ON THE GENERALIZED FIBONACCI AND PELL SEQUENCES BY HESSENBERG MATRICES

E. KILIC 1 AND D. TASCI ${ }^{2}$

Abstract

In this paper, we consider the generalized Fibonacci and Pell Sequences and then show the relationships between the generalized Fibonacci and Pell sequences, and the Hessenberg permanents and determinants.

1. Introduction

The Fibonacci sequence, $\left\{F_{n}\right\}$, is defined by the recurrence relation, for $n \geq 1$

$$
\begin{equation*}
F_{n+1}=F_{n}+F_{n-1} \tag{1.1}
\end{equation*}
$$

where $F_{0}=0, F_{1}=1$. The Pell Sequence, $\left\{P_{n}\right\}$, is defined by the recurrence relation, for $n \geq 1$

$$
\begin{equation*}
P_{n+1}=2 P_{n}+P_{n-1} \tag{1.2}
\end{equation*}
$$

where $P_{0}=0, P_{1}=1$.
The well-known Fibonacci and Pell numbers can be generalized as follow: Let A be nonzero, relatively prime integers such that $D=A^{2}+4 \neq 0$. Define sequence $\left\{u_{n}\right\}$ by, for all $n \geq 2$ (see [17]),

$$
\begin{equation*}
u_{n}=A u_{n-1}+u_{n-2} \tag{1.3}
\end{equation*}
$$

where $u_{0}=0, u_{1}=1$. If $A=1$, then $u_{n}=F_{n}$ (the nth Fibonacci number). If $A=2$, then $u_{n}=P_{n}$ (the nth Pell number).

An alternative is to let the roots of the equation $t^{2}-A t-1=0$ be, for $n \geq 0$

$$
u_{n}=\frac{\sigma^{n}-\gamma^{n}}{\sigma-\gamma}
$$

The sequence $\left\{u_{n}\right\}$ have studied by several authors (see [6], [1]). The following identities can be found in [6], [1]:

$$
\begin{equation*}
u_{n+1}=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor}\binom{n-k}{k} A^{n-2 k} \tag{1.4}
\end{equation*}
$$

There are many connections between permanents or determinants of tridiagonal matrices and the Fibonacci and Lucas numbers. For example, Minc [15] define a $n \times n$ super diagonal $(0,1)$-matrix $F(n, k)$ for $n>k \geq 2$, and show that the permanent of $F(n, k)$ equals to the generalized order- k Fibonacci numbers. Also he give some relations involving the permanents of some $(0,1)$ - Circulant matrices and the usual Fibonacci numbers.

[^0]In [10], the authors present a nice result involving the permanent of an ($-1,0,1$)matrix and the Fibonacci Number F_{n+1}. The authors then explore similar directions involving the positive subscripted Fibonacci and Lucas Numbers as well as their uncommon negatively subscripted counterparts. Finally the authors explore the generalized order- k Lucas numbers, (see [20] and [9] for more detail the generalized Fibonacci and Lucas numbers), and their permanents.

In [12] and [13], the authors gave the relations involving the generalized Fibonacci and Lucas numbers and the permanent of the $(0,1)$-matrices. The results of Minc, [15], and the result of Lee, [12], on the generalized Fibonacci numbers are the same because they use the same matrix. However, Lee proved the same result by a different method, contraction method for the permanent (for more detail of the contraction method see [2]).

In [14], Lehmer proves a very general result on permanents of tridiagonal matrices whose main diagonal and super-diagonal elements are ones and whose subdiagonal entries are somewhat arbitrary.

Also in [18] and [19], the authors define a family of tridiagonal matrices $M(n)$ and show that the determinants of $M(n)$ are the Fibonacci numbers $F_{2 n+2}$. In [5] and[4], the family of tridiagonal matrices $H(n)$ and the authors show that the determinants of $H(n)$ are the Fibonacci numbers F_{n}. In a similar family of matrices, the $(1,1)$ element of $H(n)$ is replaced with a 3 . The determinants, [3], now generate the Lucas sequence L_{n}.

