore, we can confine ourselves to checking conditions
of Theorem 5.12(ii) for the function F(w, la) instead of F(w, I).

Condition (a) has been checked in the proof of Theorem 4.15 (see (4.12)).
Condition (c) is satisfied since F decreases in /,. To check (b) we have to find
a constant e > 0 such that

(5.14)

*=o ^m /=i *=o        tm l tm k J

whenever w eCm, lk>0 and

m-l „
(5.15) £/«-*£. = !.

fc=o        tm

For the sake of convenience let us deal with normalized functions Pk . Then

k) dd~k
Pk(w) = -^j^de^w + tl)\t=0,

d ,
£/W™) = TtPk^W + r/)l'=° = kPk-l(w)->=1 al
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Next, from Lemma 5.13(i) we see that
i   d   p i   d   p

m^  Pm   ~k^  Pk   'i=i     m i=i     *

EJ Pjnwii       Pkwu \ ^ y^ / ,        k \ Pmwjj _ fm      ),/w-l
i\-yZ---pTj^lt{l-m)^r--0»-*>-£-■

From this and from condition (5.15) it follows that the right-hand side in
(5.14) is not less than Pm-X/Pm .

On the other hand, from (5.15) we get
r p  -\(.m-k-l)l(m-k) p rp-\l/(m-k)

]m-k-\     rk ^ , im-k-l rk   ^     rk
lk ~p~ - X '      lk p    -     p

/mj £ m       \.1m.

and by Lemma 5.13(h)
1 i r p, i '/(m-*)   p   ,

_E^A + (l-_-E)log/.„<.„gi.„.„    Lij <-gi,

im-k-l Fk   ^ Pm-l
lk p~ ^ -p-•

We conclude that (for our normalized Pk) inequality (5.14) holds with e =
(2m)~x, and the theorem is proved.

Remark 5.14. We have used that the functions 4 enter equation (1.5) like
(lk)m~k+x and not like (lk)m~k only in one place, namely, in the proof of
Theorem 5.9 when while checking condition (iii) of Theorem 5.7 we have used
Lemma 5.10.

It turns out that given n < m - 1, the assertions of Theorem 1.1 continue
to hold true if 4 = 0 for k # n and if we replace (l^)m~n+x by (lt)m~n ■
The reason for this is that for the function F(w, I) = l"F(w) = lnP„/Pm by
its homogeneity and convexity in w , for any Wi e Cm and /, > 0 we get

F fwi + w2    li+l2\      F (Wi+W2\
F\-^>—)=FVhTh)

<hF(wi\hFf^\
h+h    V W    h+h    \h J

< max F { -r | = max F(wt, /,•).
_ ;'=1,2       \ /, /       i=l,2

In particular, we see that sometimes it is convenient to use exactly the quasi-
convexity condition in assertion (iii) of Theorem 5.7 and not the convexity of
F in both arguments.

Remark 5.15. In the above proof of Theorem 1.1 we could show the nondegen-
eracy of equation (1.5), when max^ lk > 0 in D, by using the last assertion of
Theorem 5.12 where for a constant e > 0 we take Sf = [0, M]m n {£ 4 > e}.

Remark 5.16. In our proof of Theorem 1.1 we used the assumption / G C2(Rd)
only to show that there is a constant TV such that /- 7V|x|2 is concave. But
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formulas like (5.11) show that for this it is quite sufficient to assume that for
a constant K and any k = 0,1, ... , m — \ the functions lk(x) + K\x\2 are
convex. By the way, if we assume only this, then there is no need to consider
positive parts of 4 since they have the same property. Instead we can require
that 4's be nonnegative.

Remark 5.17. Instead of the assumption / g C2(Rd), in Theorem 1.1 assume
that for a constant K and any A: = 0, I,..., m-l the functions lk(x) + K\x\2
are convex, that for a /7 e (0, 1) we have lkeCl+fi(Rd), and that max* 4 > 0
in D. Then the solution u lies in C3+^(T3).

Indeed, we use Remark 5.16 and note that under our hypotheses in notation
(5.9) with n = m the solution u satisfies the equation F(uxixj, l(x)) = 1,
and the function F(w, l(x)) is of class Cx+p%(Rd). Moreover, from (5.12) we
conclude that the equation F(uxixj, l(x)) = 1 is nondegenerate on the solution
m . Therefore, our assertion follows in a well-known way from the theory of
linear elliptic equations.

Of course, if maxfc 4 > 0 in a subdomain of D rather than in D, then we
get regularity (or better regularity) of u in this subdomain.

