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On the generalization of the Darboux
theorem

Kaveh Eftekharinasab

Abstract. The Darboux theorem asserts that every symplectic manifold
(M2n, ω) is locally symplectomorphic to (R2n, ω0), where ω0 is the standard
symplectic form on R2n. This theorem was proved by Moser in 1965, the
idea of proof, known as the Moser’s trick, works in many situations. The
Moser tricks is to construct an appropriate isotopy Ft generated by a time-
dependent vector field Xt on M such that F˚

1 ω = ω0. Nevertheless, it was
showed by Marsden that Darboux theorem is not valid for weak symplectic
Banach manifolds. However, in 1999 Bambusi showed that if we associate to
each point of a Banach manifold a suitable Banach space (classifying space)
via a given symplectic form then the Moser trick can be applied to obtain the
theorem if the classifying space does not depend on the point of the manifold
and a suitable smoothness condition holds.
If we want to try to generalize the Darboux theorem to more general

context of Frechet manifolds we face an obstacle: in general vector fields
do not have local flows. Recently, Fréchet geometry has been developed in
terms of projective limit of Banach manifolds. In this framework under an
appropriate Lipchitz condition local flows exist and with some restrictive
conditions the Darboux theorem was proved by P. Mishra. In the present
paper we consider the category of so-called bounded Fréchet manifolds and
prove that in this category vector fields have local flows and following the
idea of Bambusi we associate to each point of a manifold a Fréchet space
independent of the choice of the point and with the assumption of bounded
smoothness on vector fields we prove the Darboux theorem.

Анотація. Теорема Дарбу стверджує, що кожен cимплектичний много-
вид (M2n, ω) є локально симплектоморфним до (R2n, ω0), де ω0 – стан-
дартна симплектична форма на R2n. Ця теорема була доведена Мозе-
ром у 1965 р. Ідея доведення, відома як трюк Мозера, працює у багатьох
ситуаціях і полягає у побудові ізотопії Ft многовиду M , породженої за-
лежним від часу векторним полем Xt на M , так, щоб F˚

1 ω = ω0. Тим не
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менш, Марсден показав, що теорема Дарбу не вірна для слабких симпле-
ктичних многовидів Банаха. Однак у 1999 р. Бамбусі показав, що якщо з
кожною точкою банахового многовиду пов’язати простір Банаха (класи-
фікуючий простір) через задану симплектичну форму, то трюк Мозера
може бути застосований для довдеення теореми Дарбу, за умови, що цей
простір не залежить від точки і відповідної умови гладкості.
Однією з перешкод до узагальнення теореми Дарбу на випадок много-

видів Фреше є те, що, взагалі кажучи, векторні поля не мають локальних
потоків. Останнім часом геометрія Фреше була розроблена з точки зору
проективних границь многовидів Банаха. У цьому контексті за відпо-
відної умови Ліпшица векторні поля породжують локальні потоки, і за
деяких додаткових сильних умов теорема Дарбу була отримана П. Мі-
шра. В представленій роботі ми розглянемо категорію так званих обме-
жених многовидів Фреше і доводимо, що в цій категорії векторні поля
мають локальні потоки. Слідуючи ідеї Бамбусі, ми пов’язуємо з кожною
точкою многовиду Фреше простір, який не залежить від вибору точки і
припускаючи обмежену гладкість на векторних полях доводимо теорему
Дарбу.

1. INTRODUCTION
The Darboux theorem has been extended to weakly symplectic Banach

manifolds by using Moser’s method, see [1]. The essence of this method
is to obtain an appropriate isotopy generated by a time dependent vector
field that provides the chart transforming of symplectic forms to constant
ones. In order to apply this method to a more general context of Fréchet
manifolds we need to establish the existence of the flow of a vector filed
which in general does not exist. One successful approach to the differential
geometry in Fréchet context is to use projective limits of Banach manifolds,
[2]. In this framework, a version of the Darboux theorem is proved in [6].
Another approach to Fréchet geometry is to apply a stronger notion

of differentiability, [3]. This differentiability leads to a new category of
generalized manifolds, the so called bounded (or MCk) Fréchet manifolds.
In this paper we prove that in that context the flow of a vector field exists
(Theorem 2.4) and we will apply the Moser’s method to obtain the Darboux
theorem (Theorem 3.5).
The obtained theorem might be useful to study the topology of the space

of Riemannian metrics M as it has the structure of a nuclear bounded
Fréchet manifold. A theorem from [5, §48.9] asserts that if (M,σ) is a
smooth weakly symplectic convenient manifold which admits smooth par-
titions of unity in C8

σ (M,R), and which admits ‘Darboux charts’, then the
symplectic cohomology equals to the De Rham cohomology:

Hk
σ(M) = Hk

DR(M).
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The manifold M admits smooth partition of unity in C8
σ (M,R) (this

follows from [5, Theorem 16.10] and [5, Definition 16.1]) so it is interesting
to ask if it has a Darboux chart. This, in turn, rises the question: how to
construct weak symplectic forms onM. It is known, [4], that expect Hilbert
manifolds an infinite dimensional manifold may not admit a Lagrangian
splitting so in general the Weinstein’s construction, [12], is not applicable.
Moreover, the Marsden’s idea to construct a symplectic form on a manifold
by using the canonical form on its cotangent bundle also is not applicable
as there is no natural smooth vector bundle structure on the cotangent
bundle [9, Remark I.3.9]. It is not clear yet how to construct symplectic
forms onM but it seems that it might arise from a weak Riemannian metric
and complex structure, however, that would require some assumptions and
ingredients different from ones in Theorem 3.5.

2. BOUNDED DIFFERENTIABILITY
In this section we prove the existence of the local flow of a MCk-vector

field. We refer to [3] for more details on bounded Fréchet geometry.
Denote by (F, ρ) a Fréchet space whose topology is defined by a complete

translational-invariant metric ρ. We consider only metrics with absolutely
convex balls. Note that every Fréchet space admits such a metric, cf [3].
One reason to choose this particular metric is that a metric with this prop-
erty can give us a collection of seminorms that defines the same topology.
More precisely:

Theorem 2.1 ([7], Theorem 3.4). Assume that (F, ρ) is a Fréchet space
and ρ is a metric with absolutely convex balls. Let

Bρ
1
i

(0) –
␣
y P F | ρ(y, 0) ă 1

i

(
,

and suppose Ui’s, i P N, are convex subsets of Bρ
1
i

(0). Define the Minkowski
functionals

}v}i – inf
␣
ε ą 0 | ε P R, 1

ε ¨ v P Ui

(
.

These Minkowski functionals are continuous seminorms on F . A collection
t}v}iuiPN of these seminorms generates the topology of F .
In the sequel we will assume that a Fréchet space F is graded with the

collection of seminorms }v}n
F =

nř
k=1

}v}k that defines its topology.

Let (E, g) be another Fréchet space and Lg,ρ(E,F ) be the set of all linear
maps L : E Ñ F such that

Lip(L)g,ρ – sup
xPEzt0u

ρ(L(x), 0)

g(x, 0)
ă 8.
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The transversal-invariant metric
Dg,ρ : Lg,ρ(E,F ) ˆ Lg,ρ(E,F ) ÝÑ [0,8),

(L,H) ÞÑ Lip(L´H)g,ρ,
(2.1)

on Lρ,g(E,F ) turns it into an Abelian topological group. Let U an open
subset of E, and P : U Ñ F a continuous map. If P is Keller-differentiable,
dP (p) P Lρ,g(E,F ) for all p P U , and the induced map

dP (p) : U Ñ Lρ,g(E,F )

is continuous, then P is called bounded differentiable.
We say P is MC0 and write P 0 = P if it is continuous. We also say P

is an MC1 and write P (1) = P 1 if it is bounded differentiable. Recursively
one can define maps of class MCk for each k ą 1, see [3]. If φ(t) is a
continuous path in a Fréchet space we denote its derivative by d

dt
φ(t).

