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ON THE GENERALIZED BENJAMIN-ONO EQUATION

CARLOS E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

Abstract. We study well-posedness of the initial value problem for the gener-
alized Benjamin-Ono equation dtu + ukdxu - dxDxu = 0 , k 6 Z+ , in Sobolev
spaces HS(R). For small data and higher nonlinearities (k > 2) new local
and global (including scattering) results are established. Our method of proof
is quite general. It combines several estimates concerning the associated linear
problem with the contraction principle. Hence it applies to other dispersive
models. In particular, it allows us to extend the results for the generalized
Benjamin-Ono to nonlinear Schrödinger equations (or systems) of the form
d,u - id2u + P(u,dxu,ü, dxu) = 0 .

1. Introduction
The purpose of this paper is to study the initial value problem (IVP) for the

generalized Benjamin-Ono (B-O) equation

dtu + ukdxu-dxDxu = 0,        t,x£R, k £ Z+ ,
u(x, 0) = Uo(x),

where Dx = (-d2)1'2.
In the case k = 1 the equation in ( 1.1 ) was deduced by Benjamin [3] and Ono

[28] as a model in internal-wave theory. Higher order nonlinearities (specially
the case k = 2) also appear in applications [6]. The generalized B-O equation
presents the interesting fact that the dispersive effect is described by a nonlocal
operator and is weaker than that exhibited by the generalized Korteweg-de Vries
equation

(1.2) dtu + ukdxu + d^u = 0.

Several works have been devoted to the existence problem for solutions of
(1.1) with data u0 £ Hs(R) = ( 1 - d2)~sl2L2(R). In this direction the strongest
results can be gathered in the following theorem.

Theorem 1.1. (i) Let u0 £ HS(R) with s = 0 or s = \.  Then for k = 1 or
k = 2 there exists a (weak) solution u o/(l.l) such that

u £ L°°(R : Hs) n CW(R : Hs) n L,20C(1 : H^l/2).
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(ii) Let Uo G HX(R). Then for k = 1 there exists a (weak) solution u of
(1.1) such that

u £ Cb(R : L2) n L°°(R : Hx) n L20C(R : H^2).

(iii) Let uo £ /73/2(K). Then for k = 1 í/zé> TYP (1.1) /zas a wn/tfue (strong)
solution u satisfying

u G Q(E : H'l2) n L20C(R : H20C) n L,40C(R : Lf) = X.

Moreover the map uo -> w(Z) ./ram H3/2(R) to X is continuous.
(iv) LeZ «o G //J(R) with s > \. Then for any k £ Z+ there exist T -

T(\\uo\\s,2', k) > 0 azz^a unique (strong) solution u o/(l.l) satisfying

u £ C([-T, T] : Hs) nL20C([-7\ 7] : H^/2) = YT.

Moreover given V £ (0, T) there exists a neighborhood UUo of Uo in Hs such
that the map uo -» u(t) from UUo to Yt> is continuous. When k = 1 this result
extends to any time interval.

Above we have used the notation:
CW(R : B) = the space of all weakly continuous function

on M to B (Banach space),

and
Cb(R : B) = C(R : B) n L°°(R : B).

Part (i) of Theorem 1.1 is due to Ginibre and Velo [16]. Part (ii) was proven
by Ginibre and Velo [16] and Tom [40]. Result (iii) was established by Ponce
[30]. Finally (iv) follows by combining the works of lorio [18], Abdelouhab, et
al. [1], and Ponce [29] (for related results see [32, 21]).

From Theorem 1.1 we see that for k > 2 and u0 £ HS(R) with s < \ the
existence problem for (1.1) is open. On the other hand the proof of the local
well-posedness result for (1.1) in Hs with s > \ (Theorem l.l(iv)) does not
use the dispersive structure of the equation.

Also Theorem 1.1 tells us that the smoothing effect of Kato type [20] estab-
lished in solutions of (1.1) is weaker (even locally in time) than that deduced
by Kenig, Ponce, and Vega [23] in solutions of the associated linear problem.
More precisely, if {V(t)}foo denotes the unitary group associated to the linear
problem

d,u-dxDxu = Q,        x,t£R,
u(x, 0) = uo(x),

i.e., u(x, t) = V(t)uo(x), then it was shown in [20, Theorem 4.1] that there
exists c > 0 such that for each x £R

aoo \ 1/2
\Dx/2V(t)u0(x)\2dt)     =c\\u0\\2.

Observe that although the gain of derivatives in ( 1.4) (as in Theorem 1.1) is
also equal to \ , (1.4) describes a L^L2 estimate instead of the L,20CLj20C one
sees in Theorem 1.1.