In [7], the authors find the families of $(0,1)$-matrices such that permanents of the matrices, equal to the sums of Fibonacci and Lucas numbers.

In [8], the authors define two tridiagonal matrices and then give the relationships the permanents and determinants of these matrices and the second order linear recurrences.

In [11], the authors define two generalized doubly stochastic matrices and then show the relationships between the generalized doubly stochastic permanents and second order linear recurrences.

A lower Hessenberg matrix, $A_{n}=\left(a_{i j}\right)$, is an $n \times n$ matrix where $a_{j, k}=0$ whenever $k>j+1$ and $a_{j, j+1} \neq 0$ for some j. Clearly,

$$
A_{n}=\left[\begin{array}{ccccc}
a_{11} & a_{12} & 0 & \ldots & 0 \\
a_{21} & a_{22} & a_{23} & \ddots & 0 \\
a_{31} & a_{32} & a_{33} & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & a_{n-1, n} \\
a_{n 1} & a_{n 2} & \ldots & a_{n, n-1} & a_{n, n}
\end{array}\right]
$$

Also, in [5], the authors consider the above general lower Hessenberg matrix and then give following determinant formula: for $n \geq 2$,

$$
\operatorname{det} A_{n}=a_{n, n} . \operatorname{det} A_{n-1}+\sum_{r=1}^{n-1}\left((-1)^{n-r} a_{m, r} \prod_{j=r}^{n-1} a_{j, j+1} \operatorname{det} A_{r-1}\right)
$$

Furthermore, the authors consider the Fibonacci sequence, $\left\{F_{n}\right\}$, and then give an example: Let

$$
D_{n}=\left[\begin{array}{ccccc}
2 & 1 & 0 & \ldots & 0 \\
1 & 2 & 1 & \ddots & 0 \\
1 & 1 & 2 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
1 & 1 & \ldots & 1 & 2
\end{array}\right]_{n \times n}
$$

and then state that the determinants of the first few matrices are $\operatorname{det} D_{1}=2, \operatorname{det} D_{2}=$ 3 and $\operatorname{det} D_{3}=5$, and, it runs out that this sequence is precisely $\left\{F_{n}\right\}$ starting at $n=3$.

In this paper, we consider the generalized Fibonacci sequence $\left\{u_{n}\right\}$ and then we show the relationships between the Hessenberg determinants and permanents, and the generalized Fibonacci sequence $\left\{u_{n}\right\}$. Consequently, our results are more general in fact that the generalized Fibonacci sequence.

2. On The Generalized Fibonacci Sequence By Hessenberg Matrices

In this section we define a $n \times n$ lower Hessenberg matrix and then show that its determinant and permanents produce the terms of generalized Fibonacci sequence $\left\{u_{n}\right\}$.

We define the $n \times n$ lower Hessenberg matrix $H_{n}=\left(h_{i j}\right)$ with $h_{i i}=A^{2}+1$ for all i and 1 otherwise. Clearly

$$
H_{n}=\left[\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \cdots & 0 & 0 \tag{2.1}\\
1 & A^{2}+1 & 1 & \cdots & \vdots & 0 \\
1 & 1 & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
1 & 1 & \cdots & 1 & A^{2}+1 & 1 \\
1 & 1 & 1 & \cdots & 1 & A^{2}+1
\end{array}\right]
$$

Also we define another the $n \times n$ lower Hessenberg matrix $T_{n}=\left(t_{i j}\right)$ with $t_{i i}=A^{2}+1$ for $1 \leq i \leq n-1, t_{n n}=1$ and 1 otherwise. Clearly

$$
T_{n}=\left[\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \ldots & 0 & 0 \tag{2.2}\\
1 & A^{2}+1 & 1 & \ddots & \vdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
1 & 1 & \ldots & & 1 & 0 \\
1 & 1 & \ldots & 1 & A^{2}+1 & 1 \\
1 & 1 & \ldots & \ldots & 1 & 1
\end{array}\right]
$$

