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THEO A. F. KUIPERS* 

ON THE G E N E R A L I Z A T I O N  OF THE CONTINUUM OF 

INDUCTIVE METHODS TO U N I V E R S A L  H Y P O T H E S E S * *  

1. SUMMARY 

Carnap's continuum of inductive methods (Carnap, 1952) has been 

considered, by himself and others, as a proof for the claim that the intuitive 

concept of rational degree of belief can be explicated, at least with respect to 

simple situations, in a satisfactory way. At the same time it has been 

considered as new evidence for the intuitive feeling that such an explication 

would only be possible for singular (or, individual) hypotheses but not for 

universal hypotheses. In particular, it was felt that it would not be possible to 

generalize Carn~Lp's continuum in an acceptable way so that Carnap's 

continuum appears as an extreme special case. 

In this paper it will be shown that this particular conjecture is false and 

that, consequently, the general conjecture is also false. The requirements for 

an acceptable generalization will be stated precisely and, in view of the 

literature on tiffs subject, we have the strong conviction that these 

requirements will generally be admitted to be necessary and sufficient from 

the finitary (inductive) point of view. 

The generalized continuum is not new, however. It is essentially contained 

in Hintikka's (1966) a-X-system and it is essentially equivalent to the class of 

systems which have recently been introduced by I-Iintikka and Niiniluoto 

(1976). The main technical result of this article is the proof that the latter 

class of system,; is equivalent to a particular subsystem of Hintikka's 

combined system. Hintikka and Niiniluoto could already conclude that it was 

possible to treat universal hypotheses in a fundamentally acceptable way. The 

equivalence theorem enables us to specify precisely why and in what sense we 

are justified to talk about the generalization of Carnap's continuum. 

Moreover it shows that this generalization is axiomatically as well as 

technically as simple as ever could be expected. 

Synthese 37 (1978) 255-284. All Rights Reserved. 
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2. NOTATIONAL AND TERMINOLOGICAL CONVENTIONS 

Carnap has presented his continuum of inductive methods completely in 

terms of the application he intended: the sentences of a monadic predicate 

language. But this continuum can also be described in purely mathematical 

terms, without reference to any particular application. The same holds for the 

systems that will be discussed in this paper. However, to make the intuitive 

understanding easier we shall use a terminology based on a very general type 

of application, including Carnap's favourite one, viz. the terminology used in 

experimental situations. This approach enables us moreover to simplify the 

symbolization at several points where misunderstandings are unlikely to arise. 

Let there be described a repeatable experiment with K (2 < K < ~ )  

elementary outcomes Q1, Q2, • • •, Q~ constituting the set T. Subsets of T 

will also be called outcomes. Performance of n experiments leads to an 

ordered sequence of elementary outcomes en, which is an element of the 

Cartesian product T n and which may be used as evidence in relation to 

hypotheses concerning new experiments. In every particular context it will be 

clear whether, and in what way, the dummy expression for zero evidence, eo, 

may be omitted or inserted. 

Let ni(en) , or simply n i if e n is fixed in the context, be the number of  

occurrences of Qi in e n. Let C(en), or simply c, be the number of different 

Qj's for which ni(en) > 0; i.e. C(en) = I {Qi/ni(en) > 0} I. H(en), or simply H, 

is the singular hypothesis that the next experiment (the (n + 1)th) will result 

in one of the elementary outcomes that do not occur in en or, for short, in a 

new elementary outcome. H(en) therefore corresponds to the outcome 

(Qi/rti(en) = 0}. ffl(en) is the hypothesis that one of the elementary outcomes 

that have already occurred will occur, ffl(en) corresponds to the outcome 

{Qi/ni(en) > 0}. Of course we have that ni(eo) = O, c(eo) = 0 and H(eo) 

corresponds to  T. 

Let W be a non-empty subset of  T. C~,, (n) is the (finite) hypothesis that 

the result of n experiments is such that all members of If have occurred (at 

least once) and no others. Cw(n) corresponds to the set (en ETn/Vi  

[ni(en) > 0 ~ Qi E W] }. Note that Cw(n) is empty iff n < [ W I. Cw is the 

infinite hypothesis that in an infinite continuation of the experiments the 

elements of If will all occur and no others. Cw will be called a constitutional 

hypothesis of size J W I; it corresponds to the set U~=IwICw(k)IfWW . . .  and 
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this is a subset of  the infinite Cartesian product I4/WW . . . .  Sw is the infinite 

hypothesis that precisely w elementary outcomes will occur in an infinite 

continuation of the experiments. It is called the structural hypothesis o f  size 

w and it corresponds to Ui wl=wCw. 

Later on it will be convenient to have a separate notation for an arbitrary 

constitutional hypothesis o f  size w:C w. Let Cw(en)  indicate that C w is 

compatible with e n. Of course we have: Cw(en)  iff en E W n. Note that the 

number o f  Cw's compatible with en is equal t o ~ K - c } i f c ( e n ) = C < ~ W ,  
\ W 

otherwise it is 0 

To simplify probability expressions we will use the following abbrevia- 

tions 1 : 

Cwen : Cw A e n T T T  . . . .  

which is equal to 

Cw 0 e n WWW . . . .  because C w C WWW . . . .  

Note that Cwen is non-empty iff Cw is compatible with e n. 

Swen : U Cwen, 
IWl=w 

which is equal to the same union restricted to those W for which Cw(en)  (and 

I W l = w ) .  

Our concern will be restricted to regular consistent probability patterns 

with respect to T, T 2 , T 3 , . . .  : a real-valued function p on T, T 2 , T 3 , . . .  and 

their power sets ~s such a pattern if for all n > 0 

A1 ~ p(en) > 0 for all e n E T n 

A2 Z, P(en) = 1 
e n E T 'n 

A3 ~ P(en Qi) = p(en)  for all en E T n (consistency) 
Q i ~ 7  ' 

A4 p(En)  = ~ P(en) for a l l e  n C T n 
e n E E n  

The extension theorem of  Kolmogorov guarantees that such a pattern has a 

unique extension to the (measurable subsets of  the) infinite Cartesian product 
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TTT . . . .  Of course this extension is such that 

B1 P(Cw) >1 O, for all W C T, and consequently 

p(Sw) = Z, p(Cw)>10, for allw = 1,2 . . . . .  K. 
IWl=w 

Moreover, from the fact that the constitutional hypotheses as well as the 

structural hypotheses are mutually non-overlapping and together exhaustive it 

follows that 

K 

B2 Z, P(Cw) = 1 and Z p(Sw) = 1 
W C T  w=l 

The standard definition of conditional probability will be used: ifA and B 

are subsets of the same set then p(A/B)= p(A A B)/p(B), provided p(B)4: O. 

Probability expressions will be written as simply as possible. The following 

examples will suffice to illustrate the method: 

p(affen) : p(enai[enT) (=p(enai)/p(en)) 

p(aiQi/en) : p(enaiQ]/enTT) (=p(enaiQj)/p(en)) 

p(ai/enl~) : p(en(H (~ Qi)/entq) (=p(ai/en)/P(H/en) if n i > O) 

All the foregoing expressions remain adequate if en is replaced by Cwe n. 

Finally we shall use the abbreviations: 

p(Cw/en) : p(Cwen/enTTT.. .), p(en/Cw) : P(Cwen/Cw). 

