Research Article

Yan Yao, Mengya He, and Shengjin Ji*

On the general position number of two classes of graphs

https://doi.org/10.1515/math-2022-0444
received May 27, 2021; accepted March 25, 2022

Abstract

The general position problem is to find the cardinality of the largest vertex subset S such that no triple of vertices of S lies on a common geodesic. For a connected graph G, the cardinality of S is denoted by $\operatorname{gp}(G)$ and called the gp-number (or general position number) of G. In the paper, we obtain an upper bound and a lower bound regarding the gp-number in all cacti with k cycles and t pendant edges. Furthermore, the exact value of the gp-number on wheel graphs is determined.

Keywords: general position set, cactus, wheel
MSC 2020: 05C12, 05C69, 68Q25

1 Introduction

In the paper, all graphs are undirected, finite, and simple. Assume that $G=(V, E)$ is a connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $u, v \in V(G) . d_{G}(u, v)$ denotes the number of edges on a shortest (u, v)-path in G. A (u, v)-path with length $d_{G}(u, v)$ is regarded as a v, r-geodesic. The interval $I_{G}(u, v)$ of G is the set of vertices w such that there exists a u, v-geodesic, which contains w. We refer the readers to [1] for undefined terminology and notations.

The classical Dudeney's no-three-in-line problem [2-4] is to determine as many as possible vertices that can be placed in the $m \times m$ grid such that no three vertices of them lie on a line. The famous problem has been further studied in several recent papers [5-8]. Later, Froese et al. [9] extended the problem in discrete geometry to general position subset selection problem, which is to obtain a maximal subset of vertices in general position. They also showed that the general position subset selection problem is NP-hard.

Motivated by the above two problems, the general position problem of graphs was introduced by Manuel and Klavžar [10] and Payne and Wood [11]. A subset R of $V(G)$ is a general position set in graph G if no three vertices of R lie on a common geodesic. A maximum general position set is named a gp-set of G. The general position number (the gp-number for short) of G is defined as the cardinality of a gp-set, denoted by $\operatorname{gp}(G)$. Hence, the aim of the general position problem is to determine bounds or exact value of the gp-number for some classes of graphs.

Anand et al. [12] deduced a formula for the general position number of the complement of an arbitrary bipartite graph. Klavžar and Yero [13] proved that $\operatorname{gp}(G) \geq \omega\left(G_{S R}\right)$, where $G_{S R}$ is the strong resolving graph of a connected graph G, and $\omega\left(G_{S R}\right)$ is its clique number. In [14,15], the authors determined upper bounds of the gp-number on integer lattices and Cartesian grids and showed that the general position problem is

[^0]NP-complete. For more properties of the general position problem, see [10,16-19]. Note that many researchers are highly concerned about the structural properties of the cactus and wheel graphs under graph parameters, such as [20-22]. Hence, it is interesting to explore the bounds of the gp-number for cactus and wheel graphs.

A connected graph G is called a cactus if its blocks consist of cycles and edges. A chain cactus is a cactus graph for which each block has at most two cut vertices and each cut vertex is shared by exactly two blocks. If a cycle of G has one cut vertex, we name it an end-block. A vertex of a cycle is said to be nontrivial if its degree is at least 3 . Let v be a cut vertex of a cycle of G. If a component of $G-v$ contains an end-block C_{0} (if v belongs to some cycle C_{*}, then the component does not contain vertices of C_{*}), then C_{0} is defined as an endblock of v. Moreover, the path between two cycles is a cyclic path, i.e., (u, v)-path is a cyclic path, see Figure 1. Let $C_{n}^{t, k}$ be the class of all cacti of order n with k cycles and t pendant edges. Let C_{n}^{k} be the set of all cacti of order n with k cycles. The wheel graph W_{n} is the graph obtained from the cycle C_{n} of order n by adding a new vertex and connecting it to all vertices of C_{n}.

In the paper, we propose upper and lower bounds of the gp-number for cactus graphs, and the structure of the extremal graphs attaining the bounds is characterized. In addition, the exact value of the gp-number is also obtained for wheels.

2 The upper bound of cacti regarding gp-number

From [10], we know that $\operatorname{gp}\left(C_{3}\right)=3, \operatorname{gp}\left(C_{4}\right)=2$, and $\operatorname{gp}\left(C_{n}\right)=3$ for $n \geq 5$.

Lemma 2.1. Let G be a cactus with $k(\geq 2)$ cycles, and S be a gp-set of G. If C_{0} is a cycle of G, then $\left|V\left(C_{0}\right) \cap S\right| \leq 2$.

Proof. Let C_{1} and C_{2} be two cycles of G connected by a path P (maybe trivial). Assume that $V\left(C_{1}\right) \cap V(P)=u$ and $V\left(C_{2}\right) \cap V(P)=r$. Let u_{1} and u_{2}, u_{3} and u_{4} be the adjacent vertices of u and r in C_{1} and C_{2}, respectively. Note that $R=\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a general position set of G. Therefore, $\operatorname{gp}(G) \geq 4$.

Suppose $\left|V\left(C_{0}\right) \cap S\right|=3$ and let $V\left(C_{0}\right) \cap S=\{x, y, z\}$. This means that $I(x, y) \cup I(y, z) \cup I(z, x)=V\left(C_{0}\right)$ and $I(x, y) \cap I(y, z)=y, I(y, z) \cap I(z, x)=z, I(x, y) \cap I(z, x)=x$. Since G is a cactus, the cycle C_{0} possesses at least one nontrivial cut vertex, marked as v. Let H_{0} be a nontrivial subgraph of G such that $V\left(H_{0}\right) \cap V\left(C_{0}\right)=v$. Without loss of generality, assume that $v \in I(x, y)$. For some $v_{0} \in V\left(H_{0}\right)$, every path connecting the vertex v_{0} and all vertices in C_{0} goes through v. Therefore, x (or $\left.y\right) \in I\left(v_{0}, z\right.$), and we deduce that $\left|S \cap V\left(H_{0}\right)\right|=0$. Then, $\operatorname{gp}(G)=3$, a contradiction.

Manuel and Klavžar [10] determined the the gp-number of trees. We present it here.

Lemma 2.2. If L is the set of leaves of a tree T, then $\operatorname{gp}(T)=|L|$.