Then we start with the following Lemma.
Lemma 1. Let the $n \times n$ Hessenberg matrices H_{n} and T_{n} have the forms (2.1) and (2.2). Then, for $n \geq 3$

$$
\operatorname{det} T_{n}=A^{2} \operatorname{det} H_{n-2}
$$

Proof. We use elementary operations of determinant. Subtracting the $(n-1)$ st row from the nth row and then expanding with respect to last row gives

$$
\begin{aligned}
\operatorname{det} T_{n} & =\left|\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \ldots & 0 & 0 \\
1 & A^{2}+1 & 1 & \ddots & \vdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
1 & 1 & \ldots & & 1 & 0 \\
1 & 1 & \ldots & 1 & A^{2}+1 & 1 \\
0 & 0 & \ldots & 0 & -A^{2} & 0
\end{array}\right| \\
& =A^{2}\left|\begin{array}{ccccccc}
A^{2}+1 & 1 & & 0 & \ldots & 0 & 0 \\
1 & A^{2}+1 & 1 & \ddots & \vdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
1 & 1 & \ldots & & 1 & 0 \\
1 & 1 & \ldots & 1 & A^{2}+1 & 1
\end{array}\right| .
\end{aligned}
$$

Considering the definition of the matrix H_{n} and expanding with respect to last column, we obtain

$$
\begin{aligned}
\operatorname{det} T_{n} & =A^{2}\left|\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \cdots & 0 & 0 \\
1 & A^{2}+1 & 1 & \ddots & \vdots & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
1 & 1 & \ldots & A^{2}+1 & 1 & 0 \\
1 & 1 & & 1 & A^{2}+1 & 1 \\
1 & 1 & \ldots & 1 & 1 & A^{2}+1
\end{array}\right| \\
& =A^{2} \operatorname{det} H_{n-2} .
\end{aligned}
$$

So the proof is complete.

Now we give our main result with the following Theorem.
Theorem 1. Let the hessenberg matrix H_{n} has the form (2.1). Then, for $n>0$

$$
\begin{aligned}
\operatorname{det} H_{n} & =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n+1-k}{k} A^{2 n-2 k} \\
& =A^{n-1} u_{n+2}
\end{aligned}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$ and A be as before.
Proof. We will use the induction method to prove that $\operatorname{det} H_{n}=A^{n-1} u_{n+2}$. If $n=1$, then we have

$$
\begin{aligned}
\operatorname{det} H_{1} & =\operatorname{det}\left[A^{2}+1\right]=\sum_{k=0}^{1}\binom{2-k}{k} A^{2-2 k} \\
& =\binom{2}{0} A^{2}+\binom{1}{1} A^{0}=A^{2}+1=u_{3}
\end{aligned}
$$

If $n=2$, then we have

$$
\begin{aligned}
\operatorname{det} H_{2} & =\operatorname{det}\left[\begin{array}{cc}
A^{2}+1 & 1 \\
1 & A^{2}+1
\end{array}\right] \\
& =\sum_{k=0}^{\left\lfloor\frac{3}{2}\right\rfloor}\binom{3-k}{k} A^{4-2 k}=\left[\binom{3}{0} A^{4}+\binom{2}{1} A^{2}\right] \\
& =A^{4}+2 A^{2}=A u_{4} .
\end{aligned}
$$

We suppose that the equation holds for n. That is,

$$
\operatorname{det} H_{n}=A^{n-1} u_{n+2}
$$

Then we show that the equation holds for $n+1$. If we compute the $\operatorname{det} H_{n+1}$ by laplace expansion of determinant with respect to last column, then we have