Our main results in this paper show that for k > 2 and small data the results
in Theorem 1.1 can be significantly improved.
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Theorem 1.2. Let k>2 and s be such that
s>l       ifk = 2,

(1.5) s>¡       ifk = 3,
s>!       z/A:>4.

There exists S = ô(k) > 0 such that for any Uo £ HS(R) with ||moIU ,2 < S there
exist T = r(||izo||i,2; k) > 0 (with T(p, k) -> oo as p —► 0) and a unique
(strong) solution u(-) ofthelVP (1.1) satisfying u £ C([-T, T] : HS(R)) and

(1.6) SUP   \\D°{S +l/2)u\\Lm-euve < 00
o<e<i

where
i/p

IIMIl;l«=   /   (/r|w(jc'i)|,rfr)     dx

and j = min{zc ; 4} .
If Uo £ Hs' (R) with s' > s then the results above hold with s' instead of s

in the same time interval [-T, T].
For T £ (0, T) there exists a neighborhood UUo of uo in HS(R) such that

the map ü0 —» «(Z) from UUo to XST, j is Lipschitz where

XST , = J co : R x [-T, T] -+ |   sup   \\co(t)\\s 2 < oo
[ l-T,T]

and  sup ||D^(l+1/2)G>||r,/(1-9),2/e < oo I .O<0<1 x        T J

Theorem 1.3. For k > 4 and s > 1 the results of Theorem 1.2 extend to the
time interval (-00,00). In addition, the solution u satisfies

(1.7a) u£Cb(R:Hs(R)),

and

a 00 \ 1/4\\u(.,t)\\ldt)      <oo

(1.7c) sup ||Z^(s+1/2)w|U(1-e),2/9<oo.
o<e<i *       '

(See notations at the end of this section).
As a consequence of Theorem 1.3 we obtain the following scattering type

result (see [36]).
Corollary 1.4. Let k > 4 and uq g HX(R) satisfying the smallness assumption
ofTheorem 1.2. Then for the corresponding solution u(t) of the IVP (\.\) there
exist unique <y0± G Hx (R) such that

(1.8) lim ||m(í)-K(í)ü)o±||i,2 = 0.
Í—>±oo

Remarks, (a) Since Theorem 1.2 deals with fractional derivatives in L°° the
use of the one parameter family of norms introduced in (1.6) is necessary, since
D'y is not bounded in L°° and hence complex interpolation is not possible.
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158 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

Notice that for 6= 1 (1.6) provides the sharp version (L^L2.) oftheKato
smoothing effect described in (1.3).

(b) Combining the result (iii) in Theorem 1.1 with those in Theorem 1.3 one
sees that for u0 £ 773/2(R) with 30 = ||"oil3/2,2 < 1 the IVP (1.1) has a global
solution for power k — 1,4,5,..., j(So). To explain this gap we observe
that in the case k = 1 the global result is due to the conservation laws (see
[5, 9]), and holds for arbitrary data. On the other hand, the result for k > 4
is a consequence of the L4L^°-estimate of Strichartz type [37, 15] satisfied
by solutions of the associated linear problem. In particular (1.7a-c)-(1.8) tell
us that for small data in HX(R) the asymptotic behavior of the solution is
controlled by the dispersive part, and hence scattering occurs.

Also worth noting are the works of Bona, Souganidis, and Strauss [7] and
Weinstein [43] where the critical power for stability and instability of the solitary
waves solutions of (1.1) was shown to be k = 2. In the case of the generalized
Korteweg-de Vries both critical values (i.e., that for small data scattering [26]
and the one for the stability of the solitary waves [7, 43]) agree and are equal
to 4.

(c) The results in Theorem 1.2 could be extended to the limiting cases in (1.4)
(i.e., s = 1 if k = 2 and s = ^ if k = 3) by proving the following estimate:

\l/2

(/:
(1.9) /        SUP   \V(t)Uo\¿dx\       <c||M0||i/2,2.

-00 [-1,1] J

However we do not know whether or not inequality (1.9) is true.
(d) Our method of proof combines several estimates concerning the associ-

ated linear problem (1.2) with the contraction principle and the integral equa-
tion form of (1.1)

ÍJo
(1.10) u(t) = V(t)uo-      V(t-x)(ukdxu)(T)dx.