The product rule, i.e. repeated application of the equality p(enQi) = 

p(en)" p(Qi/en) , shows that a consistent probability pattern is completely 

determined as soon as all 'special values' p(Qi/en) (including p(Qffeo) = P(Qi)) 
are specified. Note that A1 implies moreover that they have to be positive. 

3. THE BALL-MODEL AND THE CONDITIONS OF ADEQUACY 

Consider a ball of which every point on its surface is coloured by one of the 

colours Q1,Q2 . . . . .  QK. The experiments are random throws and the 

(elementary) outcome of an experiment is the colour of the point of contact 

when the ball has come to rest. Let the objective probabilities be equal to the 

corresponding surface proportions. We assume also that if a colour occurs on 
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the surface then it has a positive objective probability. Let all this be the only 

information at the start of the experiments and let the outcomes of the 

consecutive experiments be the only new information we come to know. 

Our aim is to construct a consistent probability pattern with respect to the 

outcomes which is based on 'rational' principles and satisfies certain 

minimum conditions of  adequacy derived from the general requirement that 

we want 'to learn from experience'. In the ball-model the following four 

general conditions are both plausible and precise. 

CA1 Positive instantial relevance: 

p(a~!/en Qi) ~> P(Qi/en) 
CA2 Relative frequency convergence (Reichenbach-axiom): 

If  ni/n approaches a limit, then p(Qi/en) has to approach the 

same limit. 

CA3 El~tinative and enumerative relevance: 

p(Cc/enH) = 0; p(Cc/enffi) > p(Cc/en) 
(Co :indicates always the unique constitutional hypothesis of size 

e compatible with en) 
CA4 Constitutional convergence: 

If, after a finite number of experiments, c remains constant then 

p(Cc/en) has to approach 1. 

At this point it is difficult to formulate CA4 in a more precise way; below we 

will see how this condition can be satisfied in a perfectly clear way. Note that 

the first part of CA3 is satisfied in any consistent probability pattern as soon 

as p(enH) > 0, for CeenH is empty. Observe, moreover, that the second part 

of CA3 as well as CA4 can only be satisfied ifp(Ce) > 0. 
Suppose that there occur on the ball precisely the colours belonging to the 

subset W of T. ]~en according to our assumptions the objective probability 

that in the long run precisely these colours will occur is 1. Hence it is 

acceptable in this application to interpret Cw as the hypothesis that precisely 

the colours of I4/occur on the ball. 

Another application is the following urn-model. An urn contains at least K 

balls; each ball has one of the colours Q1, Q2 . . . . .  Qx and the experiments 

are successive random drawings with replacement. The only problem with this 

model is that ifi~ is known that the number of balls is finite then there seems 
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to be no possibility, in the patterns to be studied, for using the information 

that the objective probabilities are rational fractions. 

The application intended by Carnap is essentially this urn-model but then 

with random drawings without replacement. More precisely, he assumed that 

the Qi's constitute a family of mutally exclusive and jointly exhaustive 

predicates with respect to a randomly ordered countable universe. It will be 

clear that in this application, if the universe is (denumerably) infinite, Cw is 

equivalent to the universal hypothesis that all individuals of the universe 

exemplify only predicates belonging to W and that each of these predicates is 

actually exemplified. It is for this reason that we call the Cw'S (and the S w's) 
also universal hypotheses. If the universe contains only a finite number of N 

individuals, the described hypothesis corresponds to Cw(N). In this paper, 

however, we shall only pay attention to the case that infinitely many 

experiments are in principle possible and also intended. 

4. CARNAPIAN SYSTEMS AND THE REQUIREMENTS FOR AN 

ACCEPTABLE GENERALIZATION 

The continuum of inductive methods (Carnap, 1952) is the set of consistent 

probability patterns for which there is a real number X, 0 < X < 0% such that 

(1) p(Qi/en) = (ni + X/K)/(n + X). 

The parameter X is determined as soon as one special value, for which 

ni=/=n/K, has been specified, somewhere between min(ni/n, I[K) and 

max(ndn ,I[K). 
Kemeny (1963) has shown that (1), and therefore the complete pattern, 

can be derived if the following material principles are added to the 

probability axioms: 

POI Principle of Order Indifference: 

P(QiQi/en ) = p(Q/Qi/ e n). 
PRR 3 Principle of Restricted Relevance (or h-principle): 

p(Qi/en) = f(ni, n). 

The proof is repeated in the appendix, together with other related proofs. In 

fact, these principles leave room for the extreme value X = ~o and, ifp(en) = 0 

would be allowed, also for the extreme value X = 0. The pattern corres- 
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ponding to a particular finite positive parameter value will be called a 

Carnapian syste:m. 

It is easy to verify that any Carnapian system satisfies CA1 and CA2. It is 

also well-known, however, that a Carnapian system does not satisfy CA3 and 

CA4. This is due to the fact that p(CK) = 1 (which will be proved later on). 

For this does not only imply that p(Cw) = 0 if w q:K (because of B2), but 

also that p(CK/en) = 1 and p(Cw/en) = 0 for all en and w :#K. It is now 

immediately seen that the condition of enumerative relevance is never 

satisfied and that the condition of constitutional convergence is only satisfied 

for c = K, but only in a trivial sense. 

It has frequently been said that p(CK) = 1 implies that a Carnapian system 

attaches the value 0 to all non-trivial universal hypotheses. But observe that 

CK is in fact not a trivial hypothesis: it excludes the possibility that some 

elementary outcomes are in fact not realizable by the experiments. 

Carnap and many others have held the opinion that it would not be 

possible to generalize the continuum in an acceptable way such that CA3 and 

CA4 become satisfied. And so Carnap drew the dramatic conclusion that it 

was not the task of pure science to pursue universal hypotheses and theories 

but rather to assign probabilities to finite hypotheses. 

In our opinion the main requirements for a satisfactory generalization of 

Carnap's continuum are: 

R1 

R2 

R3 

R4 

It has to be based on 'rational' principles: there have to be good 

reasons for accepting them. 

The principles have to be finite: they have to impose general 

functional relations between probability values concerning finite 

numbers of experiments (as e.g. POI and PRR). 

Parameters have to be finite: their determination has to pre- 

suppose only considerations with respect to a finite number of 

experiments (as X). 

It has to satisfy the conditions of adequacy CA1 . . . . .  CA4. 

More than ten years ago Hintikka construed the so-called combined system 

(or, more generally, the a-X-continuum) and he proved that this system 

satisfies the conditions of adequacy (see Hintikka, 1966). Though he had not 

presented the system explicitly in terms of  principles and parameters, it 
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seemed perfectly clear that such a reconstruction of the system would bring 

out that R2 and in any case R3 were violated. 

It is a plausible conjecture that the apparent violation of R2 and R3 by the 

a-X system was one of the main reasons that Hintikka and Niiniluoto 

presented, in 1974, a new approach (see Hintikka and Niiniluoto, 1976). 

They proposed to replace PRR of the Carnapian systems by the, likewise 

finite, principle: 

WPRR Weak Principle of Restricted Relevance (or c-principle): 

p(Qi/en) = fe(ni, n). 

They argued that, in the first place, WPRR is at least as defensible as PRR. 

They also showed that the resulting systems, here called P-systems, satisfy 

R3: their parameters are finite. Moreover they could not only prove that, 

under certain conditions, CA1 and CA2 are generally satisfied, but also that 

CA3 and CA4 are satisfied for the case e = K - 1. Finally they sketched a 

proof for the claim that CA3 and CA4 are generally satisfied. In sum, these 

new systems seemed to fulfill all the requirements R1 . . . .  , R4. 