$$
\begin{aligned}
& \operatorname{det} H_{n+1}=\left|\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \cdots & 0 & 0 \\
1 & A^{2}+1 & 1 & \cdots & \vdots & 0 \\
1 & 1 & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
1 & 1 & \cdots & 1 & A^{2}+1 & 1 \\
1 & 1 & 1 & \cdots & 1 & A^{2}+1
\end{array}\right| \\
& =\left(A^{2}+1\right)\left|\begin{array}{ccccc}
A^{2}+1 & 1 & \cdots & 0 & 0 \\
1 & A^{2}+1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
1 & 1 & 1 & A^{2}+1 & 1 \\
1 & 1 & \cdots & 1 & A^{2}+1
\end{array}\right| \\
& -\left|\begin{array}{ccccc}
A^{2}+1 & 1 & \cdots & 0 & 0 \\
1 & A^{2}+1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & 1 & 0 \\
1 & 1 & 1 & A^{2}+1 & 1 \\
1 & 1 & \cdots & 1 & 1
\end{array}\right| .
\end{aligned}
$$

From the definitions of the matrices H_{n} and T_{n}, we may write

$$
\operatorname{det} H_{n+1}=\left(A^{2}+1\right) \operatorname{det} H_{n}-\operatorname{det} T_{n} .
$$

Using the result of Lemma 1, we can write the last equation as

$$
\operatorname{det} H_{n+1}=\left(A^{2}+1\right) \operatorname{det} H_{n}-A^{2} \operatorname{det} H_{n-2}
$$

and by our assumption we obtain

$$
\begin{aligned}
\operatorname{det} H_{n+1} & =\left(A^{2}+1\right) A^{n-1} u_{n+2}-A^{2} A^{n-3} u_{n} \\
& =\left(A^{n+1}+A^{n-1}\right) u_{n+2}-A^{n-1} u_{n}
\end{aligned}
$$

From the recurrence relation of the sequence $\left\{u_{n}\right\}$, we write the last equation as follow

$$
\begin{aligned}
\operatorname{det} H_{n+1} & =\left(A^{n+1}+A^{n-1}\right)\left(A u_{n+1}+u_{n}\right)-A^{n-1} u_{n} \\
& =A^{n+2} u_{n+1}+A^{n} u_{n+1}+A^{n+1} u_{n}+A^{n-1} u_{n}-A^{n-1} u_{n} \\
& =A^{n+2} u_{n+1}+A^{n} u_{n+1}+A^{n+1} u_{n} \\
& =A^{n+1}\left(A u_{n+1}+u_{n}\right)+A^{n} u_{n+1} \\
& =A^{n+1} u_{n+2}+A^{n} u_{n+1}=A^{n}\left(A u_{n+2}+u_{n+1}\right) \\
& =A^{n} u_{n+3}
\end{aligned}
$$

or

$$
\operatorname{det} H_{n+1}=\sum_{k=0}^{\left\lfloor\frac{n+2}{2}\right\rfloor}\binom{n+2-k}{k} A^{2 n+2-2 k} .
$$

So the proof is complete.
For example, when $A=1$, the sequence $\left\{u_{n}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$, and by Theorem 1 , we have that

$$
\operatorname{det} H_{n}=\left|\begin{array}{ccccc}
2 & 1 & 0 & \ldots & 0 \\
1 & 2 & 1 & \ddots & 0 \\
1 & 1 & 2 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & 1 \\
1 & 1 & \ldots & 1 & 2
\end{array}\right|=F_{n}
$$

which is given in [5].
A matrix A is called convertible if there is an $n \times n(1,-1)$-matrix H such that $\operatorname{per} A=\operatorname{det}(A \circ H)$, where $A \circ H$ denotes the Hadamard product of A and H. Such a matrix H is called a converter of A.

Let S be a $(1,-1)$ - matrix of order n, defined by

$$
S=\left[\begin{array}{rrrlrr}
1 & -1 & 1 & \ldots & 1 & 1 \\
1 & 1 & -1 & \ldots & 1 & 1 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
1 & 1 & 1 & \ldots & -1 & 1 \\
1 & 1 & 1 & \ldots & 1 & -1 \\
1 & 1 & 1 & \ldots & 1 & 1
\end{array}\right]
$$

We denote the matrices $H_{n} \circ S$ by B_{n}, respectively. Thus

$$
B_{n}=\left[\begin{array}{cccccc}
A^{2}+1 & -1 & 0 & \cdots & 0 & 0 \tag{2.3}\\
1 & A^{2}+1 & -1 & \cdots & \vdots & 0 \\
1 & 1 & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
1 & 1 & \cdots & 1 & A^{2}+1 & -1 \\
1 & 1 & 1 & \cdots & 1 & A^{2}+1
\end{array}\right]
$$

Then we have the following Theorem without proof.

Theorem 2. Let the $n \times n$ Hessenberh matrix B_{n} has the form (2.3). Then, for $n>0$

$$
\begin{aligned}
\operatorname{per} B_{n} & =A^{n-1} u_{n+2} \\
& =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n+1-k}{k} A^{2 n-2 k}
\end{aligned}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$.
For example, when $A=2$, the sequence $\left\{u_{n}\right\}$ is reduced to the Pell sequence $\left\{P_{n}\right\}$, and by Theorem 2, we have

$$
\begin{aligned}
\operatorname{per} B_{n} & =\operatorname{per}\left[\begin{array}{ccccc}
5 & -1 & 0 & \ldots & 0 \\
1 & 5 & -1 & \ddots & 0 \\
1 & 1 & 5 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
1 & 1 & \ldots & 1 & 5
\end{array}\right]_{n \times n} \\
& =\sum_{k=0}^{\left\lfloor\frac{n+1}{2}\right\rfloor}\binom{n+1-k}{k} 2^{2 n-2 k}=2^{n-1} P_{n+2}
\end{aligned}
$$

3. On The Terms $u_{2 n+1}$ And $u_{2 n}$

In this section, we define two lower Hessenberg matrices and then we show that their determinants equal to the terms $u_{2 n+1}$ and $u_{2 n}$.

Firstly, we define a $n \times n$ lower Hessenberg matrix $W_{n}=\left(w_{i j}\right)$ with $w_{i i}=A^{2}+1$ for all $i, w_{i, i+1}=-1, w_{i j}=A^{2}$ for $i>j$ and 0 otherwise. That is,

$$
W_{n}=\left[\begin{array}{cccccc}
A^{2}+1 & -1 & 0 & \cdots & 0 & 0 \tag{3.1}\\
A^{2} & A^{2}+1 & -1 & \cdots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & A^{2} & \ldots & A^{2} & A^{2}+1 & -1 \\
A^{2} & A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right] .
$$

Then we have the following Theorem.
Theorem 3. Let the $n \times n$ lower Hessenberg matrix W_{n} has the form (3.1). Then, for $n>1$

$$
\operatorname{det} W_{n}=u_{2 n+1}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$.
Proof. We will use the induction method to prove that det $W_{n}=u_{2 n+1}$. If $n=1$, then we have

$$
\operatorname{det} W_{1}=\operatorname{det}\left[A^{2}+1\right]=A^{2}+1=u_{3}
$$

If $n=2$, then we have

$$
\begin{aligned}
\operatorname{det} W_{2} & =\operatorname{det}\left[\begin{array}{cc}
A^{2}+1 & -1 \\
A^{2} & A^{2}+1
\end{array}\right] \\
& =A^{4}+3 A^{2}+1=u_{5}
\end{aligned}
$$

Now we suppose that the equation holds for n. That is,

$$
\operatorname{det} W_{n}=u_{2 n+1}
$$

Then we show that the equation holds for $n+1$. Thus using elementary row operations of determinant with subtracting the $(n+1)$ st row from the nth row gives

$$
\operatorname{det} W_{n+1}=\left|\begin{array}{cccccc}
A^{2}+1 & -1 & 0 & \cdots & 0 & 0 \\
A^{2} & A^{2}+1 & -1 & \cdots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1 & -1 \\
-1 & -1 & -1 & \cdots & -1 & A^{2}+2
\end{array}\right|
$$