Jo
The main new tool here is the inhomogeneous version of the smoothing effect

of Kato type (1.3). We shall prove (see Theorem 2.1, estimate (2.5) below) that

\DX /Jo
(1.11) \\DX /   V(t-r)F(.,r)dr < C\\F\\LiL2

'L2

(see notations at the end of this introduction).
Thus (1.11) affirms that the gain of derivatives in the inhomogeneous case

is twice that described in (1.3) for the homogeneous problem. For further
comments and references related to the estimate (1.11) and its extension to
higher dimensions in the case of the free Schrödinger group see [25].

The same approach presented here (linear estimates and contraction prin-
ciple) applies to other dispersive models. For example, combining the results
below with some obtained in [26], the IVP for the generalized KdV equation
(1.2) is locally well-posed in all HS(R) with

s > I   if k = 1,
s > \   if k = 2,

s > ±   if k = 3,
s>(k-4)/2k   ifk>4.
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GENERALIZED BENJAMIN-ONO EQUATION 159

It easily follows that the IVP
dtu + ukdxu-dxD^u = 0,        t, x £ R, « G (1, 2),

u(x, 0) = Uo(x),
is locally well-posed in all HS(R) with s > (9 - 3p)/4 for k = 1 (already
proved in [24, Theorem 1.3]), s > (7-3p.)/4 for k = 2, s> (19-9/*)/12 for
k = 3, and so on. In the case studied here p. = 1 the restriction on the size of
the data appears since the gain of derivatives in ( 1.11 ) is equal to 1 (the amount
of derivative in the nonlinear term). Thus to overcome the loss of derivatives in
the integral equation (1.10) one needs to use the estimate (1.11) complemented
with one for the maximal function (i.e., sup_r<r<r |F(Z)mo|) . However, this
quantity cannot be made arbitrarily small by taking T small. When p > 1 in
(1.12) (higher dispersivity) one just needs to estimate \\V(í)uo\\lp([-t,t]) with
p < oo for which the necessary smallness hypothesis holds.

(e) It is easy to see that the group {e"a* J^ satisfies similar estimates to those
discussed in §2 for the group {^(Z)}^ (see [25]). Also our method of proof
works equally well for real or complex valued functions. Therefore the results
in Theorems 1.2-1.3 and Corollary 1.4 extend without major modifications to
the IVP

dtu = id2u + P](u,ü)dxu + P2(u,ü)dxü,
u(x, 0) = uo(x),

where Pj : C2 -» C for j = 1, 2 are polynomials such that

Pj(z\ ,z2)=   Yl  aJcßz<\z2 •
a+ß>2

In particular, when P\(z\, z2) = 2z\, z2 and P2(z\, z2) = z\ we obtain an
improvement in the case of small data of the results of Tsutsumi and Fukuda
[41, Theorem 1].

It is interesting to remark that when the nonlinearity in (1.13) is replaced by
a polynomial P(u, II, dxu, dxu) with

(1.14) P(z\, z2, z3, z4) = Y, a<*za
|a|>4

the results of Theorem 1.3 and Corollary 1.4 still hold in 7/3(R) and extend
to systems. For this general nonlinearity (1.14) local well-posedness for the
IVP (1.3) with small data was already established in [25] (in any dimension).
Thus one has the following unusual situation: for small data global existence of
classical solutions can be established, however, for arbitrary data no existence
result is known.

The plan of this paper is as follows: In §2 we deduce the linear estimates
to be used in the proof of our nonlinear result. Section 3 is concerned with
estimates involving fractional derivatives. The proof of these estimates will be
given in [26]. In §4 we shall prove Theorem 1.2. Finally, Theorem 1.3 and
Corollary 1.4 are established in §5.
Notations.

Hf(x) denotes the Hubert transform of /, i.e., Hf(x) = p. v. £ * / =
(zsgn(£)/(£))v.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



160 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

Dx = (-d2)xl2 and D% = HoD$.
Lps(R) = (\-d2)-sl2LP(R).
if^(K) : the space of functions h such that if 0 G C0°°(R) then <j>h £
HS(R).
For g:Rx[-T, T] -+ R (or C)

IIsIIl;l* = ( /" (fT \g(x, t)\q dt\      dx

in the case T = oo we shall use || • \\lpl« .
CW(I : B) : the space of all weakly continuous functions on an interval
I into a Banach space B .
Cb(R : B) = C(R : B) n L°°(R : 5).