6. Tests for convexity of 8
We have seen in the preceding sections that the convexity of an open com-

ponent of the set {w : F(w) > 0} makes the investigation of equation (1.1)
much easier. Here we want to describe some cases when this convexity can be
deduced from general properties of F. We also give proofs of Lemmas 4.16
and 5.10.

The following general Bochner theorem (see, for instance, [12, p. 43], may
be useful.
Theorem 6.1. If F(x) is an entire function on Rd, then all components of the
set {x : F(x + iy) ^ 0 Vy G Rd} are convex.

In the sequel we consider a real polynomial Qm of degree m > 1 of the real
variables Xx, ... ,Xd. We write it as Qm(X), where X = (XX,..., Xd) eRd.

Theorem 6.2. Define 8 as an open connected component of the set {X : Qm(A) >
0}, and let 8 # 0. If for all p e 8, X e Rd the polynomial Qm(p + tX) as
a polynomial in t has only real zeros, then 8 is convex and, moreover, the
function Q^m is concave on 8.

This elementary fact is well known (see, for instance, [18]). Actually, the con-
vexity of 8 follows from the Bochner theorem or from the concavity of Q]lm,
and the latter, one obtains by using the Cauchy inequality after differentiating
twice with respect to t the formula

Q^m(p + tX) = Q1Jm(X)[(t -tt).[t- tm)]xlm,

where U are roots of Qm(p + tX).
This theorem advances the problem of describing polynomials satisfying its

hypotheses. It turns out that a subclass of these polynomials is very well known
in the theory of hyperbolic equations and this is the class of so-called hyperbolic
polynomials (see, for instance [8], [1] or [11, Sections 8.7, 12.4]). We need and
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prove below some additional properties which the author could not find in the
literature.

Below we consider only homogeneous polynomials Qm .

Theorem 6.3. Fix Xq, po, vq e Rd, let Qm(u0) ^ 0; and let the polynomial
Qm(vo + tXo) have exactly m distinct real roots (in particular, Qm(Xo) ̂  0).
Moreover, assume that for every s e R the polynomial Qm(Ho + suq + tXo) as a
polynomial in t has m distinct real roots. Finally, assume that for s = 0 all
these roots are strictly negative. Then for any t > 0 the polynomial Qm(l*o +
suq + tXo) as a polynomial in s has m distinct real roots si(t) < ■•■ < sm(t)
and Si(t)(Si(t))' > 0 for t>0 and i=l,... , m.

Proof. Denote by ti(s),... , tm(s) the roots of the equation

(6.1) Qm(H0 + svq + tX0) = 0.

Since tx(s),... , tm(s) are distinct, we can assume that ti(s) <••• < tm(s).
For any i the ratio Tt(s) := tt(s)/s is a root of Qm(f*o/s + vq + TXq) . It follows
that as s —► oo the function T,i(s) is bounded and approaches one of m roots
Tx,... ,Tm of the equation Qm(u0 + TXo) = 0. By our hypotheses Tx,..., Tm
are distinct and different from zero. Let Ti < ••• < Tm. Observe that these
roots are simple, and in particular, at any 7} the derivative of Qm(vo + TXq)
with respect to T is different from zero. Therefore, for p close to zero the
equation Qm(p + vo + TXo) = 0 also has m real roots, and this implies that
tj(s)/s —> r, as 5 -+ co . In the same way for s —► -co we get ti(s)/s -* Tm-i+x.
Notice also that the derivative of Qm(Po + suq + tXo) with respect to t at any
root is different from zero, and therefore, functions ti(s) are differentiable.

Now let n be the number of strictly positive 7}. Then there are n functions
ti(s) on [0, co) which start from a negative value for s — 0 and tend to oo as
s —> oo and there are m — n functions tt(s) on (-oo, 0] which start from a
negative value for 5 = 0 and tend to oo as s —► -oo.

It follows that for all to > 0, above the half line {s > 0} there will be at
least n different (ti(s) are distinct) intersections of graphs of functions t =
ti(s), i <n, with the straight line t = to, and above the half line {s < 0} there
will be at least m-n such intersections with graphs of functions t = ti(s), i <
m — n. Any such intersection gives a root of Qm(Po + svq + toXo); and since
there can be at most m roots, we conclude that for any to > 0 all roots of
Qm(lM} + svq + toXo) are indeed real and distinct.