Hintikka and Niiniluoto concluded that this new approach made it clear 

that it was, in principle, possible to give an axiomatic foundation for 

inductive strategies with respect to universal statements. However, the exact 

relation of the new systems to the Carnapian systems remained unclear, at 

least with regard to the admissible range of the new parameters. This fact was 

connected with an apparent general feature of the new systems: in sharp 

contrast to the Carnapian systems, the new systems seemed to be extra- 

ordinarily complicated. This feature made it hard to obtain much quantitative 

insight in the systems, which explains why the analysis of Hintikka and 

Niiniluoto was mainly restricted to qualitative considerations. 

In this paper it will be shown that the class of P-systems is coextensive 

with the class of what we shall call Q-systems. These Q-systems are in fact 

those members of Hintikka's a-X system in which X(w) is proportional to w 

but without Hintikka's particular choice of the prior distribution p(Cw) in 

terms of ~t. The Q-systems contain the Carnapian systems as extreme cases in 

a straightforward way. They satisfy all four conditions of adequacy, and the 

equivalence theorem implies that they can be based on finite principles and 

finite parameters. The equivalence theorem of course also implies that 

Q-systems can be based on principles for which good reasons can be given. 
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However, in our opinion the defining principles for Q-systems are, apart from 

their infinite character, very reasonable. Finally, the mathematical 'mac- 

hinery' of Q-systems is highly transparant; it is as simple as could reasonably 

be expected. 

To justify the title of this article we confine ourselves, apart from proving 

all claims, to the remark that the weak principle of restricted relevance is 

obviously the slightest weakening of Carnap's principle of  restricted relevance 

for which there are good reasons: the occurrence of a new elementary 

outcome falsifies an initially possible universal state of affairs. WPRR leaves 

room for the possbility to change our pattern in case of such events. 

5. P-SYSTEMS 

In this section we shall treat P-systems in a direct way as far as is necessary to 

prove the equivalence theorem. The content of this section is essentially 

contained in the paper by Hintikka and Niiniluoto, but the presentation is 

rather different. 

Def. 1 A Pg-system is a consistent probability pattern with respect to 

T, I "2, T 3 . . . .  satisfying the principles 

POI p(O,Qi/en) = p(a /a i /en)  

WPRR p(Qi/en) = fc(ni, n). 

The following notational conventions will be very useful: since p(H/en)= 

( K - e ) f c ( O , n )  we may replace p(H[en) by h(n ,e)  and P(H/en) 

(= 1 - p(H/en) --: 1 - h(n, e)) by g(n, e). Of course we have h(0, 0) = p(/-/) = 

p(T) = 1 and h ( n , K )  = 0 for n N K. Moreover the requirement that all 

p(Qi/en) have to be positive implies: 

(2) 0 < h ( n , c ) < l  0 < c ~ < m i n ( K - l , n ) .  

On the basis of (2) it is easy to show that WPRR is equivalent to the 

combination of the three principles: 

PR1 p(H/en) = h(n, c)(=af 1 - g(n, e)) 

PR2 p(Qi,/en H) = (p(Qi/en)/p(H/en)) = 1/(K - c), ni = 0 

PR3 p(Qi/enfi)  = (p(Qi/en)/p(Ft/en)) = kc(ni, n), ni > O. 
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)~n, ni) (of 

T 1 In a Pg-system there is a real number p, -1  < p ~< ~,  such that 

(3) p(Qi/enF1) = (ni + p)/(n + cp) (= kc(n i, n)), n i > O. 

The proof of  this theorem, which is given in the appendix, is to a great extent 

similar to the proof of (1) from POI and PRR. 

In this article we shall only study P-systems, which are, by definition, 

Pg-systems in which 

(4) 0 < 0 < 

Note that, because g(n, K)  = 1 (n >~ K), kx(ni ,  n) and fK(ni,  n) correspond to 

the Carnapian system) if p is replaced by X/K. 

T2 A P-system is, in addition to p, completely determined by the 

( K - 1 )  (finite) parameters h(e,c) ,  c = 1 , 2  . . . . .  K - I ,  or by 

g(n, 1), n = 1, 2 . . . . .  K -  1. (This does not imply that any 

choice of  them in accordance with (2) is adequate. See section 8.) 

Proof." From POI and WPRR follows: if r t i > 0  and n I =0  then 

p(QiQi/en) = g(n, c).  kc(ni, n).  h(n + 1, e) .  (1/(K - c)) = p(QiQi/en) = h(n, c). 
(1/(K - e)) .  g(n + 1, e + 1). kc+ 1 (ni, n + 1). Substitution of (3) and g(n, e) = 

1 - h(n, c) gives us the recursive relation, for 1 ~ e < rain(n, K - 1), 

h(n, c) n + cp 

n + l  + ( c + l ) p  
(5) h ( n + l ' c ) = "  ( 1 - h ( n + l , c + l ) )  

That all h(n, c) are now determined by the first set of parameters is easily 

seen by starting the calculation for c = K -  1 and n = K -  1, K, K + 1 . . . .  

which is possible because h ( n , K )  = 0 (n >~K). That the second set is also 

prepared for this purpose is seen when (5) is rewritten as equation for 

g ( n + l , c + l )  and the process is started for c + 1 = 2  and n =1. The 

parameters are obviously finite. From PR1,2,3 and T1 it now follows that all 

special values are determined, and therefore the pattern, a Q.E.D. 

The second set of parameters has only been given to show that the h(c, c)'s 

are not the only possible simple (finite) parameters. In what follows we shall 

however take these h(c, c)'s as parameters; but first let us introduce the 

Q-systems. 
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6. Q-SYSTEMS; ALL Q-SYSTEMS ARE P-SYSTEMS 

The constitutional hypotheses are mutually non-overlapping and together 

exhaustive with respect to TTT . . . .  This enables us to construct a consistent 

probability pattern by specifying (absolute) probability values for the Cw's 

and for each Cw a consistent probability pattern with respect to W, W 2, 

W 3 , . . .  under the condition Cw. The absolute pattern is then obtained by 

conditionalization according to the rule of Bayes. 

In the following definition we shall lay down restrictions on the 

conditional patterns in such a way that they are equal for constitutional 

hypotheses of the same size; for this reason we may replace the index 'C w' by 

Def. 2 A (!-system is a consistent probability pattern with respect to 

T, 7 e , T 3 . . . .  satisfying the axioms: 

Q1 qcw(Qi/en) = qw(Qi/en) =fW(ni, n) s , Cw(enQi) 

Q2 q w (QiQj/en) = q w (ajai/en) 

Q3 qw(Qi/en ffl) -- qv(Qi/enffI), ni > 0 

Q4 q(Cw) = q(Cw). 

According to Q4 constitutional hypotheses of the same size get, in a 

Q-system, the same value, therefore we have: 

(6) q ( S w ) = ( K ) q ( C w ) ,  

and, in combination with Q1, it follows that any reference to particular 

subsets W of T may be avoided. 

Let us first consider the conditional patterns more in detail. 

T3 For the conditional patterns of  a Q-system there exists a unique 

real number P, 0 < 0 ~< oo such that, except for w = 2 and c = I,  

(7) qw(Qi/en) = (ni + o)/(n + wp). 