Suppose G is cactus and contains a cycle C_{t} and a cyclic path P_{r}. Set v a vertex of C_{t} (or P_{r}) with degree more than two and its two neighbors as v_{1} and $v_{2} . G_{v}$ denotes the subgraph of $G-v v_{1}-v v_{2}$ containing $v . T_{k}$ denotes the maximal subgraph induced by the vertices in acyclic subgraph of $G_{v}-v$ together with v. Clearly, T_{k} is a tree, we call it a pendant tree associated with v, and v is the root of T_{k}. A root vertex v is referred as a nontrivial cut vertex of G.

Lemma 2.3. If $G \in C_{n}^{t, k}$ and \mathcal{T} is the subgraph formed from pendant trees by removing their roots in G, then there exists a gp-set S such that $|S \cap V(\mathcal{T})|=t$.

Figure 1: (u, v)-path is a acyclic path.

Proof. Let $G \in C_{n}^{t, k}$ has w pendant trees labeled as $T_{1}, \ldots, T_{\ell}, T_{\ell+1}, \ldots, T_{w}$ with roots $v_{1}, \ldots, v_{\ell}, v_{\ell+1}, \ldots, v_{w}$, where the first ℓ roots (resp. the last $w-\ell$ roots) belong to cycles (resp. cyclic paths). Let $\mathcal{T}_{1}=\bigcup_{i=1}^{\ell}\left\{T_{i}-v_{i}\right\}$, $\mathcal{T}_{2}=\bigcup_{i=\ell+1}^{w}\left\{T_{i}-v_{i}\right\}$ and $\mathcal{T}=\mathcal{T}_{1} \cup \mathcal{T}_{2}$. Let $L_{i}(1 \leq i \leq w)$ be the set of leaves of the pendant tree T_{i} and X_{i} $(1 \leq i \leq w)$ be the set of vertices with degree one in G. Obviously, $\left|L_{i}\right|=\left|X_{i}\right|$. Let S^{\prime} be a gp-set of G.

Claim 1. S^{\prime} does not contain any root $v_{i}(\ell+1 \leq i \leq w)$.
Assume that there is some $v_{i_{0}} \in S^{\prime}$ for $\ell+1 \leq i_{0} \leq w$. As shown in Figure 2, $v_{i_{0}}$ is a nontrivial cut vertex of G, which, besides $T_{i_{0}}$, has $p(\geq 2)$ components containing cycles labeled as $H_{1}, H_{2}, \ldots, H_{p}$. For every triple including $v_{i_{0}}$ of S^{\prime} marked as $\left\{x, y, v_{i_{0}}\right\}$, we conclude that x and y simultaneously belong to some component (or the pendant tree) of $v_{i_{0}}$, assume that H_{1}. If not, suppose that $x \in V\left(H_{j}\right)$ and $y \in V\left(H_{k}\right)$ (or $V\left(T_{i_{0}}-v_{i_{0}}\right)$), then any x, y-geodesic is via $v_{i_{0}}$, contradicted with S^{\prime}. By the way, we obtain a new general position set $S=S^{\prime} \cap V\left(H_{1}\right) \cup\left\{u_{2}, u_{3}, \ldots, u_{p}, u_{p+1}\right\}$. Obviously, $|S| \geq\left|S^{\prime}\right|+2$, which is a contradiction.

We now consider the relationship between S^{\prime} and the remaining roots of G.
If S^{\prime} does not contain any root $v_{i}(1 \leq i \leq \ell)$, we take $S=S^{\prime}$. Every vertex with degree 1 cannot lie on the geodesics of any other pair pendant vertices. Hence, $\left|S \cap V\left(\mathcal{T}_{1}\right)\right|=\left|\sum_{i=1}^{\ell} S \cap\left(V\left(T_{i}\right)-v_{i}\right)\right|=\sum_{i=1}^{\ell}\left|S \cap V\left(T_{i}\right)\right|=$ $\sum_{i=1}^{\ell}\left|X_{i}\right|=\sum_{i=1}^{w}\left|L_{i}\right|$ by Lemma 2.2.

We hence suppose that S^{\prime} includes some root $v_{i_{0}}$, which belongs to a cycle C_{0}. Evidently, $S^{\prime}=$ $\left(S^{\prime} \cap V\left(G-T_{i_{0}}\right)\right) \cup\left(S^{\prime} \cap\left(V\left(T_{i_{0}}\right) \backslash\left\{v_{i_{0}}\right\}\right)\right) \cup\left\{v_{i_{0}}\right\}$. We claim that $T_{i_{0}}$ is a path. Note that every path from the vertices in $V\left(G-T_{i_{0}}\right)$ to the vertices of $V\left(T_{i_{0}}\right) \backslash\left\{v_{i_{0}}\right\}$ is via $v_{i_{0}}$, which implies $S^{\prime} \cap V\left(G-T_{i_{0}}\right)=\varnothing$ or $S^{\prime} \cap\left(V\left(T_{i_{0}}\right) \backslash\left\{v_{i_{0}}\right\}\right)=\varnothing$. First, suppose that $S^{\prime} \cap\left(V\left(G-T_{i_{0}}\right)\right)=\varnothing$. Mark the two adjacent vertices of $v_{i_{0}}$ as x and y in C_{0}. Then, we obtain a new general position set $S^{\prime \prime}=\{x, y\} \cup\left(S^{\prime} \cap\left(V\left(T_{i_{0}}\right) \backslash\left\{v_{i_{0}}\right\}\right)\right)$. This means that $\left|S^{\prime \prime}\right|>\left|S^{\prime}\right|$, which is a contradiction with the maximum of S^{\prime}. That is to say, $S^{\prime} \cap\left(V\left(T_{i_{0}}\right) \backslash\left\{v_{i_{0}}\right\}\right)=\varnothing$. If $\left|X_{i_{0}}\right| \geq 2$, we have a new general position set $S^{\prime \prime \prime}=\left(S^{\prime} \cap V\left(G-T_{i_{0}}\right)\right) \cup X_{i_{0}}$. Then $\left|S^{\prime \prime \prime}\right|>\left|S^{\prime}\right|$, contradicted with the maximum of S^{\prime}. So $\left|X_{i_{0}}\right|=1$, which implies that $T_{i_{0}}$ is a path. Let $S=\left(S^{\prime} \backslash\left\{v_{i_{0}}\right\}\right) \cup X_{i_{0}}$. Clearly, $|S|=\left|S^{\prime}\right|$ and S is a gp-set of G.

