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ON THE GENERALIZED ORDER-k
FIBONACCI AND LUCAS NUMBERS

EMRAH KILIÇ and DURSUN TAŞCI

ABSTRACT. In this paper we consider the generalized
order-k Fibonacci and Lucas numbers. We give the gener-
alized Binet formula, combinatorial representation and some
relations involving the generalized order-k Fibonacci and Lu-
cas numbers.

1. Introduction. We consider the generalized order-k Fibonacci
and Lucas numbers. In [1] Er defined k sequences of the generalized
order-k Fibonacci numbers as shown:

gi
n =

k∑
j=1

gi
n−j , for n > 0 and 1 ≤ i ≤ k,

with boundary conditions for 1 − k ≤ n ≤ 0,

gi
n =

{
1 if i = 1 − n,
0 otherwise,

where gi
n is the nth term of the ith sequence. For example, if k = 2,

then {g2
n} is the usual Fibonacci sequence, {Fn}, and, if k = 4, then

the fourth sequence of the generalized order-4 Fibonacci numbers is

1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, . . . .

In [6] the authors defined k sequences of the generalized order-k Lucas
numbers as shown:

lin =
k∑

j=1

lin−j , for n > 0 and 1 ≤ i ≤ k,
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with boundary conditions for 1 − k ≤ n ≤ 0,

lin =

⎧⎨
⎩

−1 if i = 1 − n,
2 if i = 2 − n,
0 otherwise,

where lin is the nth term of the ith sequence. For example, if k = 2,
then {l2n} is the usual Lucas sequence, {Ln}, and, if k = 4, then the
fourth sequence of the generalized order-4 Lucas numbers is

1, 3, 4, 8, 16, 31, 59, 114, 220, 424, 817, 1575, 30636, . . . .

Also, Er showed that

⎡
⎢⎢⎣

gi
n+1

gi
n
...

gi
n−k+2

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

gi
n

gi
n−1

...
gi

n−k+1

⎤
⎥⎥⎥⎦

where

(1.1) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

is a k × k companion matrix. Then he derived

Gn+1 = AGn,

where

(1.2) Gn =

⎡
⎢⎢⎢⎣

g1
n g2

n . . . gk
n

g1
n−1 g2

n−1 . . . gk
n−1

...
...

. . .
...

g1
n−k+1 g2

n−k+1 . . . gk
n−k+1

⎤
⎥⎥⎥⎦ .
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Moreover, Er showed that G1 = A and Gn = An. The matrix A is
said to be the generalized order-k Fibonacci matrix. Furthermore, in
[3], recently Karaduman proved that

detGn =
{

(−1)n if k is even,
1 if k is odd.

In [5], we showed
⎡
⎢⎢⎣

lin+1

lin
...

lin−k+2

⎤
⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

lin
lin−1

...
lin−k+1

⎤
⎥⎥⎥⎦

and derived
Hn+1 = AHn

where

Hn =

⎡
⎢⎢⎢⎣

l1n l2n . . . lkn
l1n−1 l2n−1 . . . lkn−1

...
...

. . .
...

l1n−k+1 l2n−k+1 . . . lkn−k+1

⎤
⎥⎥⎥⎦

also
H1 = AK

where

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 2 0 0 . . . 0
0 −1 2 0 . . . 0
0 0 −1 2 . . . 0
0 0 0 −1 . . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . −1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Further, we proved

det Hn+1 =
{−1 if k is odd,

(−1)n+1 if k is even,

and showed that

(1.3) Hn = GnK,

which is a well-known fact for k = 2, see [6].
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2. Some relations involving the generalized order-k Fibonacci
and Lucas numbers. In this section we present and extend some
relationships between the generalized order-k Fibonacci and Lucas
numbers by matrix methods. From [1], it is well known that, for all
positive integers n, m and 1 ≤ i ≤ k,

gi
m+n =

k∑
j=1

gj
n gi

m+1−j ,

where gi
n is the generalized order-k Fibonacci number.

We note that, for example, if k = 2, then {g2
n} is the usual Fibonacci

sequence. For all n, m ∈ Z+,

g2
m+n =

2∑
j=1

gj
n g2

m+1−j

= g1
n g2

m + g2
n g2

m−1

and, since g1
m = g2

m+1 for i = 1, k = 2 and all m ∈ Z+, we write

g2
m+n = g2

n+1 g2
m + g2

n g2
m−1.

Indeed, we generalize the following relation between Fibonacci numbers

Fn+m = Fn+1Fm + FnFm−1,

see [7, p. 176].

Theorem 1. Let lin be the generalized order-k Lucas number. For
all positive integers n, m and 1 ≤ i ≤ k,

lin+m =
k∑

j=1

gj
n lim+1−j .

Proof. From [6], we know that Hn = GnK, so we can write that

Hn+m = