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Abstract
The aim of this paper is to derive some new identities related to the Frobenius-Euler
polynomials. We also give relation between the generalized Frobenius-Euler
polynomials and the generalized Hurwitz-Lerch zeta function at negative integers.
Furthermore, our results give generalized Carliz’s results which are associated with
Frobenius-Euler polynomials.
MSC: 05A10; 11B65; 28B99; 11B68

Keywords: Frobenius-Euler polynomials; Hermite-based Frobenius-Euler
polynomials; Hermite-based Apostol-Euler polynomials; Apostol-Euler polynomials;
Hurwitz-Lerch zeta function

1 Introduction, definitions and notations
Throughout this presentation, we use the following standard notions: N = {, , . . .}, N =
{, , , . . .} = N ∪ {}, Z– = {–,–, . . .}. Also, as usual Z denotes the set of integers, R de-
notes the set of real numbers and C denotes the set of complex numbers. Furthermore,
(λ) =  and

(λ)k = λ(λ + )(λ + ) · · · (λ + k – ),

where k ∈N, λ ∈C.
The classical Frobenius-Euler polynomial H (α)

n (x;u) of order α is defined by means of
the following generating function:

(
 – u
et – u

)α

ext =
∞∑
n=

H (α)
n (x;u)

tn

n!
, ()

where u is an algebraic number and α ∈ Z.
Observe that H ()

n (x;u) = Hn(x;u), which denotes the Frobenius-Euler polynomials and
H (α)

n (;u) = H (α)
n (u), which denotes the Frobenius-Euler numbers of order α. Hn(x; –) =

En(x), which denotes the Euler polynomials (cf. [–]).

Definition . (for details, see [, ]) Let a,b, c ∈ R
+, a �= b, x ∈ R. The generalized

Apostol-type Frobenius-Euler polynomials are defined by means of the following gener-
ating function:

(
at – u
λbt – u

)α

cxt =
∞∑
n=

H(α)
n (x;u;a,b, c;λ)

tn

n!
. ()
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Remark . If we set x =  and α =  in (), we get

at – u
λbt – u

=
∞∑
n=

Hn(u;a,b, c;λ)
tn

n!
, ()

whereHn(u;λ;a,b, c) denotes the generalized Apostol-type Frobenius-Euler numbers (cf.
[]).

2 New identities
In this section, we derive many new identities related to the generalized Apostol-type
Frobenius-Euler numbers and polynomials of order α.

Theorem . Let α,β ∈ Z. Each of the following relationships holds true:

H(α)
n (x;u;a,b, c;λ) =

n∑
k=

(
n
k

)
H(α)

k (u;a,b, c;λ)(x ln c)n–k , ()

H(α+β)
n (x + y;u;a,b, c;λ) =

n∑
k=

(
n
k

)
H(α)

k (x;u;a,b, c;λ)H(β)
n–k(y;u;a,b, c;λ), ()

(
(x + y) ln c

)n = n∑
k=

(
n
k

)
H(α)

n–k(y;u;a,b, c;λ)H
(–α)
k (x;u;a,b, c;λ), ()

and

H(–α)
n

(
x;u;a,b, c;λ) = n∑

k=

(
n
k

)
H(–α)

k (x;u;a,b, c;λ)H(–α)
n–k (x; –u;a,b, c;λ). ()

Proof of () From (),

∞∑
n=

H(–α)
n (x;u;a,b, c;λ)

tn

n!

∞∑
n=

H(α)
n (y;u;a,b, c;λ)

tn

n!
= c(x+y)t . ()

Therefore,

∞∑
n=

( n∑
k=

(
n
k

)
H(α)

n–k(y;u;a,b, c;λ)H
(–α)
k (x;u;a,b, c;λ)

)
tn

n!
=

∞∑
n=

(x ln c)n
tn

n!
.