Assume now that S^{\prime} contains some of these roots. Then, repeating the aforementioned process, we obtain a new gp-set S of G such that all roots are not its elements.

By Lemma 2.2, we conclude that $|S \cap V(\mathcal{T})|=\sum_{i=1}^{w}\left|S \cap V\left(T_{i}\right)\right|=\sum_{i=1}^{w}\left|X_{i}\right|=\sum_{i=1}^{w}\left|L_{i}\right|=t$.
Let C be the set of all cycles and \mathcal{T} be the subgraph formed from pendant trees by removing their roots in G. From Lemmas 2.1 and 2.3, we deduce $g p(G)=|S \cap V(C)|+|S \cap V(\mathcal{T})| \leq 2 k+t$. In order to demonstrate that the bound is best, we next exhibit the structure of cacti such that their $g p$-number equal $2 k+t$.

For convenience, we introduce some notations. Let $G \in C_{n}^{t, k}$ and $C_{\ell}=u_{1} u_{2} \ldots u_{\ell} u_{1}$ be a cycle of G. For two vertices u_{i} and u_{j}, clearly, C_{ℓ} consists of two (u_{i}, u_{j})-paths. If all cut-vertices of C_{ℓ} is located on one $\left(u_{i}, u_{j}\right)$-path, then this path is referred to as a $\left(u_{i}, u_{j}\right)$-cut-path and use $d_{c}\left(u_{i}, u_{j}\right)$ to denote the number of edges in the $\left(u_{i}, u_{j}\right)$-cut-path. Let D_{c} be $\min _{u_{i}, u_{j} \in V\left(C_{\ell}\right)} d_{c}\left(u_{i}, u_{j}\right)$ of C_{ℓ}. We call cycle C_{ℓ} a good cycle if D_{c} is no more than either $\frac{\ell}{2}-2$ for even ℓ or $\left\lfloor\frac{\ell}{2}\right\rfloor-1$ for odd ℓ. Trivially, the cycle as an end-block of cactus is a good cycle. In addition, if D_{c} is at least either $\frac{\ell}{2}$ for even ℓ or $\left\lfloor\frac{\ell}{2}\right\rfloor+1$ for odd ℓ, then the cycle is regarded as a bad cycle. Furthermore, C_{ℓ} is referred to a normal cycle if D_{c} equals to $\frac{\ell}{2}-1$ for even ℓ or $\left\lfloor\frac{\ell}{2}\right\rfloor$ for odd ℓ.

Figure 2: The two graphs G and G_{0} used in Lemma 2.3 and Theorem 2.4.

Let $H_{0}=v_{1} v_{2} \ldots v_{\ell} v_{1}$ be a cycle of G_{0} (see Figure 1). Assume that $H_{i}(1 \leq i \leq \ell)$ is a connected subgraph with $V\left(H_{i}\right) \cap V\left(H_{0}\right)=\left\{v_{i}\right\}$ and $\left|V\left(H_{i}\right)\right|=n_{i}$ for $i \in\{0,1, \ldots, \ell\}$.

Theorem 2.4. Let $G_{0} \in C_{n}^{t, k} . \operatorname{gp}\left(G_{0}\right)=2 k+t$ if only all cycles of G_{0} are good.
Proof. Let $G_{0} \in C_{n}^{t, k}$ with $\operatorname{gp}\left(G_{0}\right)=2 k+t$. Suppose S is a gp-set of G_{0}. Hence, $|S|=2 k+t$ and $\left|S \cap V\left(H_{0}\right)\right|=2$ for every cycle H_{0} of G_{0} by Lemma 2.3. To verify the conclusion, it is sufficient to show $\left|S \cap V\left(H_{0}\right)\right|=2$ if and only if H_{0} is a good cycle.

We now assume that H_{0} is a good cycle. Suppose $d_{c}\left(v_{i_{0}}, v_{j_{0}}\right) \leq \frac{\ell}{2}-2$ for even ℓ. We take the two vertices that are adjacent to $v_{i_{0}}$ and $v_{j_{0}}$ on another $\left(v_{i_{0}}, v_{j_{0}}\right)$-path in H_{0}, and mark them as $v_{i_{0}}^{\prime}$ and $v_{j_{0}}^{\prime}$, respectively. It is clear that the two vertices have degree two. For an arbitrary vertex u_{0} in $G-V\left(H_{0}\right), v_{i_{0}}^{\prime}$ is not on a $\left(u_{0}, v_{j_{0}}^{\prime}\right)$-shortest path and $v_{j_{0}}^{\prime}$ is also not on a $\left(u_{0}, v_{i_{0}}^{\prime}\right)$-shortest path. If $\left|S \cap V\left(H_{0}\right)\right|<2$, then let S^{\prime} be the set obtained from S by removing all the elements of its subset $S \cap V\left(H_{0}\right)$ and adding the two vertices $v_{i_{0}}^{\prime}$ and $v_{j_{0}}^{\prime}$. We deduce that S^{\prime} is a general position set with $\left|S^{\prime}\right| \geq|S|+1$, which contradicts the maximum of S. Hence, $\left|S \cap V\left(H_{0}\right)\right|=2$.

Suppose $d_{c}\left(v_{i_{0}}, v_{j_{0}}\right) \leq\left\lfloor\frac{\ell}{2}\right\rfloor-1=\frac{\ell-1}{2}-1$ for odd ℓ. Let $v_{i_{0}}^{\prime}$ and $v_{j_{0}}^{\prime}$ denote the two vertices of degree two, which are adjacent to $v_{i_{0}}$ and $v_{j_{0}}$ on another $\left(v_{i_{0}}, v_{j_{0}}\right)$-path, respectively. Hence, for an arbitrary vertex w_{0} in $G-V\left(H_{0}\right), v_{i_{0}}^{\prime}$ is not on a $\left(w_{0}, v_{j_{0}}^{\prime}\right)$-shortest path and $v_{j_{0}}^{\prime}$ is also not on a $\left(w_{0}, v_{i_{0}}^{\prime}\right)$-shortest path. By a similar way as mentioned earlier, we obtain $\left|S \cap V\left(H_{0}\right)\right|=2$.