Also if we compute the above determinant by Laplace expansion of determinant with respect to the last column, then we have

$$
\begin{aligned}
\operatorname{det} W_{n+1}= & \left(A^{2}+2\right)\left|\begin{array}{ccccc}
A^{2}+1 & -1 & 0 & \cdots & 0 \\
A^{2} & A^{2}+1 & -1 & \cdots & \vdots \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 \\
\vdots & \vdots & \ddots & \ddots & -1 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right| \\
& +\left|\begin{array}{cccccc}
A^{2}+1 & -1 & 0 & \cdots & 0 & 0 \\
A^{2} & A^{2}+1 & -1 & \ddots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1 & -1 \\
0 & 0 & 0 & \cdots & 0 & -1
\end{array}\right|
\end{aligned}
$$

Using again the same Laplace expansion of determinant and by the definition of the matrix W_{n}, we can write that

$$
\operatorname{det} W_{n+1}=\left(A^{2}+2\right) \operatorname{det} W_{n}-\operatorname{det} W_{n-2}
$$

Now by our assumption and the recurrence relation of the sequence $\left\{u_{n}\right\}$, we may write that

$$
\begin{aligned}
\operatorname{det} W_{n+1} & =\left(A^{2}+2\right) u_{2 n+1}-u_{2 n-1} \\
& =\left(A^{2}+1\right) u_{2 n+1}+u_{2 n+1}-u_{2 n-1} \\
& =\left(A^{2}+1\right) u_{2 n+1}+A u_{2 n}+u_{2 n-1}-u_{2 n-1} \\
& =\left(A^{2}+1\right) u_{2 n+1}+A u_{2 n} \\
& =A^{2} u_{2 n+1}+u_{2 n+1}+A u_{2 n} \\
& =A\left(A u_{2 n+1}+u_{2 n}\right)+u_{2 n+1} \\
& =A u_{2 n+2}+u_{2 n+1} \\
& =u_{2 n+3}
\end{aligned}
$$

So the proof is complete.
Second, we define a $n \times n$ lower Hessenberg matrix $V_{n}=\left(v_{i j}\right)$ with $v_{i i}=A^{2}+1$ for $2 \leq i \leq n, v_{11}=A^{2}, v_{i j}=A^{2}$ for $i>j, v_{i, i+1}=-1$ and 0 otherwise. Clearly

$$
V_{n}=\left[\begin{array}{cccccc}
A^{2} & -1 & 0 & \cdots & 0 & 0 \tag{3.2}\\
A^{2} & A^{2}+1 & -1 & \cdots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1 & -1 \\
A^{2} & A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right]
$$

Now we have the following Theorem.
Theorem 4. Let the $n \times n$ lower Hessenberg matrix V_{n} has the form (3.2). Then, for $n>0$

$$
\operatorname{det} V_{n}=A u_{2 n}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$.
Proof. We will use the induction method to prove that det $V_{n}=A u_{2 n}$. If $n=1$, then

$$
\operatorname{det} V_{1}=\operatorname{det}\left[A^{2}\right]=A^{2}=A \cdot A=A u_{2}
$$

If $n=2$, then we have

$$
\begin{aligned}
\operatorname{det} V_{2} & =\operatorname{det}\left[\begin{array}{cc}
A^{2} & -1 \\
A^{2} & A^{2}+1
\end{array}\right] \\
& =A^{4}+2 A^{2}=A\left(A^{3}+2 A\right) \\
& =A u_{4}
\end{aligned}
$$

We suppose that the equation holds for n. That is,

$$
\operatorname{det} V_{n}=A u_{2 n}
$$

Then we show that the equation holds for $n+1$. Thus, if we compute the $\operatorname{det} V_{n+1}$ by Laplace expansion of determinant with respect to the first row, then we have

$$
\begin{aligned}
\operatorname{det} V_{n+1}= & \left|\begin{array}{cccccc}
A^{2} & -1 & 0 & \cdots & 0 & 0 \\
A^{2} & A^{2}+1 & -1 & \ldots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & A^{2} & \ldots & A^{2} & A^{2}+1 & -1 \\
A^{2} & A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right| \\
= & A^{2}\left|\begin{array}{cccccc}
A^{2}+1 & -1 & \cdots & \vdots & 0 \\
A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & & \ddots & \ddots & -1 & 0 \\
A^{2} & \ldots & A^{2} & A^{2}+1 & -1 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right| \\
& +\left|\begin{array}{cccccc}
A^{2} & -1 & 0 & \cdots & 0 & 0 \\
A^{2} & A^{2}+1 & \ddots & \ddots & 0 \\
\vdots & \ddots & \ddots & -1 & 0 \\
A^{2} & \ldots & A^{2} & A^{2}+1 & -1 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right|
\end{aligned}
$$