Moreover, by the same reasoning any line t = to with to > 0 can intersect the
graphs of a function t = U(s), s > 0, i < n, only once, which shows that any
such function increases. Of course, the functions t = tj(s), s < 0, i <m — n,
decrease. Obviously, s = sx(t),..., s = sm(t), t > 0, are inverse functions
to t = ti(s), s > 0, i < n, and to t = tt(s), s < 0, i < m — n. From the
above argument it follows that for t > 0 and / < n the functions st(t) < 0
and they decrease, and for t > 0 and i > m - n the functions Si(t) > 0 and
they increase. These functions are differentiable in t since for s = s,(r) and
t > 0 the derivative of Qm(po + svq + tXo) with respect to s does not vanish
(Si(t) are simple roots). Furthermore, s't(t) ^ 0 since Sj(t) is an inverse of a
differentiable function, which along with the above properties of Si(t) proves
our last assertion that Sj-sJ > 0. The theorem is proved.
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Theorem 6.4. Fix Ao G Rrf, and assume that Qm(Xo) > 0, and that for any
p C Rd all roots of the polynomial Qm(p + tX0) are real. Define Am as the open
connected component containing Xq of the set {X : Qm(h) > 0}.

Take Xx e Am and define
<\

Qm-l(X) = —Qm(X + tXx)\t=Q.

Then
(i) Am is an open convex cone. Moreover, Qm-X(X) > 0 on Am so that the

open connected component Cm-i, containing Xq , of the set {X : Qm-i(h) > 0}
contains Am, and for any p e Rd all roots of the polynomial Qm-X(p + tXo)
are real.

(ii) The following functions are concave on Am:

(6.2) QUm,  logQm,   Jkffl-    log-^r,
Um-lW Um-y(X)

and the third one tends to zero as X^> pedAm, XeAm.

Proof, (i) Observe that our polynomial Qm is a so-called hyperbolic Xq poly-
nomial and there exists a short and very nice theory of these polynomials (see
[8], [1], or [11, Sections 8.7, 12.4]). In (i) we simply collected several results
from this theory.

(ii) It is also known that for any p e Am, v e Rd all roots of the polynomial
Qm(p + tv) are real and if v e Am , they are strictly negative. Therefore, we get
our assertion about the first function in (6.2) from Theorem 6.2. The second
and the last ones are concave as logarithms of concave functions. Furthermore,
as X —► p e dAm , X e Am, the functions logQm(X + tXx) which are concave
functions of t G (0, oo) tend to a concave function logQm(p + tXx) which is
finite on (0, oo) (Qmm(pt + th) is concave nonnegative and not identically
zero for t > 0) and tends to -oo as t J. 0. It follows that the derivative of
logQm(X + tXx) in t at t = 0 tends to infinity, and this yields the last assertion
in (ii).

It remains to prove the concavity of the third function in (6.2). We need one
more known result (see [22]) that any real hyperbolic polynomial can be approx-
imated by polynomials Qm of the same degree m and such that Qm(v + tXx)
has m distinct real roots unless v is proportional to Xx. We can concentrate
only on such polynomials, and therefore we assume that Qm(u + tXi) has m
distinct real roots unless v is proportional to Xi. To start we assume also that
fl*>3.

For t > 0 and fixed p e Am, v e Rd, such that Qm(v) ^ 0 and Xx &
Span(^, v), define S\(t),..., sm(t) as distinct real roots of Qm(/^ + su + tXi)

(see Theorem 6.3). Then
m

Qm(p + sv + tXi) = Qm(v) Y[(s - Si(t)),
i=i

^(p + sv) = ltlogQm(p + sv + tXi)\t=o = -t1%),
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LQszLtu+sv^y   m      ^Q^(p+sv) = -2Y   5-/(0)
ds  Qm{fl + SV)    £ (s - st(0))2'   fl*.2  Qm {fi +    > %(s- Si(0))i'

Hence by using the formula m3(1/m)" = 2(m')2 - mm" , for 5 = 0 we get

Qiwds2Qm^+sv] z\tts2(o))    hs^hsn°y
The latter is negative, which follows from the Cauchy inequality and the fact
that 5,'(0)s,(0) > 0.

Thus, (QmlQ.m-\)(u + sv) as a function of s has negative second-order
derivative at 5 = 0. The same is true for (QmIQm-\)(P- + sqv + sv) with any
Sq provided p + sqv e Am , and therefore, the function QmIQm-\ is concave
on that part of the straight line with direction v passing through p which lies
in Am . We have some restrictions on p, v, but they still allow us to take p, v
everywhere dense (in corresponding sets), which along with the continuity of
Qm/Qm-i proves its concavity in Am .