The exception, which is equivalent to the case w = 2 and n i is n or 0, can 

easily be restored by adding to Q1 in Def. 2 the simple condition: 

QI.1 f~(1, 1) = f2(1, 3)/(4f2(1, 3) - 1), 

or in terms o fp  :f2(1, 1) = (1 + p)/(1 + 20). 
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The proof of T3 is given in the appendix. Note that the proofs of (1) and 

(7) are to a large extent similar, for Q1 and Q2 correspond to PRR and POI in 

Carnapian systems when w is replaced by K. Up to section 9 we shall assume 

(8) 0 < p  <oo 

T3 says, in effect, that each particular conditional pattern is a Carnapian 

system. Therefore we now have the important theorem: 

T4 For the conditional patterns of  a Q-system holds 

(9) qw(Cw) =1;  qw(Cv)=O l < ~ v < w  

Proof.- (Added only for the sake of completeness.) Note first that the 

theorem is trivial for w = 1. Let 14/(I W I = w > 1) be a particular subset of T 

and let V be a proper non-empty subset of  W(I V [=v). Because 0~< 

qw(Cv) <~ q w ( V V V . . . )  it is sufficient to prove that q w ( V V V .  • .) = 0. From 

(7) it follows that if e n E V n, then qw(V/en)  = (n + vp)/(n + wp). By the pro- 

duct rule we get 

oo 

q w ( V V V .  . .)  = I I  n + vp  _ ~I 1 ( w  - v ) p  
n=O rl + Wp n=O n + wp 

A well-known theorem says that the last product converges to a finite 
non-zero value if and only if the series 

oo (w  - v)p 

n=O n + Wp 

converges. But this series is obviously comparable with 

l /n,  
r t = l  

which is well-known to be divergent. Because the factors in the original 

product are positive and monotone increasing to 1 this product has to be 

finite and non-negative; and hence it is 0, Q.E.D. 

T4 leads us directly to 

(10) qw(en) = q(en/Cw) 

and therefore to 

(11) qw(Qi/en) = q(Qi/Cwen) 
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Proof  o f  (lO): q(en/Cw) is by definition 

conditionalization q(Cwen) becomes 

Z q(Cv)qv(Cwen). 
O = W  O - -  W 

equal to q(Cwen)/q(Cw). By 

Now 

qv(Cwen) = qv(Cw)qv(en/Cw). 

The conclusion then follows by (9), Q.E.D. 

From (10) and (11) it follows that we may write all conditionalizations in 

terms of q(en/Cw) and q(Qi/Cwen), which also makes the formulas easier to 

read. Let us firs~ reformulate (7): 

(12) q(Qi/Cwen) = (ni + p)/(n + wp). 

Direct consequences of  (12) are: 

(w  - c)o 
(13) q(H/Cwen) - 

n +wp 

1 
(14) ni -" 0 : q(Qi/CwenH) = - -  

W - - C  

With the abbrev~iation 

n +cp 
q(R/Cwen) - 

n +wp 

ni > O" q(Qi/CwenH) - ni + p 
n +cp 

r~(n, x)  = x (x  + 1)(x + 2) . . . . .  (x + n - 1), 7(0, x) = 1, 

in which n is a positive integer and x a real number, we also obtain from (12), 

by the product rule, 

(15) q(en/Cw)  = II ~(ni, p)/rl(n, wp) 
i 

Now it is a small step to: 

T5 A Q.system is, apart from P, completely determined by the K - 1 

(infinite) parameters q(Cw) , w = 1,2  . . . . .  K - 1 ; they have to be 

(nonnegative and) such that 

K 

q(Cw) < 1. 
w =l  
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Proof: By conditionalization we obtain, using (15), 

(16) q(en) = ~, q(Cw)q(en/Cw) 
W=C C 

= II rl(ni, p) .  ~ q(Cw)/~(n, wp) 
i w = c  ¢ 

The theorem follows now directly from 

Y, q(Cw) = 1 
W=I 

and the requirement q(en) > 0 for all c ~< min(K, n), Q.E.D. 

The special values q(Qi/en) can now directly be obtained from (16) by the 

equality q(Qi/en) = q(enQi)/q(en), but it is not worth while to write this out. 

Since q(Cw/en) = q(Cw), q(en/Cw)/q(en) we obtain from (15) and (16) the 

following, important, result 

(17) q(Cw/en)= [q(Cw)/~7(n, wp)]/Iv~=e (K-_Cc)q(Cv)/Z~(n, vp) ] 

Note that q(Cw/en) depends only on w, n and c. 

The following theorem is one of the main results of this paper: 

T6 Q-systems are P-systems; and the parameter p in a Q-system 

corresponds to the parameter p in the P-formulation of that 

system. 

Proof." POI is directly provable by conditionalization of q(QiQj/en) and 

subsequent application of Q2. By conditionalization and substitution of (17) 

and (13) we get: 

(18) q(H/en) = 1~ q(Cw/en)q(H/Cwen ) 
W=C+I  W 

X ( K - ~ )  q(Cw) (w-c )p  
_ w=c+l r~(n, wp) n +wp 

Z 
~=~ ~(n, vp) 
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Therefore q(H/en)  depends only on n and c, which proves PR1. For the sake 

of completeness we specify also q(ffl/en); it can be obtained in the same way 

from (17) and (13), but of course also from q(H/en)  = 1 - q ( H / e n )  and (18): 

K ( K - c ) q ( C w )  n + c p  
E 

(19) q ( ~ / e n )  _ w : e  w -  c r~(n, wp)  " n + wp 

E 
v:e  ~7(n, vp) 

Analogous to the way in which we obtained (18), by conditionalization 

from (14) and u~ing that 

~_, q (Cw/en)  = 1 
W=C C 

we finally arrive at: 

(20) q(O~den H)  = 1/(K - c),  ni = 0 

(21) q(Q~!/enffI) = (ni + O )/ (n + co), n i > 0 

PR2 is verified by (20). PR3 is obviously implied by (21). This completes the 

proof that a Q-system is a P-system. Comparison of (3) and (21) shows that 

the O of the Q-system corresponds to the 0-parameter in its P-formulation. Of 

course it was for this fact that we used the same letter, Q.E.D. 

7. ALL P-SYSTEMS ARE Q-SYSTEMS 

This section will be devoted to the proof of the following theorem: 

T7 All P-systems are Q-systems. 

One way of proving such a theorem is of  course to show that a P-system 

satisfies the Q-axioms. It turned out to give no essential problems to show 

that a P-system satisfies Q2, Q3 and Q4. Moreover we could prove that 

pw(Qi / en )  is a function of at most w,  ni, n and c. But we had to give up the 

attempt to show the final step leading up to QI: that pw(Qi / en )  depends only 

on w, n, n i and not on c. (But of course, if our claim is true, it must be 

possible to prove this last step, too.) 

Fortunately ~Lt is possible to prove the theorem in a completely different 
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way. The main idea behind this proof is as follows. We start from a P-system 

(with 0 finite and positive) and try to construct a Q-system with the same 

special values. If we succeed, this is sufficient; if we do not succeed, we shall 

attempt to show that there is something wrong with the P-system, namely 

that it is not probabilistic. 

From (3) and (21) we see that a necessary condition for a Q-system to be 

equivalent to a given P-system is that it has the same parameter-value O. This 

fact will be incorporated in what follows. 