Considering the definitions of the matrices V_{n} and W_{n}, we may write that

$$
\operatorname{det} V_{n+1}=A^{2} \operatorname{det} W_{n}+\operatorname{det} V_{n}
$$

Also by our assumption and the recurrence relation of the sequence $\left\{u_{n}\right\}$, we write

$$
\begin{aligned}
\operatorname{det} V_{n+1} & =A^{2} u_{2 n+1}+A u_{2 n} \\
& =A\left(A u_{2 n+1}+u_{2 n}\right) \\
& =A u_{2 n+2}
\end{aligned}
$$

So the proof is complete.

Let S be the $(1,-1)$ - matrix of order n as before. We denote the matrices $W_{n} \circ S$ and $V_{n} \circ S$ by G_{n} and K_{n}, respectively. Clearly

$$
G_{n}=\left[\begin{array}{cccccc}
A^{2}+1 & 1 & 0 & \cdots & 0 & 0 \tag{3.3}\\
A^{2} & A^{2}+1 & 1 & \cdots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1 & 1 \\
A^{2} & A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right]_{n \times n}
$$

and

$$
K_{n}=\left[\begin{array}{cccccc}
A^{2} & 1 & 0 & \cdots & 0 & 0 \tag{3.4}\\
A^{2} & A^{2}+1 & 1 & \cdots & \vdots & 0 \\
A^{2} & A^{2} & A^{2}+1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1 & 1 \\
A^{2} & A^{2} & A^{2} & \cdots & A^{2} & A^{2}+1
\end{array}\right]_{n \times n}
$$

Then we have the following Theorems without proof.
Theorem 5. Let the $n \times n$ lower Hessenberg matrix G_{n} has the form (3.3). Then, for $n>0$

$$
\operatorname{per} G_{n}=u_{2 n+1}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$.
Theorem 6. Let the $n \times n$ lower Hessenberg matrix K_{n} has the form (3.4). Then, for $n>0$

$$
\operatorname{per} K_{n}=A u_{2 n}
$$

where u_{n} is the nth term of the sequence $\left\{u_{n}\right\}$.
For example, when $A=1$, the sequence $\left\{u_{n}\right\}$ is reduced to the Fibonacci sequence $\left\{F_{n}\right\}$ and by the above results

$$
\operatorname{det}\left[\begin{array}{cccccc}
2 & -1 & 0 & \ldots & 0 & 0 \\
1 & 2 & -1 & \ldots & \vdots & 0 \\
1 & 1 & 1 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & -1 & 0 \\
1 & 1 & \ldots & 1 & 2 & -1 \\
1 & 1 & 1 & \ldots & 1 & 2
\end{array}\right]_{n \times n}=F_{2 n+1}
$$

and when $A=2$, the sequence $\left\{u_{n}\right\}$ is reduced to the Pell sequence $\left\{P_{n}\right\}$ and

$$
\operatorname{per}\left[\begin{array}{cccccc}
4 & 1 & 0 & \ldots & 0 & 0 \\
4 & 5 & 1 & \ldots & \vdots & 0 \\
4 & 4 & 5 & \ddots & 0 & \vdots \\
\vdots & \vdots & \ddots & \ddots & 1 & 0 \\
4 & 4 & \ldots & 4 & 5 & 1 \\
4 & 4 & 4 & \ldots & 4 & 5
\end{array}\right]=2 P_{2 n}
$$

