On the generalized decomposition numbers of the symmetric group

Dedicated to Professor Iyanaga on his 60th birthday

By Masaru OsimA

(Received Aug. 30, 1967)

Introduction

Let G be a group of finite order and let p be a fixed prime number. We consider the representations of G in the field Ω of the g-th roots of unity. Then every absolutely irreducible representation of G can be written with coefficients in Ω. Let \mathfrak{p} be a prime ideal divisor of p in Ω and let $\mathfrak{o}_{\mathfrak{p}}$ be the ring of all \mathfrak{p}-integers of Ω, and Ω^{*} the residue class field of $\mathfrak{o}_{p}(\bmod \mathfrak{p})$. We denote by α^{*} the residue class of $\alpha \in \mathfrak{p}_{p}$.

Let $\zeta_{0}=1, \zeta_{1}, \cdots, \zeta_{m-1}$ be the (absolutely) irreducible characters of G and let $\varphi_{0}=1, \varphi_{1}, \cdots, \varphi_{n-1}$ be the modular irreducible characters of G for p. Then we have for a p-regular element y in G

$$
\begin{equation*}
\zeta_{i}(y)=\sum_{\kappa} d_{i \kappa} \varphi_{\kappa}(y) \tag{1}
\end{equation*}
$$

where the $d_{i \kappa}$ are non-negative rational integers and are called the decomposition numbers of G. The irreducible characters ζ_{i} and the modular irreducible characters φ_{κ} are distributed into a certain number of blocks $B_{0}, B_{1}, \cdots, B_{s-1}$ for p, each ζ_{i} and each φ_{κ} belonging to exactly one block B_{σ}. In (1) we have $d_{i \kappa}=0$ for $\zeta_{i} \in B_{\sigma}$ if φ_{κ} is not contained in B_{σ}.

In the following we denote by x the p-element of G. Let $\varphi_{0}^{x}=1, \varphi_{1}^{x}, \cdots$, φ_{r-1}^{x} be the modular irreducible characters of the normalizer $N(x)$ of x in G. We have for a p-regular element y in $N(x)$

$$
\begin{equation*}
\zeta_{i}(x y)=\sum_{\kappa} d_{i \kappa}^{x} \varphi_{k}^{x}(y) \tag{2}
\end{equation*}
$$

where the $d_{i \hbar}^{x}$ are the algebraic integers and are called the generalized decomposition numbers of G. We have $d_{i \kappa}=d_{i \kappa}^{1}$ for $x=1$. Let us denote by $B^{(\sigma)}$ the collection of all blocks \tilde{B}_{τ} of $N(x)$ which determine a given block B_{σ} of G. In (2) we have $d_{i k}^{x}=0$ for $\zeta_{i} \in B_{\sigma}$ if φ_{k}^{x} is not contained in $B^{(\sigma)}$ ([1], [3]).

Recently A. Kerber [5] proved the following
Theorem 1. The generalized decomposition numbers of the symmetric group
are rational integers.
He also determined the generalized decomposition numbers of the symmetric group S_{n} for $p=2$ and $n \leqq 9$. In section 1 we shall give a simpler proof of Theorem 1. By our method we can determine directly the generalized decomposition numbers of S_{n}. In section 2 we shall obtain the necessary and sufficient condition that two irreducible characters ζ_{i}^{x} and ζ_{j}^{x} of $N(x)$ belong to the same block. As is well known, the block of S_{n} is determined by its p-core ([4], [6], [7], [9]]. Similarly, we shall prove that the block of $N(x)$ is determined by its p-core. The aim of section 3 is to find the block of S_{n} which is determined by a given block of $N(x)$. We obtain the following

Theorem 2. Let Young diagram $\left[\alpha_{0}\right]$ be the p-core of the block \tilde{B}_{τ} of $N(x)$. Then \widetilde{B}_{τ} determines the block of S_{n} with the same p-core $\left[\alpha_{0}\right]$.

Let $B^{(\sigma)}$ be the collection of all blocks \tilde{B}_{τ} which determine the block B_{σ} of S_{n}. Then Theorem 2 implies that every $B^{(\sigma)}$ consists of one block of $N(x)$.

1. Proof of Theorem 1.

Let x be a p-element of S_{n} which consists of a_{i} cycles of length $p^{i}(0 \leqq i \leqq k$, $a_{i} \geqq 0$). The normalizer $N(x)$ of x in S_{n} is the direct product of its subgroups $S\left(a_{i}, p^{i}\right)$:

$$
\begin{equation*}
N(x)=S\left(a_{0}, 1\right) \times S\left(a_{1}, p\right) \times \cdots \times S\left(a_{k}, p^{k}\right) \tag{3}
\end{equation*}
$$

where the $S\left(a_{i}, p^{i}\right)$ are called the generalized symmetric groups ([8]). $S\left(a_{i}, p^{i}\right)$ is the semi-direct product of the normal subgroup Q_{i} of order $\left(p^{i}\right)^{a_{i}}$ and the subgroup $S_{a_{i}}^{*}$ which is isomorphic with the symmetric group $S_{a_{i}}$:

$$
\begin{equation*}
S\left(a_{i}, p^{i}\right)=S_{a_{i}}^{*} Q_{i}, \quad S_{a_{i}}^{*} \cap Q_{i}=1, \quad S_{a_{i}}^{*} \cong S_{a_{i}} . \tag{4}
\end{equation*}
$$

Evidently we have $S\left(a_{0}, 1\right)=S_{a_{0}}$. Since $S\left(a_{i}, p^{i}\right) / Q_{i} \cong S_{a_{i}}^{*}$, (4) implies that every modular irreducible character of $S\left(a_{i}, p^{i}\right)$ is given by the modular irreducible character of $S_{a_{i}}$. Let us denote by Φ_{n} and Φ^{x} the matrices of the modular irreducible characters of S_{n} and $N(x)$ respectively. Since the modular irreducible character φ^{x} of $N(x)$ is the product of the modular irreducible characters φ^{i} of $S_{a i}$:

$$
\begin{equation*}
\varphi^{x}=\varphi^{0} \varphi^{1} \cdots \varphi^{k}, \tag{5}
\end{equation*}
$$

we see that Φ^{x} is the Kronecker product of $\Phi_{a_{i}}$:

$$
\begin{equation*}
\Phi^{x}=\Phi_{a_{0}} \times \Phi_{a_{1}} \times \cdots \times \Phi_{a_{k}} . \tag{6}
\end{equation*}
$$

Lemma 1. Let x be a p-element of S_{n}. Then the modular irreducible characters $\varphi^{x}(y)$ of $N(x)$ are rational integers.

Proof. As is well known, the irreducible characters $\zeta_{i}(g)$ of S_{n} are rational
integers. Since the modular irreducible characters $\varphi_{k}(y)$ of S_{n} can be expressed by the irreducible characters $\zeta_{i}(y)$ of S_{n} (restricted to p-regular elements) with integral coefficients, $\varphi_{k}(y)$ are rational integers. This, combining with (5), yields the proof of Lemma 1.

Let g be an element of S_{n}. We then have $g=x y=y x$ where x is a p element and y is a p-regular element. The p-element x is called the p-factor of g. Let $y_{0}=1, y_{1}, \cdots, y_{t-1}$ be a complete system of representatives for the p-regular elements in $N(x)$ such that they all lie in different classes of $N(x)$ but that every p-regular element in $N(x)$ is conjugate to one of them. Then the $x y_{i}(i=0,1, \cdots, t-1)$ consist of a complete system of representatives for the classes of G which contain an element whose p-factor is conjugate to x in G. We set

$$
\begin{equation*}
Z^{x}=\left(\zeta_{i}\left(x y_{j}\right)\right) . \tag{7}
\end{equation*}
$$

We then have from (2)

$$
\begin{equation*}
Z^{x}=D^{x} \Phi^{x} \tag{8}
\end{equation*}
$$

where $D^{x}=\left(d_{i k}^{x}\right)$. Hence

$$
\begin{equation*}
D^{x}=Z^{x}\left(\Phi^{x}\right)^{-1} \tag{9}
\end{equation*}
$$

This, combining with Lemma 1, shows that the $d_{i \kappa}^{x}$ are rational numbers. Since the $d_{i k}^{x}$ are algebraic integers, we see readily that the $d_{i \kappa}^{x}$ are rational integers. This completes the proof of Theorem 1.

As an example we shall calculate the $d_{i k}^{x}$ of S_{6} for $p=2$ and $x=(12)$ (34)
(56) (see [5] p. 45). Since $N(x)=S(3,2)$, we have by (6)

$$
\Phi^{x}=\Phi_{3}=\left[\begin{array}{rr}
1 & 1 \\
2 & -1
\end{array}\right] .
$$

We have for $y_{0}=1$ and $y_{1}=(135)(246)$

$$
Z^{x}=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1 \\
3 & 0 \\
-2 & 1 \\
-3 & 0 \\
0 & 0 \\
3 & 0 \\
2 & -1 \\
-3 & 0 \\
1 & 1 \\
-1 & -1
\end{array}\right] .
$$

Hence we can obtain from (9)

$$
D^{x}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 0 \\
1 & 1 \\
0 & -1 \\
-1 & -1 \\
0 & 0 \\
1 & 1 \\
0 & 1 \\
-1 & -1 \\
1 & 0 \\
-1 & 0
\end{array}\right] .
$$

2. The blocks of characters of the normalizer $N(x)$.

First we shall mention the following
Lemma 2. Two irreducible characters of S_{n} belong to the same block if and only if they have the same p-core.

This fact was first conjectured by Nakayama [6] and was proved by Brauer and Robinson jointly [4].

Let ζ^{x} be an irreducible character of $N(x)$. According to (3), we have

$$
\begin{equation*}
\zeta^{x}=\zeta^{0} \zeta^{1} \cdots \zeta^{k} \tag{10}
\end{equation*}
$$

where ζ^{i} denotes the irreducible character of $S\left(a_{i}, p^{i}\right)$. In particular, ζ^{0} may be considered as the irreducible character of $S_{a_{0}}$.

Lemma 3. Two irreducible characters

$$
\begin{aligned}
\zeta_{i}^{x} & =\zeta_{i_{0}}^{0} \zeta_{i_{1}}^{1} \cdots \zeta_{i_{k}}^{k} \\
\zeta_{j}^{x} & =\zeta_{j_{0}}^{0} \zeta_{j_{1}}^{1} \cdots \zeta_{j_{k}}^{k}
\end{aligned}
$$

of $N(x)$ belong to the same block if and only if two characters $\zeta_{i_{0}}^{0}$ and $\zeta_{j_{0}}^{0}$ of $S_{a_{0}}$ belong to the same block of $S_{a_{0}}$.

Proof. For $i>0, S\left(a_{i}, p^{i}\right)$ has only one block ([11], Lemma 10). Hence we readily obtain the proof of Lemma 3 .

We shall denote by B_{τ}^{0} the block of $S_{a_{0}}$ which contains $\zeta_{i_{0}}^{0}$. Then the block of $N(x)$ which contains ζ_{i}^{x} is completely determined by B_{τ}^{0}. Hence we shall denote by \tilde{B}_{τ} this block of $N(x)$.

Let Young diagram $\left[\alpha_{0}\right]$ be the p-core of the irreducible character $\zeta_{i_{0}}^{0} \in B_{\uparrow}^{0}$. Then we shall call $\left[\alpha_{0}\right]$ the p-core of the irreducible character $\zeta_{i}^{x} \in \tilde{B}_{\tau}$. Then Lemma 2, combining with Lemma 3, yields

Theorem 3. Two irreducible characters of $N(x)$ belong to the same block if and only if they have the same p-core.

Theorem 3 is reduced to Lemma 2 for $x=1$. We have (cf. [5], p. 49).
Corollary 1. $N(x)$ has only one block if $a_{0} \leqq 1$ for $p \neq 2$ and $a_{0} \leqq 2$ for $p=2$.

Corollary 2. Let B_{0} be the first block of S_{n}, that is, the block which contains the principal character $\zeta_{0}=1$. Then $\zeta_{i}(x y)=0$ for $\zeta_{i} \oplus B_{0}$ if $a_{0} \leqq 1$ for $p \neq 2$ and $a_{0} \leqq 2$ for $p=2$.

We can also obtain Corollary 2 by using the Murnaghan-Nakayama recursion formula.

3. Proof of Theorem 2.

Let G be a group of finite order, and let $\Gamma=\Gamma(G)$ denote the group ring of G over Ω. We denote by $\Lambda=\Lambda(G)$ the center of Γ. Let K_{α} be a class of conjugate elements in G. If necessary, we denote by the same notation K_{α} the sum of all elements in K_{α}. Then $K_{1}, K_{2}, \cdots, K_{m}$ form a basis of Λ and we have

$$
\begin{equation*}
K_{\alpha} K_{\beta}=\sum_{r} a_{\alpha \beta r} K_{r} \tag{11}
\end{equation*}
$$

where the $a_{\alpha \beta r}$ are non-negative rational integers.
Let H be a subgroup of G of an order $p^{h}, h \geqq 0$, and let $C(H)$ be the centralizer of H in G. We consider the subgroup $N=H C(H)$. If we set $K_{\alpha}^{0}=K_{\alpha}$ $\cap C(H)$, then either $K_{\alpha}^{0}=0$ or K_{α}^{0} is a sum of complete classes of N. We obtain from (11)

$$
\begin{equation*}
K_{\alpha}^{0} K_{\beta}^{0}=\sum_{\gamma} a_{\alpha \beta \gamma} K_{\gamma}^{0} \quad(\bmod p) \tag{12}
\end{equation*}
$$

The classes K_{α} with $K_{\alpha}^{0}=0$ form the basis of an ideal T^{*} of the center Λ^{*} of the modular group ring Γ^{*}. The $K_{\alpha}^{0} \neq 0$ can be considered as the basis of a subring R^{*} of the center $\Lambda^{*}(N)$ of the modular group ring $\Gamma^{*}(N)$. According to (12) we have (2])
(13)

$$
\Lambda^{*}(G) / T^{*} \cong R^{*}
$$

Let B be a block of G. We set

$$
\begin{equation*}
\eta=\sum_{\alpha=1}^{m} b_{\alpha} K_{\alpha} \tag{14}
\end{equation*}
$$

where
(15)

$$
b_{\alpha}=\sum_{\zeta_{i} \in B} \zeta_{i}(1) \bar{\zeta}_{i}\left(g_{\alpha}\right) / g(G)
$$

Here $g_{\alpha} \in K_{\alpha}$ and $g(G)$ denotes the order of G. Then we see that $b_{\alpha} \in \mathfrak{o}_{\mathfrak{p}}$ and

$$
\begin{equation*}
\eta^{*}=\sum_{\alpha=1}^{m} b_{\alpha}^{*} K_{\alpha} \tag{16}
\end{equation*}
$$

is a primitive idempotent of Λ^{*} corresponding to $B([10])$. We have $b_{\alpha}^{*}=0$ for any p-singular class K_{α}. Let \mathfrak{D} be the defect group of B. We denote by \mathfrak{F}_{α} the defect group of K_{α}. If K_{α} is a p-regular class such that \mathfrak{F}_{α} is not con-
jugate to some subgroup of \mathfrak{D}, then we have $b_{\alpha}^{*}=0$. On the other hand, there exists a p-regular class K_{β} with the defect group $\mathfrak{S}_{\beta} \cong \mathscr{D}$ such that $b_{\beta}^{*} \neq 0$ and

$$
\begin{equation*}
w_{i}\left(K_{\beta}\right)=g(G) \zeta_{i}\left(g_{\beta}\right) / n_{\beta} \zeta_{i}(1) \not \equiv 0 \quad(\bmod \mathfrak{p}) \tag{17}
\end{equation*}
$$

where n_{β} denotes the order of the normalizer $N\left(g_{\beta}\right)$ of g_{β} in G.
In the following we denote by η_{σ}^{*} the primitive idempotent of Λ^{*} corresponding to B_{σ}. If $\eta_{\sigma}^{*} \in T^{*}$, then the element $\tilde{\eta}_{\sigma}^{*}$ of R^{*} corresponding to η_{σ}^{*} in (13) is a sum of primitive idempotents of the center $\Lambda^{*}(N)$. Hence the collection $B^{(\sigma)}$ of the blocks \widetilde{B}_{τ} of N corresponds to $\tilde{\eta}_{\sigma}^{*}$. If \widetilde{B}_{τ} is contained in $B^{(\sigma)}$, then we shall say that B_{σ} is determined by \tilde{B}_{τ} of $N([2])$. If $w_{i}\left(K_{\alpha}\right)$ is formed by means of a character ζ_{i} of B_{σ} while $\tilde{w}_{j}\left(\tilde{K}_{\beta}\right)$ is formed in an analogous. manner by means of a character of \tilde{B}_{τ}, then we see by (13) that

$$
\begin{equation*}
w_{i}\left(K_{a}\right) \equiv \sum_{\beta} \tilde{w}_{j}\left(\tilde{K}_{\beta}\right) \quad(\bmod \mathfrak{p}) \tag{18}
\end{equation*}
$$

Here \tilde{K}_{β} ranges over all classes of N which lie in K_{α}.
Let x be a p-element of S_{n} as in section 1 . Let \tilde{K}_{α} be a p-regular class. of $S_{\alpha_{0}}$. Then we see by (3) that \tilde{K}_{α} is also a class of $N(x)$. Since $S\left(a_{i}, p^{i}\right)$, $i>0$ has only one block, if $\tilde{w}_{i}\left(\tilde{K}_{\alpha}\right)$ is formed by means of a character ζ_{i}^{x} while $\bar{w}_{i_{0}}\left(\tilde{K}_{\alpha}\right)$ is formed by means of a character $\zeta_{i_{0}}$ in Lemma 3, then

$$
\begin{equation*}
\tilde{w}_{i}\left(\tilde{K}_{\alpha}\right) \equiv \bar{w}_{i_{0}}\left(\tilde{K}_{\alpha}\right) \quad(\bmod \mathfrak{p}) \tag{19}
\end{equation*}
$$

The defect group of B_{σ} of S_{n} is conjugate to the p-Sylow-subgroup of $S(\beta, p)$ for a suitable β where $n=a+\beta p([4])$. Hence we may denote by $\mathfrak{D}^{(\beta)}$, the defect group of B_{σ}. The defect of B_{σ} is given by

$$
\begin{equation*}
d_{\beta}=\beta+e(\beta!) . \tag{20}
\end{equation*}
$$

Here $e(m)$ denotes the exponent of the highest power of p dividing an integer m. Let K_{α} be the p-regular classes with the defect group $\mathscr{S}_{\alpha} \cong \mathfrak{D}^{(\beta)}$. Then we see easily that K_{α} contains the p-regular element g_{α} of S_{a} such that the order of the normalizer $N\left(g_{\alpha}\right)$ in S_{a} is prime to p.

Now we shall give the proof of Theorem 2. We have from (3)

$$
\begin{equation*}
n=\sum_{i=0}^{k} a_{i} p^{i}=a_{0}+l p \tag{21}
\end{equation*}
$$

where we set $l=\sum_{i=1}^{k} a_{i} p^{i-1}$. We shall first consider the block B_{σ} of defect d_{β}. such that $\beta<l$. Let K_{α} be the p-regular classes such that $\mathfrak{W}_{\alpha} \cong \mathfrak{D}^{(\beta)}$. Then we see by above argument that $K_{\alpha} \cap N(x)=0$. This implies that $K_{\alpha} \in T^{*}$ and hence $\eta_{\sigma}^{*} \in T^{*}$. Thus the block B_{σ} which satisfies $\beta<l$ can not be determined by any block of $N(x)$.

In what follows we may assume that $\beta \geqq l$. Let \widetilde{B}_{τ} be a given block of
$N(x)$ and let B_{τ}^{0} be the block of $S_{a_{0}}$ corresponding to \tilde{B}_{τ}. Let the defect of B_{τ}^{0} be d_{r}. Then $a_{0}=b+\gamma p$. The p-core of B_{τ}^{0} and hence that of \tilde{B}_{τ} consists of b nodes. If we set $l+\gamma=l^{\prime}$, then $n=b+l^{\prime} p$.

First we assume that $l^{\prime}<\beta$. There exists a p-regular class \tilde{K}_{α} of $S_{a_{0}}$ with the defect group $\widetilde{夕}_{\alpha} \cong \mathfrak{D}^{(r)}$ such that $\bar{w}_{i_{0}}\left(\tilde{K}_{\alpha}\right) \not \equiv 0(\bmod p)$ for $\zeta_{i_{0}}^{0} \in B_{\tau}^{0}$. We then have by (19)

$$
\begin{equation*}
\tilde{w}_{i}\left(\tilde{K}_{\alpha}\right) \not \equiv 0 \quad(\bmod \mathfrak{p}) \tag{22}
\end{equation*}
$$

The class \tilde{K}_{α} contains the p-regular element y_{α} of S_{b} such that the order of the normalizer $N\left(y_{\alpha}\right)$ in S_{b} is prime to p. Let K_{α} be the class of S_{n} containing y_{α}. Then we have $K_{\alpha} \cap N(x)=\tilde{K}_{\alpha}$. Since $l^{\prime}<\beta$, we see that $h_{\alpha}<d_{\beta}$ where h_{α} denotes the defect of K_{α}. Hence we have for $\zeta_{i} \in B_{\sigma}$ ([10], Lemma 6)

$$
\begin{equation*}
w_{i}\left(K_{\alpha}\right) \equiv 0 \quad(\bmod \mathfrak{p}) \tag{23}
\end{equation*}
$$

It follows from (18), (22) and (23) that if $l^{\prime}<\beta$, then B_{σ} is not determined by \widetilde{B}_{π}. By the similar argument we can see also that if $l \leqq \beta<l^{\prime}$, then B_{σ} is not determined by \widetilde{B}_{τ}.

Finally we consider the case that $\beta=l^{\prime}$. Since $n=b+l^{\prime} p=a+\beta p$, we have $a=b$ and hence the p-cores of B_{σ} and \widetilde{B}_{τ} consist of a nodes. Let K_{α} be a p regular class of S_{n} with the defect group $\mathfrak{D}^{(\beta)}$. Then $K_{\alpha} \cap N(x)=\tilde{K}_{\alpha}$ is the p-regular class of $S_{a_{0}}$ with the defect group $\mathfrak{D}^{(r)}$. Now we assume that both B_{σ} and \tilde{B}_{τ} have the same p-core $\left[\alpha_{0}\right]$. Let χ_{0} be the irreducible character of S_{a} determined by $\left[\alpha_{0}\right]$. Then χ_{0} forms a block of its own. We see that $K_{\alpha} \cap S_{a}=K_{\alpha}^{(0)}$ is the p-regular class of S_{a} of defect 0 .

Let g_{r} be an element of S_{n} possessing β cycles of length p such that $K_{\alpha}^{(0)} \ni g_{\alpha}$ is obtained by removing those β cycles of length p. We then have for $\zeta_{j} \in B_{\sigma}$

$$
\begin{equation*}
\zeta_{j}\left(g_{\alpha}\right) \equiv \zeta_{j}\left(g_{\gamma}\right) \quad(\bmod \mathfrak{p}) \tag{24}
\end{equation*}
$$

If we choose $B_{\sigma} \ni \zeta_{j}$ of height 0 , then we see easily that

$$
e\left(n_{\alpha}\right)=e\left(n_{r}\right)=e\left(g(G) / \zeta_{j}(1)\right)=d_{\beta}
$$

and

$$
n_{\alpha} / n_{r}=(\beta p)!/ \beta!p^{\beta} \equiv(-1)^{\beta} \quad(\bmod p) .
$$

Hence we have by (24)

$$
\begin{equation*}
w_{j}\left(K_{\alpha}\right) \equiv(-1)^{\beta} w_{j}\left(K_{r}\right) \quad(\bmod \mathfrak{p}) . \tag{25}
\end{equation*}
$$

Consequently, from (25) and ([7], (11))

$$
\begin{equation*}
w_{j}\left(K_{\alpha}\right) \equiv w_{\alpha_{0}}\left(K_{\alpha}^{(0)}\right) \quad(\bmod \mathfrak{p}) \tag{26}
\end{equation*}
$$

where $w_{\alpha_{0}}\left(K_{\alpha}^{(0)}\right)$ is formed by means of χ_{0}. We obtain also by the same argument

$$
\bar{w}_{i_{0}}\left(\tilde{K}_{\alpha}\right) \equiv w_{\alpha_{0}}\left(K_{\alpha}^{(0)}\right) \quad(\bmod \mathfrak{p})
$$

for $\zeta_{i_{0}}^{0} \in B_{\tau}^{0}$.
It follows from (19), (26) and (27) that

$$
\begin{equation*}
w_{j}\left(K_{\alpha}\right) \equiv \tilde{w}_{i}\left(\tilde{K}_{\alpha}\right) \quad(\bmod \mathfrak{p}) \tag{28}
\end{equation*}
$$

for $\zeta_{i}^{x} \in \tilde{B}_{\tau}$. Since we have (28) for any p-regular class K_{α} with the defect group $\mathfrak{D}^{(\beta)}$, we obtain the proof of Theorem 2 by (28) and ([10], Theorem 4, Corollary 2 .

College of General Education
 Osaka University

References

[1] R. Brauer, On the connection between the ordinary and the modular characters of groups of finite order, Ann. of Math., 42 (1941), 926-935.
[2] R. Brauer, On blocks of characters of groups of finite order I, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 182-186.
[3] R. Brauer, On blocks of characters of groups of finite order II, Proc. Nat. Acad. Sci. U. S. A., 32 (1946), 215-219.
[4] R. Brauer, On a conjecture of Nakayama, Trans. Roy. Soc. Canada, Sec. III, 41 (1947), 11-19.
[5] A. Kerber, Zur modularen Darstellungstheorie symmetrischer und alterniernder Gruppen, Mitt. Math. Sem. Univ. Giessen, 68 (1966), 1-80.
[6] T. Nakayama, On some modular properties of irreducible representations of a symmetric group I, Japan. J. Math., 17 (1941), 89-108.
[7] T. Nakayama and M. Osima, Note on blocks of symmetric groups, Nagoya Math. J., 6 (1954), 111-117.
[8] M. Osima, On the representations of the generalized symmetric group, Math. J. Okayama Univ., 4 (1954), 39-56.
[9] M. Osima, On blocks of characters of the symmetric group, Proc. Japan Acad., 31 (1955), 131-134.
[10] M. Osima, Notes on blocks of group characters, Math. J. Okayama Univ., 4 (1955), 175-188.
[11] M. Osima, On the representations of the generalized symmetric group II, Math. J. Okayama Univ., 6 (1956), 81-97.