Within this framework we define MCk (bounded) Fréchet manifolds,
MCk-maps of manifolds and tangent bundles and their MCk-vector fields.
A MCk-vector field X on a MCk-Fréchet manifold M is a MCk-section of
the tangent bundle πTM : TM Ñ M , i.e. a MCk map X : M Ñ TM with
πTM ˝X = idM . We write V(M) for the space of all vector fields on M . If
f P MC8(M,E) is a smooth function on M with values in a Fréchet space
E and X P V(M), then we obtain a smooth function on M via

X.f := df ˝X : M Ñ E.

For X,Y P V(M), there exists a unique a vector field [X,Y ] P V(M) deter-
mined by the property that on each open subset U Ă M we have

[X,Y ].f = X.(Y.f) ´ Y.(X.f)

for all f P MC8(U,R), see [8, Lemma II.3.1].
A vector field on an infinite dimensional Fréchet manifold may have no,

one or multiple integral curves. However, a MCk-vector field always has a
unique integral curve.

Proposition 2.2. [3, Proposition 5.1] Let U Ď F be an open subset and
X : U Ñ F be a MCk-vector field, k ě 1. Then for each p0 P U there
exists an integral curve ℓ : I Ñ F at p0. Furthermore, any two such curves
coincide on the intersection of their domains.

Corollary 2.3. [3, Corollary 5.1] Let U Ď F be an open subset and let
X : U Ñ F be a MCk-vector field, k ě 1. Let also Ft(p0) be the solution
of ℓ1(t) = X(ℓ(t)), ℓ(t0) = p0. Then there is an open neighborhood U0 of
p0 and a positive real number α such that for every q P U0 there exists a
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unique integral curve ℓ(t) = Ft(q) satisfying ℓ(0) = q and ℓ1(t) = X(ℓ(t))
for all t P (´α, α).

Theorem 2.4. Let X be a MCk-vector field on U Ă F , k ě 1. Then
one can find a real number α ą 0 such that for each x P U there exists
a unique integral curve ℓx(t) satisfying ℓx(0) = x for all t P I = (´α, α).
Furthermore, the mapping F : I ˆ U Ñ F given by Ft(x) = F(t, x) = ℓx(t)
is of class MCk.
Proof. The first part of the proof follows from Corollary 2.3. We now prove
the second part. Let x, y P U be arbitrary points. Define the functions
φn : I Ñ R, n P N, by

φn(t) = }F(t, x) ´ F(t, y)}n
F .

Since X is MCk, so it is globally Lipschitz. Let β ą 0 be its Lipschitz
constant. Then we have @n P N

φn(t) =
›››

t
∫
0

(
X(F(s, x)) ´X(F(s, y)

)
ds+ x´ y

›››
n

F
ď

ď }x´ y}n
F + β

ż t

0
φ(s)ds.

Hence, by Gronwall’s inequality, we obtain that

}F(t, x) ´ F(t, y)}n
F ď eβ|t|}x´ y}n

F , @n P N. (2.2)

Thereby F is Lipschitz continuous in the second variable and is jointly
continuous.
Now, define F(t, x) P Lρ(F ) to be the solution of the equations

dF(t, x)

dt
= dX(F(t, x)) ˝ F(t, x), F(0, x) = id,

where dX(F(t, x)) : F Ñ F is derivative of X with respect to x at F(t, x).
By Proposition 2.2 F(t, x) exits and is well defined. Since the vector field
F ÞÑ dX(F(t, x)) ˝ F on Lρ(F ) is Lipschitz in F, uniformly in (t, x) in a
neighborhood of every (t0, x0), by the above argument it follows that F(t, x)
is continuous in (t, x). We will show that dF(t, x) = F(t, x).
Indeed, fix t P I, for h P U define ψ(s, h) = F(s, x+ h) ´ F(s, x), then

ψ(t, h) ´ F(t, x)(h) =

ż t

0

(
X(F(s, x+ h)) ´X(F(s, x))

)
ds

´
ż t

0

[
dX(F(s, x)) ˝ F(s, x)

]
(h)ds
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=

ż t

0
dX(F(s, x)(

[
(ψ(s, h) ´ F(s, x)(h))

]
)ds

+

ż t

0

(
X(F(s, x+ h)) ´X(F(s, x))

´ dX(F(s, x))(F(s, x+ h) ´ F(s, x)
)
ds.