Let Q1, Q2, Q3 . . . .  , QK be an arbitrary enumeration of all K elementary 

outcomes. Let ec c be the evidence QI Q2 Q3 • • • Qc (1 ~< c ~< K). In a P-system 

holds, because of PR1, PR2 and the product rule: 

(22) p(eee) - 
h(0,0) h(1,1) h(2,2) h ( c - l , c - 1 )  

K K - 1  K - 2  K - ( c -  1) 

m(K__C) ! c-1 
II h(m, m). 

K! m =o 

Since we are trying to construct a Q-system in which, among other things, 
C m C 

p(ec) - q(ec), we define, on the basis of (16), the following set of K equations 

E(c) (c = 1, 2 . . . . .  K) withK unknowns, X(w) (w = 1, 2 , . . .  ,K): 

E(c) 2 - II h(m, m). 
w=e c K! m =o 

Note first that, because h(O, 0) = 1, E(1) can be transformed into 

(23) 2; X(w)  = 1. 
W = I  

Note further that E(K) has only one unknown (X(K)) and that E(e) 

(e = 1, 2 . . . .  , K -  1) has one unknown more than E(c + 1), viz. X(e).  Hence 

the set of equations has a unique solution satisfying (23). Suppose now that 

this solution is non-negative, i.e. that 

(24) X(w)>tO w = 1, 2 , . . .  , K -  1. 

Since we have assumed h(m, m)  to be positive it follows that X(K)  is always 

positive. 

From (23) and (24) we may conclude that the X(w)  (w = 1 ,2  . . . .  ,K  - 1) 
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can be used as parameter values for the q(Cw) in a Q-system. Now consider 

the Q-system determined by the parameters p, q(Cw) = X(w). T6 tells us that 

this Q-system is also a P-system. From (16) and (22) it follows that 

p(e e) = q(eCc) and hence that q(H/e c) = h(c, c). T2 excludes that there are two 

different P-systems for which this holds: hence p -= q. 

Now let us set aside our assumption that the solution is non-negative, and 

w=c+ 1 ~(n, wp) n + wp 
(25) h x (n, c) - 

K - c  

v~c v - c ~(n,  vp)  

This definition was, of course, suggested by (18). Because p(eCc+l)= 

(1/(K - e)) h(e, e). p(eCc) it follows directly from the equations E(c) and (25) 

that 

(26) hx(c ,c)=h(c ,c) ,  c = 1, 2 . . . .  , K -  1 

Now consider the recursive relation (5). It can be checked that, if for some n 

and c, h(n ,c )=hx(n ,c )  and also h ( n + l ,  c + l ) = h x ( n + l ,  c + l )  then 

h(n + 1, c) = hx(n + 1, c). In other words, (25) is the explicit solution o f  (S), 

symbolically: 

(27) h(n, c) = hx(n, c), c = 1,2 . . . . .  min(K, n). 

(This general result is in fact not surprising for, under the restriction of a 

non-negative solution, it is an immediate consequence of the, already proved, 

fact that in that case the P-system is a Q-system.) 

Suppose now that the solution of the equations E(c) does not satisfy the 

non-negative condition (24). That is, let X(w) be negative for some 

w= 1,2 . . . . .  K - 1 .  Let u be the largest index for which this holds. It 

follows from (25) and (27) that the numerator of h(n, u) is positive for all 

n ~> u. Its denominator becomes negative as soon as 

?_, x(v) < -X(u).  
v=u+t r/(n, 

Because - X ( u ) > 0  this inequality holds when n is large enough, for 

let us define generally: 
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~(n, up)/~(n, vp) approaches 0 for v > u (the proof of this limit-behaviour is 

essentially contained in the proof of T4), and therefore the whole left-hand 

sum approaches 0 by increasing n. We may conclude of course that, as soon as 

this happens, h(n, u) is negative, and this is in conflict with (2). Therefore, 

our apparent P-system is not a probability pattern and, consequently, it is not 

a genuine P-system. 

8. CARNAPIAN SYSTEMS ARE EXTREME SPECIAL CASES OF 

Q-SYSTEMS, AND Q-SYSTEMS SATISFY THE CONDITIONS OF 

ADEQUACY 

The established equivalence between P- and Q-systems enables us to study 

P-systems in their 'Q-garb'. But we may of course also use symbolizations 

which were introduced for P-systems, such as h(n, c), g(n, c). In the context 

of a particular Q-system we shall call the Carnapian system with X = Kp 'its 

(corresponding) C-system'. The following theorem will clarify the relation 

between a Q-system and the corresponding C.system. 

T8 1 If q(CK) < 1, then: 

q(H/en) < (K - c)p/(n + Kp) c <-< rain(n, K - 1) 

q(H/en) > (n + cp)/(n + Kp) c <~ rain(n, K - 1) 

q(Qi/en) < p/(n + Kp) ni = 0 c <~ min(n, K - 1) 

q(Qi/en) >(n i  +p)/(n +Kp) ni > 0  c ~ min(n, K -  1) 

2 Ifq(CK) = 1, then the Q-system coincides with the C-system 

(i.e. all inequalities in 1. become equalities, including the case 

c= K) 

Proof o f  1 : The first inequality follows directly from (18) and the fact that 

(w - c)p/(n + wp) < (K - c)p/(n + Kp) if c ~< w < K. The rest of the theorem 

gives trivial consequences of this inequality, (20) and (21). 

Proof o f  2: This follows directly from (18), (19), (20) and (21). 

It might be thought that the requirement that the parameters h(c, c) may 

not be larger than the corresponding C-values ((K - c)p/(c + Kp)), guarantees 

that they give rise to a (probabilistic) P.system. This is, however, not the case. 

The proof of T7 permits us to add to T2: The admissible combinations o f  
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(positive) values for the parameters h(c, c} are determined by the requirement 

that the equations E(e) should lead to a non-negative solution. This 

requirement is easily seen to be stronger than the requirement that the 

parameters may not be larger than the corresponding C-values. 

It is nevertheless possible to give a simple, sufficient, but not necessary, 

condition which guarantees that the equations have a positive solution 

(X(w) > O, w = 1,2 . . . . .  K), and therefore that the parameters give rise to a 

(probabilistic) P-system. 

T9 The condition 

O < h ( e , e ) < p / ( e + ( e + l ) p )  e = l , 2  . . . .  , K - 1  

quarantees a positive solution for the equations E(e). 

Proof: Note first that X(K) is positive and smaller than 1. Because 
c+l 

p(ec+x) =p(e~)h(e, e)/(K - c) it is possible to derive from E(e) and E(e + 1) 

that 

x ( K - c ' /  rl,c, wp) , ,  *wp)n,c, (w- -c )p  ) /(C):: w=e+lZ e | P i l , w ) ~ l . ~ e ~ - - - ~ e .  ~ 1 

It is easy now to check that X(e)> 0 if the condition mentioned in the 

theorem is combined with the inductive hypothesis that X(w)> 0, w = 

c + 1 . . . . .  K, Q.E.D. 

Now we shall start to investigate the behaviour of a Q-system in the light 

of the conditions of adequacy that were introduced in section 3. At the same 

time we will derive some other important characteristics of Q-systems. In 

what follows we shall assume that the q(Cw)'s are all positive. It will be easy 

to check whether the inequality-sign' < '  has to be replaced by '  ~<' or by ' = '  if 

this assumption is not (generally) satisfied. The proofs for the theorems will 

only be sketched. 

We shall start with the condition of enumerative relevance (CA3, part 

two). 

(28) q(Cc/e.7  > q(Cc/e.). 

(Follows directly :from (17).) An important consequence of (28) is 

(29) • q(Cw/enff-I) < Z q(Cw/en). 
W=C+ I W=C+ 1 • 
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(The sum of the lefthand terms of (28) and (29) as well as the sum of the 

righthand terms must be 1 .) 

(30) q(H/enfi r) < q(H/en). 

(From the first formulation of (18); use the fact that (13) implies 

q(H/Cwenffl) < q(H/Cwen); finally, use (29).) 

As counterpart of (30) we have: 

(31) q(ffl/enFI) > q(ffI/en). 

From (21) we immediately obtain 

(32) q(ai/enaTh r) > q(ai/enF1), n~ > O. 

Now we are in a position to verify CA1: 

(33) q(ai/enai) > q(ai/en). 

(For n i = 0 directly from T8.1. For n i ~> 0 it follows from (31) and (32).) 

Now let us turn to the limit behaviour. The expression 'q(../en) ~ L' 
always indicates that q(../en), conceived as real-valued function, has L as its 

limit if n goes to infinity (c remaining constant). 

CA4 follows immediately from (17) and the fact that if v > c, then 

rl(n, cp)/71(n, vp) ~ O, which was proved in the proof of T4. Hence we have 

(34) q(Cc/en) c> 1; q(Cw/en) c >0, w > c .  

From (34) we easily get 

• " - - - - -+  0 .  (35) q(R/en ) c> 1, q(H/en) c 

(Start from the conditional formulation of q(H/en) in (18); use q(H/Cwen) 
c ~ 0 if w > c, which is based on (13); finally, use the second part of (34).) 

The Reichenbach-axiom (CA2) is based on the assumption that the 

Q-system is applied to experiments for which ni/n (for all Qi) goes to a 

certain limit, say qi. It is well-known that i.t is problematic whether this 

assumption is mathematically acceptable, but the intuitive meaning is 

perfectly clear. The following results have the same shortcomings: 

(36) If ni/n ----~ qi > 0 ,  then q(Qi/enffD --£-+ qi. 

If ni/n > 0 and n~. > 0, then q(Qdenffl) c > O. 
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(Directly from (21).) 

(37) If ni]n ~ qi, then q(Qi/en) ~ qi. 

(For qi = 0 and r/i = 0 this follows directly from (35). For the other cases: 

combine (35) and (36).) 

Note that in the ball-model of  section 3 we assumed that if the colour Qi 

occurs on the ball, then qi>O. In this case the assumption of  the 

Reichenbach-axiom implies that c will tend to a limit, so that we may replace 

(37) by: 

(38) I f  for all i either n i = q i  = 0 or ni/n ~ qi ~> O, then 

q(Qi/en) ~ qi. 

9. E X T R E M E  C A S E S  

In the preceding sections we restricted our attention to 2 < K  < ~ and to 

finite positive values for p. In this section we shall make some claims and 

remarks about w]~at happens i f p  or K takes an extreme value. The claims will 

not be proved for their proofs are very similar to the proofs in the preceding 

sections. The expression 'P-system' (or 'Q-system') will be used to refer to a 

system fullfilling all requirements for being a P-system except perhaps the 

condition that P(en) has to be positive. 

Claims: - P-systems with p = ~ are Q-systems with p = ~ ,  and vice versa. 

- Q-systems with p = ~ and in which all q(Cw) are positive satisfy 

CA1, CA3 and CA4 generally; however, they violate CA2. 

R e m a r k s : -  We have separated this case only because the formulas get a 

different form. 

- T h e  Carnapian system with p = ~ violates all conditions of  

adequacy (p(Qi/en) is always 1/K). 

K = 2 .  

Claim: All theorems about P- and Q-systems hold for K = 2 if we add 

the principle of  linearity: in case of  P-systems: if  c = 2 and 

ni ~> 0, then p(Qi/enff-1) is a linear function of  ni, in case of  

Q-systems: q2 (Qi/e n) is a linear function o f  ni. 
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Remarks: - It is well-known that the derivation of the Carnapian systems in 

case K = 2 requires also the related principle: p(Qi/en) is a linear 

function of ni. 

- The addition of the principle of linearity to the Q-axioms makes 

QI.1 superfluous. 

- Axiom Q3 does not imply any restriction in case K = 2; it is 

therefore superfluous. 

g ~ o o  

Claims: 

Remark: - 

- I f  q(Sw) , w = 1, 2 . . . .  and p are taken as parameters in a 

Q-system such that Z~v=lq(Sw) <<. l, we get a completely 

acceptable pattern with respect to denumerably infinite many 

K - c  
elementary outcomes. (Notice that the e x p r e s s i O n ( w _ c  ) 

q(Cw), which occurs in all conditionalizations, is equal to 

- The corresponding P-systems can be obtained by taking g(n, 1), 

n = 1, 2 . . . .  and p as parameters. 

- The equivalence-theorem remains valid and these systems satisfy 

the conditions of adequacy in the same way as systems with 

finite K. 

In these systems it is much easier to give new names to the 

elementary outcomes when they occur for the first time. It is 

only in this reformulation that such systems satisfy p(en) > O. 

fl=O. 

Claims: 

Remark: - 

'Q-systems' with p = 0 are such that qw(Qi /en )  = n i /n ,  but they 

are inadequate because q(H/en) = O. 
All 'Q.systems' with p = 0 give rise to the same pattern as the 

corresponding Camapian extreme case: the so-called straight rule 

p(Qde.) = ndn. 
We do not know what 'P-systems' with p = 0 look like. We did 

not succeed in finding the explicit solution of (5) for this case; 

however, h(n, c)= 0 for all c ~rrfin(n,K), and therefore the 
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straight rule, is a solution. Our conjecture is that this solution is 

the only one for which p(en)  is never negative, but it might also 

be 1:he case that there are several interesting solutions. 

-1  < p < O .  

Claim: - 'Q-systems' with p < O  are inadequate because they imply 

q(t~r/en) < O. 

R e m a r k : -  We do not know whether 'P-systems' with - l < p < 0  are 

adequate. Apart from particular values of p in this interval, the 

equations E(c)  have a unique solution such that (25) remains the 

explicit solution of (5). But it is difficult to find out in what 

cases, if any, (25) leads to positive values f o r p ( H / e n ) .  I f p  takes 

certain rational values (p = - v / w  for some v , w  such that 

1 ~< v < w ~< K), then not all equations are adequately defined. It 

is however our conjecture (in fact strong conviction) that all 

'P-systems' with - 1  < p < 0 are inadequate for the same reason 

as such 'Q-systems': there will be numbers n and c such that 

p(H/en )  < O. 

10. CONCLUSION 

The main conclusion of this article is of course that Carnap's continuum of 

inductive methods can be generalized in a completely acceptable way. The 

result is the class of Q-systems, with parameters 

p(O < p < °°), 

and 

q(Cw) ,  w = l ,  2, . . . , K -  1 q (Cw)  < 1 . 
1 

We propose to call this class 'the stratified continuum of inductive methods', 

for obvious reasons. The equivalence-theorem tells us that this stratified 

continuum can be founded on 'rational' and finite principles and also that its 

members can in principle be characterized by finite parameters. The direct 

analysis of  Q-systems shows that they behave in accordance with the 

conditions of adequacy for individual and universal hypotheses based on the 

intuitive notion of 'learning from experience'. To be precise, all members of  
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the stratified continuum satisfy the conditions for individual hypotheses as 

well as the condition of eliminative relevance for universal hypotheses 

unrestrictedly. They satisfy moreover the universal conditions of  enumerative 

relevance and constitutional convergence for all Cw for which q(Cw)> O. 