Thus, by using the Cauchy product in () and then equating the coefficients of tn
n! on both

sides of the resulting equation, we obtain the desired result.
The proofs of (), () and () are the same as that of (), thus we omit them. �

Observe that in () we have

(
(x + y) ln c

)n = (
H(α)(y;u;a,b, c;λ) +H(–α)(x;u;a,b, c;λ)

)n,
where (H(α)(y;u;a,b, c;λ))n is replaced byH(α)

n (y;u;a,b, c;λ).
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Theorem . Let α ∈ N. Then we have

α∑
k=

(
α

k

)
(–u)α–k(x ln c + k lna)n =

n∑
p=

α∑
k=

(
n
p

)(
α

k

)
(–u)α–k(k lnb)pH(α)

n–p(x;u;a,b, c;λ).

Proof By using (), we get

∞∑
n=

(
α∑

k=

(
α

k

)
(–u)α–k(x ln c + k lna)n

)
tn

n!

=
∞∑
n=

( n∑
p=

α∑
k=

(
n
p

)(
α

k

)
(–u)α–k(k lnb)pH(α)

n–p(x;u;a,b, c;λ)

)
tn

n!
.

By equating the coefficients of tn
n! on both sides of the resulting equation, we obtain the

desired result. �

Theorem . The following relationship holds true:

(u – )
n∑

r=

(
n
r

)
Hr(x;u;a,b, c;λ)Hn–r(y;  – u;a,b, c;λ)

= (u – )Hn(x + y;u;a,b, c;λ) + uHn(x + y;  – u;a,b, c;λ)

+
n∑

k=

(
n
k

)
Hk(x + y;u;a,b, c;λ)

–
n∑

k=

(
n
k

)
(lna)n–kk H(x + y;  – u;a,b, c;λ). ()

Proof We set

(u – )
at – u
λbt – u

cxt
at – ( – u)
λbt – ( – u)

cyt

=
(
at – u

)(
at – ( – u)

)
c(x+y)t

(


λbt – u
–


λbt – ( – u)

)
.

From the above equation, we see that

(u – )

( ∞∑
n=

Hn(x;u;a,b, c;λ)
tn

n!

)( ∞∑
n=

Hn(y;  – u;a,b, c;λ)
tn

n!

)

=
(
at –  + u

) ∞∑
n=

Hn(x + y;u;a,b, c;λ)
tn

n!
–

(
at – u

) ∞∑
n=

Hn(x + y;  – u;a,b, c;λ)
tn

n!
.

Therefore,

(u – )
∞∑
n=

n∑
r=

(
n
r

)
Hr(x;u;a,b, c;λ)Hn–r(y;  – u;a,b, c;λ)

tn

n!

= (u – )
∞∑
n=

Hn(x + y;u;a,b, c;λ)
tn

n!
+ u

∞∑
n=

Hn(x + y;  – u;a,b, c;λ)
tn

n!
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+
∞∑
n=

n∑
r=

(
n
r

)
(lna)n–rHr(x + y;u;a,b, c;λ)

tn

n!

–
∞∑
n=

n∑
r=

(
n
r

)
(lna)n–rHr(x + y;  – u;a,b, c;λ)

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �

Remark . By substituting a = , b = c = e, λ =  into Theorem., we get Carlitz’s results
(for details, see [, Eq. .]) as follows:

(u – )
n∑

r=

(
n
r

)
Hr(x;u)Hn–r(y;  – u)

= (u – )Hn(x + y;u) + uHn(x + y;  – u) +Hn(x + y;u) –Hn(x + y;  – u).

We give the following generating function of the polynomials Yn(x;λ;a):

t
λat – 

axt =
∞∑
n=

Yn(x;λ;a)
tn

n!
(a≥ ) ()

(cf. [, ]). We also note that

Yn(;λ;a) = Yn(λ;a).

If we substitute x =  and a =  into (), we see that

Yn(λ; ) =


λ – 
.

Theorem . The generalized Apostol-type Frobenius-Euler polynomial holds true as fol-
lows:

n
(
Hn(x;u;a,b,b;λ) – ln

(
cx

)
Hn(x;u;a,b, c;λ)

)
= lna


u

n∑
k=

(
n
k

)
Yn–k

(
;

u
;a

)
Hk(x;u;a,b,b;λ)

+ lnb
λ
u

n∑
k=

(
n
k

)
Yn–k

(

u
;a

)
H()

k (x;u;a,b,b;λ). ()

Proof Substituting c = b for α =  into () and taking derivative with respect to t, we obtain

∞∑
n=

Hn+(x;u;a,b,b;λ)
tn

n!