Since X is MCk, for given ε ą 0 there is a δ ą 0 such that }h}n
F ă δ,

(n P N), yields that the second term is less than
ż t

0
ε}F(s, x+ h) ´ F(s, x)}n

F , @n P N,

but by (2.2) this integral is less than Bε supnPN }h}n
F for some positive

constant B. Thus, by Gronwall’s inequality we obtain
}ψ(t, h) ´ F(t, h)(h)}n

F ď εC}h}n
F , @n P N,

where C is a positive constant. Whence dF(t, x)(h) = F(t, x)(h). Thus,
both partial derivatives of F(t, x) exist and are continuous so F(t, x) is C1.
Moreover, F is globally Lipschitz and x ÞÑ F(¨, x) is continuous therefore
F(t, x) is MC1. Using induction on k we obtain that F(t, x) is of class
MCk. By definition of F(t, x)

d

dt
F(t, x) = X(F(t, x)),

so
d

dt

d

dt
F(t, x) = dX(F(t, x))

(
X(F(t, x))

)

and
d

dt
dF(t, x) = dX(F(t, x))

(
dF(t, x)

)
.

The right-hand sides are MCk´1, so are the solutions by induction. Thus
F(t, x) is MCk. □

3. DARBOUX CHARTS
In general for a Fréchet manifold differential forms cannot be defined

as the sections of its cotangent bundle since we can not always define a
manifold structure on the cotangent bundle, see [9, Remark I.3.9]. To
define differential forms we follow the approach of Neeb [9].
Definition 3.1. Let M be a bounded Fréchet manifold. A p-form ω on M
is a function ω which associates to each x P M a p-linear alternating map
ωx : T p

x (M) Ñ R such that in local coordinates the map
(x, v1, . . . , vp) ÞÑ ωx(v1, . . . , vp)
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is smooth. We write Ωp(M,R) for the space of p-forms on M and identify
Ω0(M,R) with the space C8(M,R) of smooth functions.
The exterior differential ddR : Ωp(M,R) Ñ Ωp+1(M,R) is determined

uniquely by the property that for each open subset U Ă M we have for
X0, . . . , Xp P V(U) in the space C8(U,R) the identity

(ddRω)(X0, . . . , Xp) :=

pÿ

i=0

(´1)iXi.ω(X0, . . . , X̂i, . . . , Xp)

+
ÿ

iăj

(´1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).

Let ω P Ωp(M,R), Y P V(M) and Ft the local flow of Y . Define the
usual Lie derivative by

LY ω =
d

dt
(Ft̊ ω) |t=0,

which of course coincides by

(LY ω)(X1, . . . , Xp) = Y.ω(X1, . . . , Xp) ´
pÿ

j=1

ω(X1, . . . , [Y,Xj ], . . . , Xp)

for Xi P V(U), U Ă M open. For each X P V(M) and p ě 1 consider also
the following linear map

iX : Ωp(M,R) Ñ Ωp´1(M,R) with (iXω)x = iX(x)ωx,

where (ivωx)(v1, . . . , vp´1) := ωx(v, v1, . . . , vp´1).
For ω P Ω0(M,R) = C8(M,R), we put iXω := 0. Then for two vector

fields X,Y P V(M), we have on Ω(M,R) the Cartan formulas, [9, Proposi-
tion I.4.3]:
[LX , iY ] = i[X,Y ], LX = ddR ˝ iX + iX ˝ ddR, LX ˝ ddR = ddR ˝ LX .

Definition 3.2. Let M be a bounded Fréchet manifold. Say that M is
weakly symplectic if there exists a closed smooth 2-form ω (ddRω = 0)
being weakly non-degenerate in the sense that for all x P M and vx P TxM

ωx(vx, wx) = 0 (3.1)
for all wx P TxM implies vx = 0.
The Darboux theorem is a local result so it suffices to consider the case

when M is an open set U of the Fréchet model space F . For simplicity
assume that 0 P U . Let x P U be fixed and let F 1

b be the strong dual of F .
Define the map ω#

x : F Ñ F 1
b by

xw,ω#
x (v)y = ωx(w, v),
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where x¨, ¨y is a duality pairing. Also, define Hx – tωx(y, ¨) | y P F u. This
is a subset of F 1

b and its topology is induced from it.