Finally, the case d = 1 is trivial and the case a* = 2 can, for example,
formally be reduced to the case d = 3 if in the very beginning we introduce
a new independent variable X° and define Qm+x(X°, ... , Xd) = X°Qm(X). The
theorem is proved.

Corollary 6.5. Define Pd(X) = Xx.Xd, take X0 = (I, ..., I), and for m =
0,... , d put

ml dd~m
FmW = -jy7  , d_mPd(k + tX0)\t=o ,

so that Pm(X) is the normalized mth elementary symmetric function. Then
(i) the polynomials Pm satisfy the hypotheses of Theorem 6.4; in particular,

the function Pm/m is concave in Am;
(ii) for any k < m and X e 9Am the function PkP~x(u) tends to infinity as

Am3p-+X.
Next, take a number a > 0 and integers k <r < m. Then
(iii) the fallowing functions are convex on Am :

pr. w»-. ($)". %:
(iv) for X e Am the function Pm/mPk~l/k(X + tXo) is an increasing function

of t on [0, 00), and the function logPk(X) is a concave function of k for
k = 0, I, ..., m.

To prove (i), note that, obviously, Pj satisfies the hypotheses of Theorem
6.4 and by the same theorem (with Xi = Xo) the same is true for all Pm.
Assertion (ii) is an immediate consequence of the theorem and of the formula
PkP~X = PkPk~Xx.Prn-lP^-

Assertion (iii) follows from the observation that on A„cA,c A* functions
-logPk, -alogPk, Pk~a, -alog(PkPr), (PkPr)~a, log(Pr-iP,-x),

lOgiPr-iP,-1) = 10g(Pr_2P-1,) + 10g(T>r_,Pr-') »

alog(PkPr-1), PgPra, log(PkP-x) + log(PrP-x) are all convex.
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The first assertion in (iv) only needs to be proved for k = m - 1. But if
we use the characterization of concave functions with the help of correspond-
ing tangent planes, then we see that the concavity of Pm/Pm-i along with its
homogeneity means that for any X, pe Am we have

•*m— 1 'm-l        L *m *m—\

Here we put p = Xq and make use of the obvious relation Pmx'X'0 = mPm-i.
Then we see that for p = Xq the above inequality means that PmPm-2(X) <
Pm-iW. We rediscover the Maclaurin inequality (in a particular case, the
general case can be found in [10]). This inequality means that for X e Am the
function logPk(X) is a concave function of k for k = 0, 1,..., m. To finish
the proof of (iv) it remains to note that the same Maclaurin inequality means
exactly that the derivative with respect to t of log[Pm'mP~l][m~l)(X + tXo)] at
the point t = 0 is positive.

Corollary 6.5 and Theorem 6.4 obviously imply the assertions of Lemmas
4.16 and 5.13 if we also make use of the following lemma from [21].
Lemma 6.6. Let G(X) = G(XX,... , Xd) be a convex function defined in a convex
domain S c Rd. Assume that G and S are invariant under all permutations of
coordinates X'. Then the function G(X(w)) is convex in the set {w : X(w) e S},
which is convex as well.
Remark 6.7. With the help of Corollary 6.5 and Theorem 6.4 we can construct
many different examples of fully nonlinear elliptic equations. For instance,
take integers m, r(0),..., r(m - 1) such that m e [1, d], m > r(k) > k
for k = 0,..., m - 1, and numbers / > 0, Co,..., cm-X > 0, cm > 0,
ai,..., am>0. Then any of the equations

m

Pm(uxixi) = f,   l=Y,ckPk-ak(ux,x.),
Jt=0

Ttl ffl— 1 yj

l=^Cfc(P^_,)-^(M^,),    l=^Cfc+,p^(M^),
kTi kTo      PM

m-l

Pm(Ux>x>) = 51 ckPkPk+\{uxixi)
k=0

is an elliptic equation. Moreover, any of these equations has an elliptic branch
described by the additional requirements that for t > 0 and uXixi + tStj substi-
tuted instead of uXixi its left-hand side is strictly greater than the right-hand side
and (uxixj + tSij) e Cm. Furthermore, these elliptic branches are equivalent
to weakly nondegenerate Bellman equations with constant and bounded coeffi-
cients and with tr a(co) = 1. Finally, for the second, third, and fourth equa-
tions the corresponding Bellman equations are quasi-nondegenerate, and the
same is true for the first and the last ones if in addition / > 0, 5Zjk<m-i ck > 0 •

These statements can be proved in exactly the same way as Theorem 4.15.
The so-called complex versions of our equations can be investigated along the
same lines (cf. [4], [20]).
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