Finally, the stratified continuum contains the Carnapian continuum as 

extreme case: q(CK) = 1. 

The importance of the equivalence-theorem is of course primarily 

foundational. What has been shown is that choosing non-trivial initial 

values for the Cw's, which seems intuitively not acceptable from 'an 

inductive point of view', is not at all objectionable. Given a particular initial 

distribution (for the Cw's) we can calculate, by solving the equations E(c) in 

the reverse way, essentially finite probability values that would give rise to 

the same pattern if they were taken as parameters in the P-formulation. In 

other words, the Q-system approach is completely acceptable from a finitary 

(inductive) point of view. 

Fortunately, the Q-system approach is not only very attractive from a 

technical point of view, but it also seems intuitively more satisfactory to 

deliberate about the choice of the initial distribution, for apart from the 

apparent, but refuted, objection we shall, at least to our opinion, in general 

have more clear intuitions about the initial distribution than about the finite 

parameters in the P-formulation. 

A main task for further research seems therefore to be the development of  

suggestions for initial distributions. In our opinion the choice has to be 

related to the particular type of application under consideration and to 

additional information - if present - with respect to the application, that is: 

to information which is not already built into the probabilistic framework. 

To give an example: we might know not only which elementary outcomes 

may occur but also that there will, with objective probability one, occur, at 

least so and so many elementary outcomes. 

As to the application intended by Carnap, viz. a randomly ordered and 

denumerably infinite universe, Hintikka's (one-parametric) a-distribution 

(Hintikka, 1966) is very attractive as soon as there are reasons for letting the 

initial probability of Cw monotone increase with w. In Kuipers (1976), we 

have proposed a two-parametric distribution which leaves room for this and 

many other qualitative relations. By the appropriate choice of  the two 

parameters it is then possible to realize a particular qualitative relation if 
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there are reasons for doing so on logical, statistical or metaphysical grounds. 

Let us conclude this article by reformulating the distribution which has 

been proposed by Carnap in a discussion about Hintikka's a-distribution 

(Carnap, 1968). An initial distribution can of course not only be specified by 

the initial values for the constitutional hypotheses (or constituents, as 

Hintikka has called them) Cw but also by the initial values for the structural 

hypotheses (or constituent-structures as Carnap has called them)S w, for we 

obtain then the first values by q(Sw) ~-- ( ; )~/(C~) .  Carnap's proposal was may 
\ - - [  

essentially to apply the intuitive principle of indifference to the Sw's: give all 

of them the same initial value and therefore the value 1/K. As is well-known 

the Carnapian ~ystem with X = K ,  or, equivalently, O = 1, is such that all 

'statistical descriptions' (i.e. for a given n, the class of series en with the same 

ni's is one such description) get the same value. For p = 1 this remains true 

for all conditional patterns and all statistical descriptions compatible with the 

corresponding C w. In our opinion the Q-system with the initial distribution 

which was proposed by Camap (q(Sw) = l /K)  and with the value 1 for the 

parameter 0 is the most sophisticated way in which the classical principle of 

indifference can be applied in a truely inductive way. 

University o f  Groningen, 

The Netherlands 

APPENDIX 

This appendix contains a combined proof of T.1 and T.3. The proof of 4(1) 

(i.e. (1) of section 4) from POI and PRR is also included. We shall frequently 

apply the division-operation; that it is allowed is always essentially based on 

A1 of section 2. 

Step 1 

First, consider a conditional pattern qw of a Q-system. From Q1 it follows 

that 

(1) 

(2) 

(3) 

qw(H/en) = (w - c)fW(O, n) 

qw(Qi/enI-I) = 1/(w - c), ni = 0 

qw(Qi/enff-I) =fW(ni,  n)/(1 - (w - c)fW(O, n)), n i > O. 
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Hence qw satisfies the three principles PR1, PR2 and PR3 of  a P-system with 

K = w. Moreover Q2 corresponds to POI. Therefore: qw is a P-system with 

K = w .  

Step 2 

Second, consider a P-system (K > 2). From POI it follows, by the product 

rule, that 

(4) if ni > 0, nj > 0 (and ni + n] ~< n - e + 2 i f  c > 2 and n i + n i = n if 

¢ = 2 )  

p(H/en)p(Qi/enI-I-)p(H/en Qi)p(QffenQiff-l) = 

p(H/e n)p(Qffenffl)p(H/e" Qj)p(Qi/en QjFI) 

which may be transformed, on the basis of  the PR-principles, into 

(5) kc(ni, n)kc(ni, n + 1) = kc(nj, n)ke(ni, n + 1). 

From the probability axioms follows also: 

(6) ~, p(Qffenffi) = 1. 
i :ni > 0  

From PR3 we get the special cases of  (6): 

(6.1) kc(n - c + 1, n) + (c - 1)kc(1, n) = 1 

(6.2) k e ( n - c + l , n + l ) + k e ( 2 ,  n + l ) + ( c - 2 ) k e ( 1 , n + l ) = l .  

Let c > 2; substitution of n i = 1 in (5) gives, for 1 ~ n i ~ n - -  C + 1 ,  

(7) ke(ni, n)kc(1, n + 1) = ke(1, n)kc(ni, n + 1). 

Substitution ofn  i = n - c + 1 resp. n i = 2 leads to the special cases: 

(7.1) kc(n - c + 1, n + 1) = ke(n - c + 1, n ) .  kc(1 ' n + 1) 
kc(1,n)  

k¢(2, n) 
(7.2) kc(2, n + 1) = kc(1 ' n--------)" kc( l '  n + 1). 

Substitution of  (7.1) and (7.2) in (6.2) gives: 

/ ( k e ( n - c + l ' n ) k c ( 2 ' n )  ) f f c - ( 1 . ~  - -  
(8) k c ( X , n + l ) = l  +kc(1,n-----~ + c - 2  
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and by substituting (6.1) in (8) we obtain: 

(9) kc(1,  n + 1) = ke(1,  n)/(1 + kc(2,  n)  - kc(1, n)) 

With the following definition of ;kc 

(10) kc(1, c + 1) ~f (1 + XJc)I(c + 1 + x~) 

we are now in a position to prove: 

(11) for f ixed c > 2 and l <~ ni <~ n - c + l , it holds that 

kc(ni, n) = (ni + ;kd~)/(" + XD. 

Inith~l step: n = c + 1; therefore n t = 1 or = 2; kc(1, c + 1) satisfies (11) by 

definition; that kc(2,  c + 1) satisfies (11) now follows directly from (6.1). 

Induct ive step: suppose (11)holds  for fixed n t> e + 1, it then follows from 

(9) that it holds for ke(1,  n + 1) and finally from (7) that it holds also for 

kc(n i, n + 1), 1 ( ni ~< n - c + 1. This completes the proof  of  (11) as far as 

n ~ c +  l .  

Final step: that the claim is true for n = c, i.e. kc(1,  c) = l /c ,  follows directly 

from (6) and PR3. 