Using the identity (1.4) and the above Theorems, we give following representations:

$$
\operatorname{det} W_{n}=\operatorname{per} G_{n}=\sum_{k=0}^{n}\binom{2 n-k}{k} A^{2 n-2 k}
$$

and

$$
\operatorname{det} V_{n}=\operatorname{per} K_{n}=\frac{\left\lfloor\frac{2 n-1}{2}\right\rfloor}{\sum_{k=0}}\binom{2 n-1-k}{k} A^{2 n-2 k}
$$

References

[1] M. Bicknell. "A Primer on the Pell Sequence and Related Sequences." Fib. Quart. 13.4 (1975): 345-349.
[2] R. A. Brualdi \& P. M. Gibson. "Convex polyhedra of Doubly Stochastic matrices I: Applications of the permanent function." J. Combin. Theory A 22 (1977): 194-230.
[3] P.F. Byrd. "Problem B-12: A Lucas determinant." Fib. Quart. 1.4 (1963): 78.
[4] N. D. Cahill and D. A. Narayan. "Fibonacci and Lucas numbers as tridiagonal matrix determinants." Fib. Quart. 42.3 (2004): 216-221.
[5] N. D. Cahill, J. R. D'Errica, D. A. Narayan and J. Y. Narayan. "Fibonacci determinants." College math. J. 3.3 (2002): 221-225.
[6] P. Filipponi and A.F. Horadam. "Second derivative sequences of Fibonacci and Lucas polynomials" Fib. Quart. 31.3 (1993): 194-204.
[7] E. Kilic and D. Tasci. "On families of bipartite graphs associated with sums of Fibonacci and Lucas numbers." Ars Combin. (to appear).
[8] E. Kilic and D. Tasci, "On the second order linear recurrences by tridiagonal matrices." Ars Combin. (to appear).
[9] E. Kilic and D. Tasci. "On the generalized order- k Fibonacci and Lucas numbers." Rocky Mountain J. Math. 36.6 (2006): 1915-1926.
[10] E. Kilic and D. Tasci, "On the permanents of some tridiagonal matrices with applications to the Fibonacci and Lucas numbers." Rocky Mountain J. Math. 37.6 (2007): 1953-1969.
[11] E. Kilic and D. Tasci. "On the second order linear recurrences by generalized Doubly Stochastic matrices." Ars Combin. (to appear).
[12] G. -Y. Lee and S. -G. Lee. "A note on generalized Fibonacci numbers." Fib. Quart. 33 (1995): 273-278.
[13] G. -Y. Lee. " k - Lucas numbers and associated Bipartite graphs." Linear Algebra Appl. $\mathbf{3 2 0}$ (2000): 51-61.
[14] D. Lehmer. "Fibonacci and related sequences in periodic tridiagonal matrices." Fib. Quart. 13 (1975): 150-158.
[15] H. Minc. "Permanents of (0,1)-Circulants." Canad. Math. Bull. 7.2 (1964): 253-263.
[16] H. Minc. Permanents, Encyclopedia of Mathematics and its Applications. Addison-Wesley, New York, 1978.
[17] N. Robbins. Beginning Number Theory. Dubuque, Iowa: Wm. C. Brown Publishers 1993.
[18] G. Strang. Introduction to linear Algebra. 2nd Edition, Wellesley MA, Wellesley-Cambridge, 1998.
[19] G. Strang and K. Borre. Linear Algebra. Geodesy and GPS. Wellesley MA, WellesleyCambridge, 1997, pp. 555-557.
[20] D. Tasci and E. Kilic, "On the order- k generalized Lucas numbers." Appl. Math. Comput. 155.3 (2004), 637-641.
${ }^{1}$ TOBB Economics and Technology University 06560 Ankara Turkey
E-mail address: ekilic@etu.edu.tr
${ }^{2}$ Gazi University, Mathematics Department, 06500 Ankara Turkey

[^0]: 2000 Mathematics Subject Classification. 11B37, 15A15, 15A51.
 Key words and phrases. Second order linear recurrences, Generalized doubly stochastic matrix, Permanent, Determinant.