=
at lna
at – u

at – u
λbt – u

bxt +
lnbλbt

at – u

(
at – u
λbt – u

)

bxt + ln
(
bx

) at – u
λbt – u

bxt .
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Using (), we have

∞∑
n=

Hn+(x;u;a,b,b;λ)
tn

n!
=
ln(a 

u )
t

∞∑
n=

n∑
k=

(
n
k

)
Yn–k

(
;

u
;a

)
Hk(x;u;a,b,b;λ)

tn

n!

+
ln(b λ

u )
t

∞∑
n=

n∑
k=

(
n
k

)
Yn–k

(

u
;a

)
H()

k (x;u;a,b,b;λ)
tn

n!

+ ln
(
bx

) ∞∑
n=

Hn(x;u;a,b,b;λ)
tn

n!
.

Thus, after some elementary calculations, we arrive at (). �

Theorem . Let |u| <  and m ∈ N. Then we have

H(–m)(u;a,b, c;λ) =
n∑

k=

(
n
k

)
H(–α)

k (–x;u;a,b, c;λ)H(α–m)
n–k (x;u;a,b, c;λ). ()

Proof In (), we replace α by –α, then we set

(
at – u
λbt – u

)–α

c(–x)t
∞∑
n=

H(α–m)
n (x;u;a,b, c;λ)

tn

n!
=

(
at – u
λbt – u

)–m

.

By using (), we get

∞∑
n=

H(–α)
n (–x;u;a,b, c;λ)

tn

n!

∞∑
n=

H(α–m)
n (x;u;a,b, c;λ)

tn

n!
=

∞∑
n=

H(–m)
n (u;a,b, c;λ)

tn

n!
.

Therefore,

∞∑
n=

n∑
k=

(
n
k

)
H(–α)

k (–x;u;a,b, c;λ)H(α–m)
n–k (x;u;a,b, c;λ)

tn

n!
=

∞∑
n=

H(–m)
n (u;a,b, c;λ)

tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at ().

�

3 Interpolation function
In this section, we give a recurrence relation between the generalized Frobenius-Euler
polynomials and the Hurwitz-Lerch zeta function. Recently, many authors have studied
not only theHurwitz-Lerch zeta function, but also its generalizations, for example (among
others), Srivastava [], Srivastava and Choi [] and also Garg et al. []. The generaliza-
tion of the Hurwitz-Lerch zeta function �(z, s,a) is given as follows:

�(ρ,σ )
μ,ν (z, s,a) :=

∞∑
n=

(μ)ρn
(ν)σn

zn

(n + a)s
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(μ ∈ C, a,υ ∈ C\Z–
 , ρ,σ ∈ R

+, ρ < σ when s, z ∈ C (|z| < ); ρ = σ and �(s –μ + ν) > 
when |z| = ). It is obvious that

�
(,)
μ, (z, s,a) = �∗

μ(z, s,a) =
∞∑
n=

(μ)n
n!

zn

(n + a)s
()

and

�∗
n(z, s,a) =

∞∑
n=

(n)n
n!

zn

(n + a)s
= �(z, s,a),

where �(z, s,a) denotes the Lerch-Zeta function (cf. [, , , ]).
Relation between the generalized Apostol-type Frobenius-Euler polynomials and the

Hurwitz-Lerch zeta function is given as follows.

Theorem . Let | λ
u | < .We have

H(α)
n (x;u;a,b, c;λ) =

α∑
k=

(
α

k

)
(–u)α–k–G

(
–n;x,

λ

u
;a,b, c;α,k

)
, ()

where

G(s;x,β ;a,b, c;α, j) =
∞∑
m=

(
m + α – 

m

)
βm

(x ln c + j lna +m lnb)s
, |β| < .