Therefore, we obtain that $\left|S \cap V\left(H_{0}\right)\right|=2$ if H_{0} is a good cycle.
On the contrary, G includes at least a cycle H_{0}, which is not a good cycle. Note that end-blocks of G_{0} are good. We thus assume that H_{0} is not an end-block as shown in Figure 2. (It includes at least two cut vertices.) Hence, its D_{c} is no less than either $\frac{\ell}{2}-1$ for even ℓ or $\left\lfloor\frac{\ell}{2}\right\rfloor$ for odd ℓ. Let $v_{i_{0}}$ and $v_{j_{0}}$ be two cutvertices of H_{0} for which $D_{c}=d_{c}\left(v_{i_{0}}, v_{j_{0}}\right)$.

We first consider the special case that H_{0} contains only two cut vertices. Then, $D_{c} \leq\left\lfloor\frac{\ell}{2}\right\rfloor$, and we deduce that $\left|S \cap V\left(H_{0}\right)\right| \leq 1$. Suppose now that there are at least three cut vertices in $V\left(H_{0}\right)$. If $d_{c}\left(v_{i_{0}}, v_{j_{0}}\right) \geq\left\lfloor\frac{\ell}{2}\right\rfloor+1$, then there exists a cut vertex v_{r} which belongs to the $\left(v_{i_{0}}, v_{j_{0}}\right)$-cut-path of the cycle H_{0}, such that one vertex is not on the geodesic of the other two vertices in the triple $\left\{v_{i_{0}}, v_{j_{0}}, v_{r}\right\}$. Let now $v_{k_{0}}\left(\neq v_{i_{0}}, v_{j_{0}}, v_{r}\right)$ be an arbitrary vertex of H_{0}. Assume that $v_{k_{0}}$ is one vertex of the shortest $\left(v_{i_{0}}, v_{j_{0}}\right)$-path. Then, it is easy to deduce that every shortest path from the vertices in $H_{v_{i 0}}$ to the vertices in $H_{v_{j_{0}}}$ goes through $v_{k_{0}}$. If $\left|S \cap V\left(H_{0}\right)\right|=2$, then at least one of $\left|S \cap V\left(H_{v_{i_{0}}}\right)\right|,\left|S \cap V\left(H_{v_{j_{0}}}\right)\right|$ and $\left|S \cap V\left(H_{v_{r}}\right)\right|$ is equal to zero, so $g p\left(G_{0}\right)<2 k+t$ by Lemmas 2.1 and 2.3. Hence, $\left|S \cap V\left(H_{0}\right)\right| \geq 1$.

Assume that $d_{c}\left(v_{i_{0}}, v_{j_{0}}\right)=\left\lfloor\frac{\ell}{2}\right\rfloor$. If ℓ is even, then $\left\lfloor\frac{\ell}{2}\right\rfloor=\frac{\ell}{2}$. For a vertex u of $H_{v_{i_{0}}}-v_{i_{0}}$ and a vertex w of $H_{v_{j_{0}}}-v_{j_{0}}$, all vertices of H_{0} lie on some (u, w)-geodesic. If $\left|S \cap V\left(H_{0}\right)\right| \geq 1$. Then, $\left|S \cap V\left(H_{v_{i_{0}}}\right)\right|=0$ or $\left|S \cap V\left(H_{v_{j_{0}}}\right)\right|=0$. According to Lemmas 2.1 and 2.3, $\operatorname{gp}\left(G_{0}\right)<2 k+t$. Hence, $\left|S \cap V\left(H_{0}\right)\right|=0$ If ℓ is odd, then $\left\lfloor\frac{\ell}{2}\right\rfloor=\frac{\ell-1}{2}$. Using a similar way for even ℓ, it is verified that $\left|S \cap V\left(H_{0}\right)\right|=1$.

Suppose $d_{c}\left(v_{i_{0}}, v_{j_{0}}\right)=\left\lfloor\frac{\ell}{2}\right\rfloor-1=\frac{\ell}{2}-1$ for even ℓ. We conclude that any vertex, which lies on a $\left(v_{i_{0}}, v_{j_{0}}\right)$-cut-path is not an element of S. Let P_{0} be another $\left(v_{i_{0}}, v_{j_{0}}\right)$-path in H_{0}. Clearly, $\left|S \cap\left(V\left(P_{0}\right) \backslash\left\{v_{i_{0}}, v_{j_{0}}\right\}\right)\right|=1$.

Therefore, the proof is complete.

By means of Theorem 2.4, we deduce that there are a lot of graphs belonging to $C_{n}^{t, k}$ for which the gp-number is equal to $2 k+t$ and these graphs have different shapes.

Let A_{1} be a cactus in which all cycles and all pendant trees share a common cut vertex v. Let R be the vertex set formed by all neighbors of v in cycles and the pendant vertices in A_{1}. In fact, R is a general
position set, and $|R|=2 k+t$. Hence, $\operatorname{gp}\left(A_{1}\right) \geq 2 k+t$. Conversely, Lemmas 2.1 and 2.3 lead to $\operatorname{gp}\left(A_{1}\right) \leq 2 k+t$. Thus $\operatorname{gp}\left(A_{1}\right)=2 k+t$.

In addition, let A_{2} denote a chain cactus with the following two properties: (a) the length of every cycle in A_{2} is at least 5 and its two cut vertices (if they exist) are adjacent, (b) there is one cut vertex of some cycle possessing pendant tree. Evidently, take two neighbors of the two cut vertices different with themselves for each cycle and all pendant vertices forming a general position set of A_{2}, denote it by R^{\prime}. Then, $\left|R^{\prime}\right|=2 k+t$ and $\operatorname{gp}\left(A_{2}\right) \leq 2 k+t$. So $\operatorname{gp}\left(A_{2}\right)=2 k+t$ by Lemmas 2.1 and 2.3.

We now give two concrete examples. Let $B_{1} \in C_{n}^{t, k}$ with $k=3, t=3, n=17$, and $B_{2} \in C_{n}^{t, k}$ with $k=4$, $t=2, n=19$, see Figure 3. We have their general position sets S and S^{\prime} that consists of all solid vertices, respectively. Evidently, $|S|=9=2 k+t$ and $\left|S^{\prime}\right|=10=2 k+t$.

By means of Theorem 2.4, the main result holds.
Theorem 2.5. If $G \in C_{n}^{t, k}$, then

$$
\operatorname{gp}(G) \leq \max \{3,2 k+t\}
$$

where the equality holds if and only if all cycles of G are good.

Proof.

Case 1. $k=1$ and G with at most one pendant vertex. Note that G is a unicyclic graph, mark its unique cycle as C_{0}. Clearly, C_{0} is a good cycle. We check that $\operatorname{gp}(G) \leq 3$. In addition, $\operatorname{gp}(G)=3$ means that $G \cong C_{n}$ for $n \neq 4$ or G contains a pendant vertex.

Case 2. $k \geq 2$ or $k=1$ and G with at least two pendant vertices. Observe that $3 \leq 2 k+t$. Lemmas 2.1 and 2.3 result in $\operatorname{gp}(G) \leq 2 k+t$. Moreover, Theorem 2.4 implies that $\operatorname{gp}(G)=2 k+t$ if and only if each cycle in G is good.

Together with the aforementioned two cases, the proof is complete.
Corollary 2.6. Let $G \in C_{n}^{k}$, we have

$$
\operatorname{gp}(G) \leq \max \{3, n-1\},
$$

where equality holds if and only if $G \cong C_{3}$ or $G \cong B_{0}$.
Proof. Suppose $G \in C_{n}^{k}$. If G is isomorphic to C_{3}, then $\operatorname{gp}(G)=3$. We now assume that $G \not \equiv C_{3}$. Let t be the number of pendant edges in G. Clearly, $t \leq n-2 k-1$. Since k is bounded, we deduce that $\operatorname{gp}(G) \leq 2 k+t \leq 2 k+n-2 k-1=n-1$.
$\operatorname{gp}(G)=n-1$ leads to that $t=n-2 k-1$. That is to say, every cycle of G is a triangle, and all triangles share a common vertex. Thus, $G \cong B_{0}$, see Figure 3. Actually, it is easy to check that all vertices except for the cut vertex form a general position set of B_{0}.

3 A lower bound for cacti

In this section, we will prove some lower bounds for cacti. Note that for a graph $G \in C_{n}^{t, k}$, its pendant vertices consist of a general position set. Hence, there exist an obvious lower bound, $\operatorname{gp}(G) \geq t$. It is

Figure 3: B_{0} is used in Theorem 2.5, B_{1} and B_{2} attain the bound in Theorem 2.4.
interesting to determine all graphs attaining this bound. In addition, we also consider cactus graph with $t=0$. In particular, if $G \in C_{n}^{0,1}$, then $G \cong C_{n}$, and hence, $\operatorname{gp}(G)=3$ for $n=3$ or $n \geq 5$ or $\operatorname{gp}(G)=3$ for $n=4$. Moreover, if $G \in C_{n}^{0,2}$, then $\operatorname{gp}(G)=4$. We now consider $G \in C_{n}^{0, k}$ for $k \geq 3$.

Theorem 3.1. Suppose k and k_{1} are two integers with $k \geq 3$ and $k_{1} \geq 0$. If $G \in C_{n}^{0, k}$ has k_{1} odd cycles, then

$$
\operatorname{gp}(G) \geq \begin{cases}k_{1}+2 & k_{1} \geq 3 \\ 4 & \text { otherwise }\end{cases}
$$

Equality holds if and only if G is a chain cactus for which, except for two end-blocks, D_{c} of every even cycle equals to the half number of its vertices and D_{c} of every odd cycle equals to the floor of the half number of its vertices, or G is a cactus such that at least one cycle owns three cut vertices, which includes three properties: there are at least one odd cycle with three cut vertices, all even cycles have two cut vertices, and all end-blocks are odd.

Proof. Let k and k_{1} are two integers and $k \geq 3$ and $k_{1} \geq 0$. Suppose G is a cactus in $C_{n}^{0, k}$ having the minimal gp-number. Let S be a gp-set of G.

To exhibit clearly, we now introduce some notations. Let $C_{t_{1}}, C_{t_{2}}, \ldots, C_{t_{k}}$ be the k cycles of G. ed (G) denotes the number of end-blocks in G. Let ℓ_{i} be the number of cut vertices on $C_{t_{i}}$ for $i=1,2, \ldots, k$. Assume that $e d_{2}(G)$ denotes the number of the cycles with two cut vertices in G. Without loss of the generality, suppose $1 \leq \ell_{1} \leq \ell_{2} \leq \ldots \leq \ell_{k}$. In fact, $e d(G)=2+\sum_{i=e d(G)+1}^{k} \ell_{i}-2$. Let $v_{e d}$ be a cut vertex of $C_{t_{e d(G)}}$. In addition, set $v_{e d}^{\prime}$ the vertex on $C_{t_{e d(G)}}$ such that $d_{c}\left(v_{e d}, v_{e d}^{\prime}\right)$ is as big as possible and $d_{c}\left(v_{e d}, v_{e d}^{\prime}\right) \leq$ $\left\lfloor\frac{t_{e d}}{2}\right\rfloor$. To show the conclusion, we first show the claim.

Claim $1 G$ has the following properties.
(A) Each vertex in cyclic paths of G has degree two.
(B) For each vertex v on cycles of $G, G-v$ has at most two components.
(C) $\ell_{r} \leq 3$ for $1 \leq r \leq k$. In particular, $\ell_{r} \leq 2$ if C_{r} is even, $\ell_{r} \leq 3$ otherwise. If $\ell_{r}=3$, then $C_{t_{r}}$ is odd and endblocks of G are odd.
(D) If G has an even end-block, then G is a chain cactus.

Proof. (A) On the contrary, suppose that there exists a vertex u_{0} in a cyclic path of G with $d_{G}\left(u_{0}\right) \geq 3$. Set its one neighbor u_{1} such that u_{1} isn't on the shortest $\left(u_{0}, v_{e d}\right)$-path. Let G^{\prime} be the new graph from G by deleting the edge $u_{0} u_{1}$ and joining $u_{1} v_{e d}^{\prime}$. Set S^{\prime} a gp-set of G^{\prime}. Clearly, $|S|-\left|S^{\prime}\right|=\left|V\left(C_{t_{e d}}\right) \cap S\right|-\left|V\left(C_{t_{e d}}\right) \cap S^{\prime}\right| \geq 2-1=1$, is a contradiction.

Using the same way, we can verify (B); thus, the proof is omitted.
(C) On the contrary, suppose $\ell_{r} \geq 4$ with $r \geq e d(G)+1$ as small as possible. Thus, there exists three cut vertices as v_{r}, $v_{r_{0}}$, and $v_{r_{1}}$ of $C_{t_{r}}$ such that v_{r} is a vertex in the $\left(v_{r_{0}}, v_{r_{1}}\right)$-cut-path with length D_{c}. G^{\prime} is the new graph from G by removing the subgraph from v_{r} to $v_{e d}^{\prime}$. Let S^{\prime} be a gp-set of G^{\prime}. Let ℓ_{i}^{\prime} be the number of cut vertices of $C_{t_{i}}$ in G^{\prime} for $i=1,2, \ldots, k$. Evidently, $\ell_{i}^{\prime}=\ell_{i}$ for $i \neq r, e d(G), \ell_{r}^{\prime}=\ell_{r}-1 \geq 3$, and $\ell_{e d(G)}^{\prime}=\ell_{e d(G)}+1=2$. Note that $\left|V\left(C_{t_{r}}\right) \cap S\right|=\left|V\left(C_{t_{r}}\right) \cap S^{\prime}\right|$. Hence, $|S|-\left|S^{\prime}\right|=\left|V\left(C_{t_{e d}}\right) \cap S\right|-\left|V\left(C_{t_{e d}}\right) \cap S^{\prime}\right| \geq 2-1=1$, which contradicts with the choice of G.

Suppose there is an even cycle $C_{t_{r}}$ with $\ell_{r}=3$. Let u_{0} is a cut vertex of $C_{t_{r}} . G^{\prime \prime}$ denotes the graph obtained from G by shifting the subgraph from u_{0} to an end-block $C_{t_{h}}(h \leq e d(G))$ and adjusting the positions of cut vertices in two cycles for which $C_{t_{r}}$ is bad and $C_{t_{h}}$ is not good. Let $S^{\prime \prime}$ is a gp-set in $G^{\prime \prime}$. Observe that $\left|V\left(C_{t_{r}}\right) \cap S\right|=\left|V\left(C_{t_{r}}\right) \cap S^{\prime \prime}\right|=0$. Thus, $|S|-\left|S^{\prime}\right|=\left|V\left(C_{t_{h}}\right) \cap S\right|-\left|V\left(C_{t_{h}}\right) \cap S^{\prime}\right| \geq 2-1=1$, which is a contradiction.

If $\ell_{r}=3$, by the aforementioned discussion, we have $C_{t_{r}}$ is odd. All end-blocks of G are odd. If not, using the same way, we also obtain a contradiction.
(D) Suppose G includes an even end-block. From (C), we deduce that $\ell_{r} \leq 2$. Together (A) with (B), it is deduced that G is a chain cactus.

If $1 \leq \ell_{r} \leq 2$ for $r \leq k$, then G is a chain cactus. Note that, except for two end-blocks, all others internal cycles contain two cut vertices. Furthermore, we discuss the contribution of internal cycles to S, as an bad even cycle $C_{0},\left|S \cap V\left(C_{0}\right)\right|=0$, and as a normal odd cycle $C_{0},\left|S \cap V\left(C_{0}\right)\right|=1$. Since G has the minimum with respect to the gp-number, odd cycles should be end-blocks as many as possible. Recall that the condition G owns k_{1} odd cycles and $k-k_{1}$ even cycles, we hence arrive at $\operatorname{gp}(G)=k_{1}-2+4=k_{1}+2$ for $k_{1} \geq 3$ and $\operatorname{gp}(G)=4$ for $k_{1}=0,1$, 2. If $\ell_{r}=\ell_{r+1}=\cdots=\ell_{k}=3$, then all end-blocks are odd and $e d(G)=2+\sum_{i=r}^{k} \ell_{i}-$ $2=2+(k-r+1)$. Therefore, $\operatorname{gp}(G)=2 e d(G)+k_{1}-(k-r+1)-e d(G)=k_{1}+2$.

Based on the aforementioned conclusion, we deduce the following two results.

Corollary 3.2. If $G \in C_{n}^{0, k}$ has k odd cycles, then $\operatorname{gp}(G) \geq k+2$ with equality if and only if G is either a chain cactus for which, except for two end-blocks, D_{c} of each cycle equals to the floor of the half number of its vertices, or a cactus such that each cycle owns at most three cut vertices, which includes three properties: there are odd cycles with three cut vertices, and all even cycles have two cut vertices and all end-blocks are odd.

Corollary 3.3. If $G \in C_{n}^{0, k}$ has k even cycles, then $\operatorname{gp}(G) \geq 4$ with equality if and only if G is a chain cactus for which, except for two end-blocks, D_{c} of each cycle equals to the half number of its vertices.

Theorem 3.4. If $G \in C_{n}^{t, k}$, then $\operatorname{gp}(G) \geq t$ with equality if and only if the cycles are bad.

Proof. Suppose $G \in C_{n}^{t, k}, S$ is the set of pendant vertices in G. By the property of the set of pendant vertices, $\operatorname{gp}(G) \geq t$. If equality holds, then S is the gp-set of G by Lemma 2.3. This means that the vertices of all cycles do not contribute to S. In other words, for any cycle C_{a} of $G,\left|V\left(C_{a}\right) \cap S\right|=0$. Let h be the number of cut vertices of C_{a}. Clearly, $h \geq 2$. (On the contrary, C_{a} is an end-block. So $\left|V\left(C_{a}\right) \cap S\right|=2$, a contradiction.)

Assume that $h=2$, we deduce that $D_{c} \leq \frac{a}{2}$ for an even $a, D_{c} \leq\left\lfloor\frac{a}{2}\right\rfloor-1$ otherwise. Observe that $\left|V\left(C_{a}\right) \cap S\right|=0$ results in C_{a} is bad, which deduces that a is even and $D_{c}=\frac{a}{2}$. We next assume that $h \geq 3$. $\left|V\left(C_{a}\right) \cap S\right|=0$ infers that C_{a} is bad from the definition of the bad cycle. By the choice of C_{a}, we finish the proof.

4 Wheel graphs

In this section, we will deduce the gp-number of wheels. For convenience, we now introduce some notation. The vertex with degree n in W_{n} is called the center of W_{n} and denoted by w. Let $C_{n}=W_{n}-w$, and S denote a gp-set of W_{n}. Let $G_{0}=C_{n}-S$ for short.
Theorem 4.1. If $n \geq 3$, then $\operatorname{gp}\left(W_{n}\right)= \begin{cases}4, & \text { if } n=3, \\ 3, & \text { if } n=4,5, \\ \left\lfloor\frac{2}{3} n\right\rfloor, & \text { if } n \geq 6 .\end{cases}$
Proof. Let $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$. If $n=3$, then $W_{3} \cong K_{4}$. Clearly, $\left\{v_{1}, v_{2}, v_{3}, w\right\}$ forms a general position set of W_{3}, so $\operatorname{gp}\left(W_{n}\right) \geq 4$. Hence, $\operatorname{gp}\left(W_{n}\right)=4$ by $\left|V\left(W_{3}\right)\right|=4$. Suppose $n=4$, 5. Evidently, $\left\{v_{1}, v_{2}, w\right\}$ is a general position set of W_{n}. In addition, $\forall S \subseteq V\left(W_{n}\right)$ with $|S| \geq 4, W_{n}[S]$ leads to an induced P_{3}. Thus, $\operatorname{gp}\left(W_{n}\right) \leq 3$, which infers $\operatorname{gp}\left(W_{n}\right)=3$. We next assume that $n \geq 6$. Let S be a gp-set of W_{n}.

Claim 1. If $n \geq 6$, then the center $w \notin S$.

Proof of Claim 1. If $w \in S$, then $|S|=3$. Since $n \geq 6$, there are two edges for which their distance is no less than 2 in C_{n}, and we denote their ends as x_{1}, x_{2} and x_{3}, x_{4}, respectively. Then $S^{\prime}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ is a general position set, which implies that $\left|S^{\prime}\right|>|S|$. So $w \notin S$.

Note that $C_{n}[S]$ contains no path P_{3}. Hence, it consists of some K_{2} and K_{1}.
Claim 2. G_{0} contains at most one K_{2}.

Proof of Claim 2. Suppose G_{0} has at least two K_{2}. Let $e_{1}=v_{1} v_{2}$ be an edge in G_{0}. It is not difficult to find another edge $e_{2}=v_{x-1} v_{x} \in E\left(G_{0}\right)$ such that it is closest to e_{1} in C_{n}. We now construct a new subset S^{\prime} from S by the following process. If the vertex $v_{i} \in S(3 \leq i \leq x-2)$, then $v_{i-1} \in S^{\prime}$, for others vertices of S, we copy them to S^{\prime}. Since $v_{x-2} \in S$ we deduce $v_{x-2} \notin S^{\prime}$, and add v_{x-1} to S^{\prime}. In fact, every path in W_{n} possessing some triple of S^{\prime} is not geodesic. Hence, S^{\prime} is a general position set of W_{n}. Then, $\left|S^{\prime}\right|=|S|+1>|S|$, which is a contradiction.

Based on the aforementioned two claims, the gp-set S is a subset of $V\left(C_{n}\right)$ and $C_{n}[S]$ consists of some K_{1} and K_{2} for which every two consecutive components are separated by K_{1} or K_{2} (at most one). For convenience, the number of K_{1} and K_{2} in $C_{n}[S]$ are ℓ_{1} and ℓ_{2}, respectively. Hence, $\operatorname{gp}\left(W_{n}\right)=|S|=\ell_{1}+2 \ell_{2}$. In addition, if G_{0} contains one $K_{2},\left|G_{0}\right|=\ell_{1}+\ell_{2}+1$; otherwise, $\left|G_{0}\right|=\ell_{1}+\ell_{2}$. In addition, $2 \ell_{1}+3 \ell_{2} \leq n$. We next take three cases to show the result.
Case 1. $n=3 k$.
From the fact $2 \ell_{1}+3 \ell_{2} \leq 3 k$, we arrive at $g p\left(W_{n}\right)=|S|=\ell_{1}+2 \ell_{2}=\frac{2}{3}\left(2 \ell_{1}+3 \ell_{2}\right)-\frac{1}{3} \ell_{1} \leq \frac{2}{3}(3 k)-\frac{1}{3} \ell_{1}=$ $2 k-\frac{1}{3} \ell_{1}$.

On the other hand, $R=\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{8}, v_{9}, \ldots, v_{3 k-1}, v_{3 k}\right\}$ is a general position set of W_{n} and $|R|=2 k$. Hence, $\operatorname{gp}\left(W_{n}\right) \geq 2 k$. That is to say, $2 k \leq 2 k-\frac{1}{3} \ell_{1}$, which implies $\ell_{1}=0$. Consequently, $\ell_{2}=k$ and $W_{n}[S]$ is made up of $2 k$ copies of K_{2}.
Case 2. $n=3 k+1$.
Using the fact $2 \ell_{1}+3 \ell_{2} \leq 3 k+1$, we deduce that $\operatorname{gp}\left(W_{n}\right)=|S|=\ell_{1}+2 \ell_{2}=\frac{2}{3}\left(2 \ell_{1}+3 \ell_{2}\right)-\frac{1}{3} \ell_{1} \leq$ $\frac{2}{3}(3 k+1)-\frac{1}{3} \ell_{1}=2 k+\frac{2}{3}-\frac{1}{3} \ell_{1}$.

Now let $R=\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{8}, v_{9}, \ldots, v_{3 k-1}, v_{3 k}\right\}$. As in Case $1, R$ is a general position set of W_{n} and $|R|=2 k$. So, $\operatorname{gp}\left(W_{n}\right) \geq 2 k$. Hence, $2 k \leq 2 k+\frac{2}{3}-\frac{1}{3} \ell_{1}<2 k+1$. Namely, $\operatorname{gp}\left(W_{n}\right)=2 k$. Moreover, R is a gp-set of W_{n}. Case 3. $n=3 k+2$.

From the fact $2 \ell_{1}+3 \ell_{2} \leq 3 k+2$, we obtain that $\operatorname{gp}\left(W_{n}\right)=|S|=\ell_{1}+2 \ell_{2}=\frac{2}{3}\left(2 \ell_{1}+3 \ell_{2}\right)-\frac{1}{3} \ell_{1} \leq \frac{2}{3}(3 k+2)-$ $\frac{1}{3} \ell_{1}=2 k+\frac{4}{3}-\frac{1}{3} \ell_{1}$.

Take $R=\left\{v_{2}, v_{3}, v_{5}, v_{6}, v_{8}, v_{9}, \ldots, v_{3 k-1}, v_{3 k}, v_{3 k+2}\right\}$. It is not difficult to verify that R is a general position with $|R|=2 k+1$. So $\operatorname{gp}\left(W_{n}\right) \geq 2 k+1$. Hence, $2 k+1 \leq 2 k+\frac{4}{3}-\frac{1}{3} l_{1}<2 k+2$, which implies $\operatorname{gp}\left(W_{n}\right)=2 k+1$. Furthermore, $W_{n}[S]$ consists of one K_{1} and $2 k K_{2}$. Evidently, R is a gp-set of W_{n}.

Combining with the aforementioned three cases, the result holds.

Acknowledgements: We first would particularly like to thank Professor Klavžar for his meaningful and helpful suggestions. We also would like to thank anonymous reviewers whose valuable comments greatly improved the presentation of the proof. In addition, the authors acknowledge the financial support from National Natural Science Foundation of China (No. 11561032) and Shandong Provincial Natural Science Foundation of China (No. ZR2019MA012).

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] J. A. Bondy and U. S. R. Murty, Graph theory, Springer, London, UK, 2008.
[2] H. E. Dudeney, Amusements in Mathematics, Nelson, Edinburgh, 1917.
[3] A. Flammenlamp, Progress in the no-three-in-line problem, J. Combin. Theory Ser. A 60 (1992), 305-311, DOI: https://doi. org/10.1016/0097-3165(92)90012-J.
[4] R. R. Hall, T. H. Jackson, A. Sudbery, and K. Wild, Some advances in the no-three-in-line problem, J. Combin. Theory Ser. A. 18 (1975), 336-341, DOI: https://doi.org/10.1016/0097-3165(75)90043-6.
[5] C. Ku and K. Wong, On no-three-in-line problem on m-dimensional torus, Graphs Combin. 34 (2018), 355-364, DOI: https://doi.org/10.1007/s00373-018-1878-8.
[6] A. Misiak, Z. Stepień, A. Szymaszkiewicz, L. Szymaszkiewicz, and M. Zwierzchowski, A note on the no-three-in-line problem on a torus, Discrete Math. 339 (2016), 217-221, DOI: https://doi.org/10.1016/j.disc.2015.08.006.
[7] A. Por and D. Wood, No-three-in-line-in-3D, Algorithmica 47 (2007), 481-488, DOI: https://doi.org/ 10.1007/s00453-006-0158-9.
[8] M. Skotnica, No-three-in-line problem on a torus: periodicity, Discrete Math. 342 (2019), 111611, DOI: https:// doi.org10.1016/j.disc.2019.111611.
[9] V. Froese, I. Kanj, A. Nichterlein, and R. Niedermeier, Finding points in general position, Int. J. Comput. Geom. Appl. 27 (2017), 277-296, DOI: https://doi.org/10.1142/S021819591750008X.
[10] P. Manuel and S. Klavžar, A general position problem in graph theory, Bull. Aust. Math. Soc. 98 (2018), 339-350, DOI: https://doi.org/10.1017/S0004972718000473.
[11] M. Payne and D. Wood, On the general position subset selection problem, SIAM J. Discrete Math. 27 (2013), 1727-1733, DOI: https://doi.org/10.1137/120897493.
[12] B. S. Anand, S. V. Ullas Chandran, M, Changat, S. Klavžar, and E. J. Thomas, Characterizaation of general position sets and its applications to cographs and bipartite graphs, Appl. Math. Comput. 359 (2019), 84-89, DOI: https://doi.org/10.1016/ j.amc.2019.04.064.
[13] S. Klavžar and I. Yero, The general position problem and strong resolving graphs, Open Math. 17 (2019), 1126-1135, DOI: https://doi.org/10.1515/math-2019-0088.
[14] S. Klavžar and G. Rus, The general position number of integer lattices, Appl. Math. Comput. 390 (2021), 125664, DOI: https://doi.org/10.1016/j.amc.2020.125664.
[15] S. Klavžar, B. Patkós, G. Rus, and I. G. Yero, On general position sets in Cartesian grids, Results Math. 76 (2021), 123, DOI: https://doi.org/10.1007/s00025-021-01438-x.
[16] B. Patkós, On the general position problem on Kneser graphs, Ars Math. Contemp. 18 (2020), 273-280, DOI: https:// doi.org/10.26493/1855-3974.1957.aOf.
[17] E. Thomas and S. Chandran, Characterization of classes of graphs with large general position number, AKCE Int. J. Graphs Comb. 17 (2020), 935-939, DOI: https://doi.org/10.1016/j.akcej.2019.08.008.
[18] J. Tian and K. Xu, The general position number of Cartesian products involving a factor with small diameter, Appl. Math. Comput. 403 (2021), 126206, DOI: https://doi.org/10.1016/j.amc.2021.126206.
[19] J. Tian, K. Xu, and S. Klavžar, The general position number of the Cartesian product of two trees, Bull. Aust. Math. Soc. 104 (2021), 1-10, DOI: https://doi.org/10.1017/S0004972720001276.
[20] I. Gutman, S. C. Li, W. Wei, Cacti with n vertices and cycles having extremal Wiener index, Discrete Appl. Math. 232 (2017), 189-200, DOI: https://doi.org/10.1016/j.dam.2017.07.023.
[21] H. Siddiqui and M. Imran, Computing the metric dimension of wheel related graphs, Appl. Math. Comput. 242 (2014), 624-632, DOI: https://doi.org/10.1016/j.amc.2014.06.006.
[22] S. Wang, On extremal cacti with respect to the Szeged index, Appl. Math. Comput. 309 (2017), 85-92, DOI: https://doi.org/ 10.1016/j.amc.2017.03.036.

[^0]: * Corresponding author: Shengjin Ji, School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255000, China, e-mail: jishengjin2013@163.com
 Yan Yao: School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255000, China, e-mail: yaoymath@163.com
 Mengya He: School of Mathematics and Statistics, Shandong University of Technology, Zibo, Shandong 255000, China, e-mail: m19811737859@163.com