Lemma 3.3. Suppose x P U is fixed and the model space Fx » TxM is
nuclear. Then the map ω#

x : Fx Ñ Hx is an isomorphism.
Proof. Condition (3.1) implies that ω#

x is injective and by the definition of
Hx, it is surjective. The space Fx is nuclear so its strong dual is DFN -space
and barreled. The dual space is Mackey (cf. [11, 5.3.4]) and Hx inherits its
topology (see [11, 0.4.2, 0.4.3] so is ultrabornological and barrelled (cf.[11,
8.6.9]). Thus, by the open mapping theorem [10, Theorem 4.35] the inverse
mapping is continuous, so ω#

x is isomorphism. □

We will need the following result.

Lemma 3.4. [8, (Poincaré Lemma) II.3.5] Let E be locally convex, V a
sequentially complete space and U Ă E an open subset being star-shaped
with respect to 0. Let also ω P Ωk+1(U, V ) be a V -valued closed (k+1)-form.
Then ω is exact. Moreover, ω = ddRα for some α P Ωk(U, V ) with α(0) = 0
given by

α(x)(v1, ¨ ¨ ¨ vk) =

ż 1

0
tkω(tk)(x, v1, ¨ ¨ ¨ vk)dt.

We assert the following theorem for some open neighborhood of 0 P F .
Theorem 3.5. Suppsoe that the Fréchet model space F is nuclear. Assume
also that

(i) there exits an open neighborhood U of zero such that all the spaces
Hx are locally identical and ωt#

x : F Ñ H is an isomorphism for
each t P [0, 1] and x P U .

(ii) for x P U the map (ωt#
x )´1 : H Ñ F is a field of isomorphism of

class MC8.
Then ω is locally isomorphic at zero to the constant form ω(0).
Proof. On U define ωt = ω0 + t(ω0 ´ω) for t P [0, 1], where ω0 = ω(0). By
Lemma 2.2 there exist a 1-form α being locally such that ddRα = ω0 ´ ω
and α(0) = 0. Consider a time-dependent vector field Xt : U Ñ F defined
by

iXtω
t = ´α.

Thus, α = iX1ω, and so α P H. By Condition (i) for x P U and all t, ωt#
x is

an isomorphism hence
Xt – (ωt#

x )´1α
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is well defined. By Condition (ii), Xt is MC8 so Theorem 2.4 implies that
there exists a smooth isotopy Ft generated by Xt which for t P [0, 1] satisfies

Ft̊ ω
t = ω0. (3.2)

To solve (3.2), we need to solve
d

dt
Ft̊ ω

t = 0. (3.3)

We have by product rule of derivative and the Cartan formula that
d

dt
Ft̊ ω

t = Ft̊ (LXtω
t) + Ft̊

d

dt
ωt

= Ft̊

( d
dt
ωt ´ ddR(iXtω

t)
)

= Ft̊ (´dα+ ω0 ´ ω) = 0.

Thus, F1̊ω1 = F0̊ω0 and so F1̊ω = ω0. □
Remark 3.6. In the projective limit approach despite the fact that many
interesting results can be recovered for Fréchet manifolds there are some
limitations. To construct geometric and topological objects we need to
establish the existence of compatible projective limits of their corresponding
Banach factors. This would not be easy in some cases and also we can
not use some known results (e.g. the Poincare lemma for locally convex
spaces). Therefore it is imposed the additional condition in [6, Theorem
4.2] for the existence of the required differential form as the Poincare lemma
is not available in this setting. Also, we need a rather strong Lipschitz
condition on mappings for the existence of local flows. In contrast, in
metric approach we can apply known facts from the metric geometry and
locally convex spaces that simplify proofs. There are some restrictions
in this approach also; it is not easy to check MCk-differentiability and
the class of bounded maps can be very small. However as mentioned,
manifolds of Riemannian metrics have the structure of nuclear bounded
Fréchet manifolds and Theorem 3.5 can be used to study their cohomology,
but it is not yet clear how to construct a symplectic structure that can be
applied in this context.
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