Step 3 

Let c f> 2; from POI, the product rule and the PR-principles it is easy to show 

first that p(QiH/en)  = p(HQi/en)  for n i > 0 and subsequently that 

(12) g(n ,c )kc (n i ,  n)h(n + 1 , c ) =  h(n ,c )g(n  + 1 , e  + 1)kc+l(ni ,  n + 1). 

Substitution of  c = 2 in (12), using (11) for c = 3, leads to the conclusion that 

k2 (hi, n)  (1 ~< ni <- n - 1) is o f  the form F ( n ) .  (hi + ;ka/3)/(n + 1 + ;ks). From 

(6) it follows that k2(ni ,  n)  + k2(n - n i, n) = 1. This implies that F(n)  = 

(n + 1 + ;k3)/(n + 2 /3 .  ;ka), and therefore, with ;k2 = dr2/3 • ;k3, we may 

conclude that (11) holds also for c = 2 and 1 <~ni ~<n - 1. Note that (11) 

holds trivially for c = 1. 

From (7) it follows that kc(ni ,  n) /kc+l  (ni, n + 1) may not  depend on n i. 

Hence ;kc/C has to be a constant for all c = 2, 3 . . . . .  K, say p. Hence we have 
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now generally: 

(12) ke(n i, n) = (ni + p)/(n + co), 1 <~ ni ~ n - c + 1. 

The necessary and sufficient condition which will guarantee that kc(ni, n) is 

always positive is easily seen to be - 1  < P ~< oo. It is also easy to see that this 

condition ascertains that ke(ni, n) is never larger than 1, and this completes 

the proof  of  T.1. 

Step 4 

In step 1 we argued that the conditional patterns qw of  Q-systems are 

P-systems with w = K .  Hence we may interpret the proof  of  (12)as  follows: 

(13) for each w > 2 t h e r e i s a r e a l n u m b e r P w , - I  < P w  ~< °° such that 

qw(Qi/enfI) = (ni + ow)/(n + cow), 1 < ni < n - e + 1. 

From axiom Q3 it now follows that Pw is a constant, say p. Substitution of  

this result in (3) gives (w > 2) 

(14) fW(n i, n) = (1 - (w - c)fW(O, n ) ) .  ((nt + p)/(n + cp)), 

l < . n i < ~ n - c + l .  

Because ]W(ni, n) may not depend on c, it now follows, by comparing (14) 

for a fixed value of  c (2 ~< c < w) with c + 1, that f~(O, n) = p/(n + wp), and 

therefore we have, for w > 2, that for all ni 

(15) fW(ni, n) = (n i + p)/(n + wp), 0 <~ n i <. n 

From Q3 and (13) it also follows for 1 ~< n i ~ n - 1, that q2 (Qi/en fI)  is equal 

to (ni +p)/(n +20) .  However, our argument from (14) to (15) cannot be 

applied here since we cannot compare two values for c>~ 2. Consider, 

therefore, the relation from Q1 and Q2: 

(16) f 2 (O ,n+  1 ) = f 2 ( 0 ,  n ) . f 2 ( n , n +  1)/f2(n,n).  

Since for c = 2, q2(Qi/enft) =q2(Qi/en), we have f2(n, n + 1) = (n +p)/  

(n + 1 + 2p). Suppose now that f2(0, n) = p/(n + 2p); then we have not only 

that f 2 ( n , n ) =  (n +p)/(n + 2 p ) b u t  from (16) we can also conclude by the 

relevant substitutions, that f2(0,  n + 1) = p[(n + 1 + 20). Combined with the 

special axiom QI.1,  which implies that f2(O, 1) = p/(1 + 2p), we obtain the 

result that f~(0, n) = p/(n + 2p), for all n. On the basis of  (14) we now con- 
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clude t h a t  (15)  ho lds  also for  w = 2. No te  t h a t  (15)  is tr ivial  for  w = 1. 

Final ly ,  i t  is easily seen f r o m  (15)  t h a t  the  c o n d i t i o n  0 < p ~< oo is necessary  

and  suf f ic ien t  to  gua ran tee  t h a t  f W ( n  i, n )  is p robab i l i s t i c ;  and  th is  comple tes  

the  p r o o f  o f  T.3. 

S tep  5 

The pr inciples  POI and  P R R  c o r r e s p o n d  to  Q1 and  Q2. I t  is easy  to  check  t h a t  

the  p r o o f  o f  (15)  for  a given w > 2 does n o t  d e p e n d  on  t he  app l i ca t ion  o f  Q3 

jus t  pr ior  to  (14) .  Therefore ,  s ubs t i t u t i on  o f  X = w p  in ( 1 5 ) c o m p l e t e s  t he  

p r o o f  o f  (1)  o f  sec t ion  4 for  K = w > 2. 

NOTES 

* The author wishes to thank Professor A. J. Stare for his stimulating suggestions during 

the research and Professor E. M. Barth, Doctor J. F. A. K. van Benthem and Professor 

J. J. A. Mooij for i!heir comments on the first draft. 

** At the end of the research for this article the author received from Professor Itkka 

Niiniluoto his first draft of a paper entitled 'On a K-dimensional system of inductive 

logic' (i.e. on the system of P-systems in the present article). Some passages in that  paper 

are closely, though only implicitly, related to the equivalence theorem, which is the 

central core of the present paper. The paper of Professor Niiniluoto wiU appear in the 

Proceedings of the 1976-PSA-meeting, Vol. 2. 

1 For simplicity we shall write 'en' , even when the set containing only the n-tuple e n, 
{ en} , is intended. 

It is technically convenient to require regularity, that is to say, to exclude the 

possibility that p(en) may be zero. 

3 This formulation of a principle or axiom has to be interpreted as: the probability 
value may only change if at least one of the arguments occurring at the right side changes. 

4 Note that, for al ln and e, h(n, c) can be calculated in a finite number of steps. 

s This symbolization should not be misunderstood as the w-th power of f (n i ,  n); the 

index, w, indicates only a possible dependency on w. 

Note 1 added in p ro@ An implicit assumption in the proof in Section 7 is that the 

solution of the eq~ations E (c) is such that the denominator in (25) is always non-zero. 

Suppose that this is not true. Let c=-co<K be the largest c and, for this c, n=n0+l  

(>%) the smallest n for which the denominator of (25), i.e. of hx(n o +l,co),  is zero. 

It can be checked now that hx(n o ,c o)=1 and that the proof of (27) remains valid for all 

n and e for which either e>e o or e=c 0 and c 0 <n<n  0 . But this implies that h(n o ,c o )=1, 

which is in conflict with (2). Hence, for a genuine P-system the equations E(c) are 

such that the denominator in (25) is always non-zero, 
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Note 2 added in proof." The class of Q-systems is of course a subclass of the class of 

systems that arises if Q3 is deleted in Def.2 of Section 6. In Ch.VI of our Studies in 
Inductive Probability and Rational Expectation (Synthese Library 123, Reidel, 

Dordrecht, forthcoming) this comprehensive class of inductive systems is studied 

extensively: axiomatic foundation, mutual relations, inductive properties, objective 

models and infinite extensions. In Ch.V the same is done with respect to a large class of 

Carnapian-like systems in which, however, P(Qi) need not be equal to 1/K. In this book 

the logicoqinguistic approaches to inductive logic have been replaced by a set-theoretic 
approach to rational expectation in contexts of theories and experiments and to 

suitable probability systems. In Ch.VII precise characterizations are given of the 

contexts in which Q-systems (and Carnapian systems) can be applied inductively, i.e. 

as rational expectation pattern. 
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