Proof From (), we have

∞∑
n=

H(α)
n (x;u;a,b, c;λ)

tn

n!
=

α∑
j=

(
α

j

)
(–u)α–j–

∞∑
m=

(
m + α – 

m

)(
λ

u

)m

eα(x ln c+k lna+m lnb).

Therefore,

∞∑
n=

H(α)
n (x;u;a,b, c;λ)

tn

n!

=
∞∑
n=

α∑
k=

(
α

k

)
(–u)α–k–

∞∑
m=

(
m + α – 

m

)(
λ

u

)m

(x ln c + k lna +m lnb)n
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we have arrive

at (). �

Remark . By substituting a = , b = c = e into (), we have

H(α)
n (x;u;λ) = –

( – u)α

u
G

(
–n;x,

λ

u
; , e, e;α, 

)
= –

( – u)α

u
�

(
λ

u
, –n,x

)
,

where

G

(
–n;x,

λ

u
; , e, e;α, 

)
= �

(
λ

u
, –n,x

)
.
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Remark . The functionG(s;x,β ;a,b, c;α, j) is an interpolation function of the general-
ized Apostol-type Frobenius-Euler polynomials of order α at negative integers, which is
given by the analytic continuation of the G(s;x,β ;a,b, c;α, j) for s = –n, n ∈N.

4 Relations between Array-type polynomials, Apostol-Bernoulli polynomials
and generalized Apostol-type Frobenius-Euler polynomial

In [], Simsek constructed the generalized λ-Stirling type numbers of the second kind
S(n, v;a,b;λ) by means of the following generating function:

fS,v(t;a,b;λ) =
(λbt – at)v

v!
=

∞∑
n=

S(n, v;a,b;λ) t
n

n!
. ()

The generating function for these polynomials Sn
v (x;a,b;λ) is given by

gv(x, t;a,b;λ) =

v!

(
λbt – at

)vbxt = ∞∑
n=

Sn
v (x;a,b;λ)

tn

n!
()

(cf. []).
The generalized Apostol-Bernoulli polynomials were defined by Srivastava et al. [,

p., Eq. ()] as follows.
Let a,b, c ∈R

+ with a �= b, x ∈R and n ∈N. Then the generalized Bernoulli polynomials
B

(α)
n (x;λ;a,b, c) of order α ∈ Z are defined bymeans of the following generating functions:

fB(x,a,b, c;λ;α) =
(

t
λbt – at

)α

cxt =
∞∑
n=

B
(α)
n (x;λ;a,b, c)

tn

n!
, ()

where

∣∣∣∣t ln
(
a
b

)
+ lnλ

∣∣∣∣ < π .

We note thatB()
n (x;λ;a,b, c) =Bn(x;λ;a,b, c) and alsoBn(x;λ; , e, e) = Bn(x;λ), which de-

notes the Apostol-Bernoulli polynomials (cf. [–]).

Theorem . Let v be an integer. Then we have

H(–ν)
n–v (x;u;a,b, c;λ) =

ν!
uν(n)v

n∑
k=

(
n
k

)
Sn
v

(
x, ,b;

λ

u

)
Y (ν)
n–k

(

u
;a

)
.

Proof Replacing c by b in () and after some calculations, we have

∞∑
n=

H(–v)
n (x;u;a,b,b;λ)

tn+v

n!
=

ν!
uν

∞∑
n=

Snν

(
x, ,b;

λ

u

)
tn

n!

∞∑
n=

Y (ν)
n

(

u
;a

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �
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Corollary .

H(–ν)
n–v (x;u;a,b, c;λ) =

ν!
uν(n)α

n∑
k=

(
n
k

)
S

(
k,ν, ,b;

λ

u

)
Bn–k

(
x,a,b;

λ

u

)
.

Proof Replacing c by b in () and after some calculations, we have

∞∑
n=

H(–v)
n–v (x;u;a,b,b;λ)

tn+v

n!
=

ν!
uν

∞∑
n=

S
(
n,ν, ,b;

λ

u

)
tn

n!

∞∑
n=

Bn

(
x,a,b;

λ

u

)
tn

n!
.

Comparing the coefficients of tn
n! on both sides of the above equation, we arrive at the

desired result. �
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