2. Linear estimates
In this section several estimates concerning the unitary group { ̂ (Z)}^ shall

be deduced. As commented above these will be the main tools in the proof of
the nonlinear results in §4. Thus we consider the linear IVP

d,v - dxDxv = 0,        Z, x £ R,
v(x,0) = v0(x),

and
d,w - dxDxw = f(x, t),        t, x £R,

w(x,0) = 0,
whose solutions can be described by the group {^(Z)}?0^ , i.e.,

v(x,t) = V(t)v0(x),     w(x,t)= [ V(t - x)f(-, t)dx
Jo

where V(t)Vo(x) = (S¡ * v0)(x) and
/oo

-oo

First we have sharp versions of the smoothing effect of Kato type described
in the introduction.
Theorem 2.1. There exists a constant Co, C\ such that

aoo \ 1/2
\DlJ2V(t)vo(x)\2dtj     =Co\\v0\\2

for any x £R.
/oo i»oo    /   /«oo \ 1/2

v(t)g(-,t)dt   <c¡        /   |^,z)|2o-z     dx,
■oo 2 ^—oo  \J—oo /

(2.1)

(2.2)

(2.4)

and

(2.5)
sup

x
(/->CíV('-t)/(-'t)¿t)í,í')

/oo    /   />oo \ 1/2
/     \f(x,t)\2dt)     dx.

-oo   \J — oo /

1/2
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Proof. For the proof of (2.3) we refer to [23, Theorem 4.1 ] (see also [24, Lemma
2.1]). For previous estimates of LfQCL20C type we refer to [13, 33, 42].

(2.4) follows from (2.3) by duality.
To obtain (2.5) we take Fourier transform in both variables in (2.2). Without

loss of generality we shall assume f £ S(R2). Thus formally we have

Dxw(x, t) = c T  r e^e^-^M, x)d^dx.

Using Plancherel's theorem one sees that

(£W. tsfi¡f =,(£|/%«_K¡_/({, „«
(/•oo  I    /-oo 2        \

/      /    K(x-y,x)f^(y,x)dy   dx)
J—oo \J—oo /

with /W denoting the Fourier transform of / in the time variable and K(l, t)
the inverse Fourier transform (in the space variable) of the temperate distribu-
tion defined as the principal value of |£|/(t - <j;|<!;|). Hence for x > 0

(2.6) K(l,x) = c ¡™ e^j^r-dn.
J-oo       i-mm

In a neighborhood of the singular points r\ = 1 and n = ±oo the function
\n\(l - n\r¡\)~x behaves like the kernel of the Hubert transform l/n (or its
translates) whose Fourier transform is c sgn(y). Thus a comparison argument
shows that for x > 0 K(l, t) is bounded. Since K(l, x) = -K(-l, -x) we
conclude that K £ L°°(RxR) with norm M.

Combining this bound with Minkowski's inequality, Plancherel's theorem
and (2.6) it follows that

aoo \ 1/2 /   »oo i   /-oo 2       \    '
\Dxw(x,t)\2dt)     =cU      y    K(x-y,x)f«\y,x)dy   dx)

/oo /-oo    /   /-oo \ 1/2
Wf(t)(y,-)hdy = cM        /    |/(y,z)|2o-z      dy

■oo J—oo \J—oo /

which is the desired estimate. However

/OO        /»OO                                        1/     eine^-—/(í,T)</Trfí
-00./-00                     T — <=KI

may not satisfy the initial condition in (2.2). Thus we need to consider

(2.7) w(x,t) = w(x,t)-V(t)w(x,0)
where

= c r eixi ( ¡°° fW(£, s) sgn(s)eist^ ds] de,
J—oo \J — oo /

/oo V(s) sgn(s)/(x, -s) ds.
-oo
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162 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

From (2.4) we infer that
Dlx/2w(x,0)£L2(R),

and by (2.3) that w(x, t) the solution of (2.2) defined in (2.7) satisfies the
estimate (2.5). For a more detailed proof we refer to [26].

To interpolate the estimates (2.3)-(2.4) we shall need the following version
of them.
Corollary 2.2.

aoo \ 1/2
\Dx/2+iaV(t)v0(x)\2dt)     =c0\\v0\\2

for any x £ R with Co independent of a and

(£>,+fa(ísup    /     \Dx+,a( /   V(t-x)f(-,x)dx
2       \ 1/2

dt\

1/2
(2.9)

/oo     /   />oo \  l/¿
(j     \f(x,t)\2dt)      dx

where c\(a) depends on a but C\(a) - 0(\a\k) (for some k £ N) as \a\ tends
to infinity.
Proof. (2.8) follows directly from (2.3).

To prove (2.9) as in (2.6) for x > 0 we consider

A combination of the result 6.11 in [34, p. 51] with the comparison argument
used in the proof of (2.5) shows that Ka(l, t) e L°°(R2) with the norm depend-
ing on a in the appropriate manner. Once this bound has been established the
rest of the proof follows the argument used to obtain (2.5).   D

Next we state the generalized one-dimensional version of a Strichartz estimate
in [37] due to Ginibre and Velo [17].
Theorem 2.3. Let p £ [2, oo] and q be such that 2/q = 1/2 - \/p. Then

aoo \ 1/0
\\V{t)v0\\$dtj     <c||t;o||2

and
( r°° Il r' "   \x,q      ( f°° •   \l/9'(2.11)    U     |yo V(t-x)f(.,x)dx    dt\     <C[J     ||/(-,Z)||«,a'zJ

where \/p + \/p' = l/q + \/q' = 1.
Proof. (See [17, p. 377].)   G

To complement the previous estimates we need to consider the maximal
function associated with the group {^(Z)}^ i.e., sup, V(t). This idea was
already used (in a nonoptimal manner) by Ginibre and Tsutsumi [15] in their
work on uniqueness of solutions of the generalized KdV equation.
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Theorem 2.4.

(2.12)

and

(2.13)

aoo \ 1/4
sup    \V(t)vo(x)\4dx)     <c||Z)yS;ol|2,

-oo —oo<«oo /

IT     sup      fv(t-x)f(-,x)dx   dx)
W-oo -oo<«oo   Jo I

(   roo    /   ,00 x4/3 \ 3/4

<cU     (J     \Dx/2f(x,t)\dt)     dx)

1/2

Moreover for s > ¿ and p>\

aoo \ l/¿
sup \V(t)vo(x)\2dx)     <c(l + 7-)"||vo||,.2.

-oo0<(<r /

Proof. The estimate (2.12) is due to Kenig and Ruiz [27] (for a different proof
see [23, Theorem 2.5]). It is interesting to remark that (2.12) does not hold
with Dsx , s < 5 , instead of DXJ2 in its right-hand side (see [27, 42]).

To obtain (2.13) one needs to combine the result in [23, Theorem 2.1 (2.5)]
with the method used in [23, Theorem 2.5] to prove (2.12). For the details of
this proof we refer to [26].

The inequality (2.14) is due to Vega [42].   D

Corollary 2.5. For any a G R

<2-15)      (/
and

X) \ 1/4
sup    \DiaV(t)vo(x)\4dx)     < c\\Dlx/4vo\\2

oo —oo<i<oo /

(2.16)
I [X     sup     Dia( fv(t-x)f(-,x)dx)    dt)
\J-oo -oo<t<oo \Jo / I

< c(a) U°° (y_°° \Dxl2f(x, t)\ dt}      dx

1/2

3/4

Proof. For the proof of (2.16) we refer to [23].   D
Interpolating the previous estimates via Stein's theorem on analytic families

of operators [35] we obtain the inequalities to be used in §§4, 5.

Theorem 2.6. For any d £ [0, 1] and T G (0, oo),

(2.17) \\DxW-i)/4V(t)Vo\\L<«<-e)Lye

(2.18)

<c||t>0||2,

*"*({ V(t-x)f(.,x)dx
) r4/(l-9).2/9

< cTix-°y2\\Dxl*f\\Lm+e)L, ,

(2.19) D^'2(jj(t-x)f(.,x)dx) <c
r 4/(1-9). 2/Í

r 4/(3+9), 2/(2-9)
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Moreover the estimates (2.18)—(2.19) still hold with Dx instead of Dx if
one replaces / by Hf in their right-hand sides.

We recall the notation || • IIl'l«

Up

w-(£(/>*. or-*)**)
for Tg(0, oo].

Proof. (2.17) follows from (2.8), (2.15), and the Three Lines Theorem [4].
Similarly, (2.18) can be deduced from (2.9), (2.15), and Holder's inequality.
Finally (2.19) can be deduced from (2.9) and (2.16). Notice that for 6 = \,
(2.19) is equal to (2.11) with p = q = 6.   G

3. Leibniz's formula and the chain rule
In this section we shall state the inequalities needed in §§4 and 5 in the proof

of our nonlinear results. Roughly speaking they are vector valued versions of
the scalar estimates established by Kato and Ponce [22], Christ and Weinstein
[10], and Taylor [39] (for previous results in this direction see Strichartz [37,
Theorem 2.1, Chapter 2]). As in those works the proof is based on ideas of
Coifman and Meyer [11] and Bony [8]. In this case we shall combine them
with the Hardy spaces results of Fefferman and Stein [14], the tent spaces of
Coifman, Meyer, and Stein [12] and vector valued inequalities due to Benedeck,
Calderón, and Panzone [2] and Rubio, Ruiz, and Torrea [31].

For the details of the proof we refer to [26].
Weassume /, g : Rx[-7\ T] -> R (or C) with T £ (0, oo] and F : R — R

(or F : C -► C) with F £ CX(R) and F(0) = 0.
Lemma 3.1. Let p, q £ (1, oo) and a G (0, 1). Then for any T G (0, oo]

\\D°(fg)-fDag-gDaf\\LiL,T
{3A) <c\\^f\\^L^^g\\L^

where p,■■, q,■ £ ( 1, oo), i" = 1,2, with
1      J_      1_ 1      J_     J_
P~ Pi     P2 ' q ~ q\     Q2 '

and a¡ g [0, a] such that a\ + a2 = a.
The inequality (3.1) still holds in the cases

(3.2a) q = l    with a, G (0, a)

and
(3.2b) (p,q) = (1,2).

Moreover in all these cases the estimate (3.1) remains valid with Dx instead of
Dx.
Lemma 3.2. Let p, q £ (1, oo) and a G (0, 1). Then

(3.3) \\DaxF(f)\yxL,T < c\\F'(f)\\L«L<> \\Daxf\\LnLn
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where p\, p2, q2 £ (1, oo), q\ £ (1, oo] with

111 j    1       1       1- =-1-and   - - —I-.
P     Pi     P2 Q     qx     q2

Moreover the estimate (3.3) still holds with Dx instead of Dx .

4. Proof of Theorem 1.2
For simplicity in the exposition we shall only consider the case k > 4. The

proof when k — 2 (k = 3 respectively) follows the same argument, but with the
estimate (2.14) instead of (2.12) (the LxLf estimate obtained by interpolating
(2.12)-(2.14) instead of (2.12), respectively).

Without loss of generality we restrict ourselves to the most interesting case
s = 3

Thus for uo £ H3/4(R) with 11«oil3/4,2 < ^ (to be determined below) we
define OM0(v) = 0>(v) = u as the solutions of the linear IVP

(4.1) dtu - dxDxu = -vkdxv,     u(x, 0) = Uo(x),

with v £ Xf where

Xf = {v:Rx[-T,T]^R\t]T(v)<a, kT,e{v) + ¿T,e(Hv) < a,  0G[O,1]}
where the following notation has been introduced:

(4.3) nT(v)=   sup  ||«(i)||3/4,2,
l-T,T]

and for 6 £ [0, 1],

(4.4) XTte(v)~\\Dxe"v\\Lm-e)l}le.

As mentioned above, for T £ (0, 00) and a G [0, 1]

\\f\\uxL\= f/~  (jf l/(*'í)|,rfí)       dx)       ' Daxh(x) = c(\^h(^)Y

and
Daxh(x) = c'(sgn(^)^|4(^))v = c"HDaxh(x)

with H denoting the Hubert transform.
Our aim is to show that there exist a and T (depending only on k and

II"oil3/4,2 in the appropriate manner) such that if v £ Xf then O„0(v) =
<P(u) G Xj and the map Owo : Xj —► Xj is a contraction.

By definition

(4.5) <D(t;)(0 = ®Uo(v)(t) - V(t)u0 - I V(t - x)(vkdxv)(x) dx.
Jo

A combination of (2.17)-(2.18) with the notation in (4.4) yields the estimates

(4.6) Ar>fl(«D(t;)) < clNb/4,2 + cTV-W\\D1J4(vkdxv)\\I2l(1+«Li

and
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(4.7) XTtg(H<l>{v)) < c||Mo||3/4,2 + cT^-^2\\Dxl\vkdxV)\\Lfue)l?T

for any 0e[O, 1].
Now using (3.1) with p G [1,2], Holder's and Sobolev's inequalities we

obtain the following string of inequalities:
(4.8)

\\Dx'\vkdxv)\\LWT

< c\\DlJ\vkdxv) - vkDxl4dxv - Dlx/4(vk)dxv\yxL2T

+ c||^fc||L^||Bi/4U||LocL2+C||Z)y\^)||L;,L,„||^i;||L,0^

< c{\\v\\kk   J\D5J4v\\L?L2 + H^-'llipiccIl^vIliiMollÖxVll^^}

< ci (sup  sup   \v\k»-4)     \\v\\4/?Loa\\D5J4v\\LOOLs/2
1   y   X    l-T,T] J L"LT L* LT

+ fsup sup It^-1)*-"]      ||w||4^||z.4z.?=II^/4^IIl3L,o||ö^||l20l54
\  x   l-T,T] J x  T x  T '    r    I

<cl(   SUP    ||^(Z)||3/4,2j (XT,0{V))4IPXTA(HV)

.k-\-Alpi \
+ Í  sup^ ||«(i)||3/4,2j (Ar,o(«))4/Ä(Ar.i/5(»))(Ar,4/3(v)) \

<c(AT(v))k+x =D

where

(4.9) Ar(w) = maxi   sup   ||«(r)ll3/4,2 ;   sup XT,e(v);  sup lT,e(Hv) )
\[-t,t\ o<e<i o<e<i J

and
1     j_    J_     j_     1     _1_
p ~ px + 20 ~ p2 + 5 + 20 '

A similar argument shows that for any p £ [1, 2]

(4.10) \\Dx/4(vkdxv)\\L,L2T<D.

From (4.6)-(4.10) one sees that

(4.11) C sup XT „(*(«)) + sup XT e(H<b(v)) < c\\uohn 2 + c(l + T)D.
o<e<i o<e<i
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On the other hand, inserting (2.4) in (4.5) it follows that
(4.12)

SUP    ||0(w)(Z)||3/4,2
[-T, T]

<c sup  ||4»(ü)(0ll2 + c sup  ||^/4<D(w)(Z)||2
[-T,T] l-T,T]

rT   /   roo \  1/2
<c||«o||2 + c/    f /     \vkdxv\2dx)     dt + cD

<c'\\uoh + cTx'2 [ /      /   \vkdxv\2dtdx)     + cDI r ¡T\vkdxi
\J-oo JO

< c'\\uo\\2 + cTxl2\\vk\\L-x)L\v\\dxv\\ lop s/i +cD
x     T ^x     ^T

/ \k-9/S

< c\\u0\\2 + cT3'5 ( sup sup  |v| ] (XT o(v))9/5(XT 4/5(v)) + cD
\  x   l-T,T]       J

<c\\uoh/4,2 + c'(l + T)D.

Estimates (4.6)-(4.12) lead to

(4.13) Ar(<D(ü)) < c||Mo||3/4,2 + c(l + T)(AT(v))k+x.

Fixing

(4.14) a = 2c\\uoh/4,2 = 2cô0<2câ,

it follows that ®(Xf) ç Xf whenever

(4.15) 2(\ + T)ckôGk<\.

The same argument used above proves that for every v , w £ Xf with a and
T as in (4.14)-(4.15) respectively one has

(4.16) A(<D(u) -<D(u>))< 2(1 + T)ckS^A(v- 2) < x¿A(v-w).

Therefore 4> : Xf —* Xf is a contraction.
Similarly we have that for V £ (0, 7") there exists ö'0 > 0 such that if

wo G //3/4(R) with ||tü0 - «olb/4,2 < ¿ó there the solution Owo(w) -w of the
integral equation form of the IVP (1.10) satisfies

(4.17) w£Xf,
and

(4.18) A(u-w) <c||«o- woh/4,2-

Thus we have proven that there exists ô > 0 such that for w0 G H3/4(R)
with 11«o||3/4,2 < S the integral equation

(4.19) u(t) = V(t)u0 - [ V(t - x)(ukdxu)(x) dx
Jo

has a unique solution in the class Xf with T - T(\\uoh/4t2', k) > 0. Further-
more the map wo —► «(Z) is locally Lipschitz.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



168 C. E. KENIG, GUSTAVO PONCE, AND LUIS VEGA

To complete the proof of Theorem 1.2 we shall establish the persistence
property (i.e., u £ C([-T, T] : H3/4)) and the uniqueness result in a class
larger than Xf, i.e., Xf .

It suffices to show that the map Z -♦ u(t) from [-T, T] into H3/4(R) is
continuous at zero.

Using the smallness assumption on the data w0 and the estimates (4.6)-(4.7)
(with 6 = 1) and (4.8) it follows that

Xr,i(u)+ Xvt!(Hu) < 2cXT,,i(V(t)uo) + o(l)

as V tends to zero.
A simple argument shows that Xj\i(V(t)uo) = o(l) as T tends to zero,

therefore

(4.20) Xv A(u) + XT, A(Hu) = o(\)

as V tends to zero. Finally using (4.20) in the integral equation

u(t) - u0 = V(t)uo - u0 - /  V(t-x)(ukdxu)(x)dx
Jo

together with the group properties and the estimates (4.12)-(4.8) we obtain the
desired result.

Now let u £ X^,nC([-T, T] : H3'4) with a' > a be a solution of the integral
equation (4.19) in the time interval [-To, To] where To = mm^T.T,}. By conti-
nuity and (4.14) there exists r. G (0, To) such that supr_ri ^ ||w(Z)||3/4,2 < a ■

A similar argument to that used in (4.20) shows that

XT, te(u) + Xr ,e(Hü) = o(\)

as T tends to zero (uniformly in d G [0, 1]). Therefore for sufficiently small
T2 it follows that u G Xf which implies that u = u in Rx[-T2, T2]. Reapply-
ing this argument we extend this uniqueness result to the time interval [- T, T].

5. Proofs of Theorem 1.3 and Corollary 1.4
The proof of Theorem 1.3 is similar to that explained in the previous section

for Corollary 1.4. In fact, since local existence is known (Theorem 1.2) one just
needs to sketch the argument used to obtain an a priori estimate which allows
us to extend the local solution to a global one.

We shall restrict ourselves to the most interesting case s = 1.   Thus we
introduce the space
(5.1)

Za=|t):Rxl-»E| n(v) <a,  sup (ve(v) + ve(Hv)) < a and ß(v) < a \[ o<e<i J
where

t](v) = SUp||ü(í)||i,2, MV) = \\DX6I2V\\   m-e)   2/9

and

/i(«)=(/j|t;(->0ll4xJ^)
1/4
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By Theorem 1.2 there exists «(•) defining in the time interval [-T, T] such
that

(5.2) u(t) = V(t)u0 - f V(t- x)(ukdxu)(x) dx.
Jo

From (2.10) with p - oo we find the a priori estimate

/oo ||(K*3*K)(T)f|2rfT
-oo

/oo

-oo-oo

<c\\uo\\2 + c(r,(u)r-i(ß(u))4

More generally, the inequalities (2.17)—(2.19) together with the notation

\r](v);A(v) = sup { rj(v) ;   sup (ug(v) + ve(H(v)) ; ß(v) \
o<0<i J

and the argument used in the previous section yield the a priori estimate

A(M)<c||Mo||i,2 + c(A(M))*+1.

Hence, there exists ö > 0 and M > 0 such that for u0 £ HX(R) with
II "oII 1,2 < S one has that

(5.3) A(u)<M.

Once that the formal estimate (5.3) has been established the rest of the proof
of Theorem 1.3 uses a combination of standard arguments and those in the
previous section. Therefore it will be omitted.

Finally we consider Corollary 1.4. First we shall prove that

(5.4) lim   / V(-x)(ukdxu)(x)dx
'-»±00 Jo

exists in the //'-norm. Thus

|/   V(-X)(ukdxu)(x)dx\\    <   [   ||tt*ô»K(T)||2</T
\Jf 2       Jt<

(5-5)
<csup||M(Z)||Î723/'||W(T)||^a'T = £(Z,z').

(t,n Jt>

From (1.7a)-(1.7b) it follows that E(t, t') tends to zero as t,t' tend to ±oo.
Now combining (2.4) with (3.1), (3.2) we obtain the following string of in-

equalities:
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L  /   V(-x)(ukdxu)(x)dl
I     Jv

= k>y2 / K(-T)Z)i/2(M*ôx«)(T)   <c/      / izjyV^«)!2^     ¿*
II Jf 2 -'-co  \./f' /
/oo    /   pt \ 1/2 /-oo    /   rt   ~ \ '/2

I /  \ukDx/2u\2dx)     dx + c        (     \DlJ2(uk)dxu\2dx)     dx

(/•oo   /   rt   ~ \ 2/23        N

/^(jM^'V)!12^)     ¿*

1/2

23/24

/    ( / |¿Í/4M|12/5a"T)    o-x
V-oo Vf

<cl r sup |w(x, T)|4ax ] sup ||w(Z)||í-24sup f / |¿'/2u|2di
\J-oo(t,t') I (Z,f) '        *     Vf

1/2

+ <:
'r V/     sup \u(x, x)\4dx\     sup ||zz
,J-oo(t,t') ) (t,t')

<t)\\ fc-4
1,2

UT  í\Dx/2u\6dxdx)     I i°° (f\dxu\3dx)   dx

I r°° ( r' ~ \2/5      \5/24
+ (¿~(¿l¿iVVt)  ¿JC)

-(/K/J5-""1'2""1)'"^
10        \ 1/24"

Thus from (5.3) and an argument similar to that used in (4.20) we can conclude
the

\dx f V(-x)(ukdxu)(x)dx
Jf

tends to zero as t, t' tend to ±oo . Hence (5.4) has been established.
Defining

Lcoo+ = Uo+        V(-x)(ukdxu)(x)dx

and

coo- = u0+        V(-x)(ukdxu)(x) dx
J—oo

the same argument given for (5.4) yields (1.8) (for details see [36]).
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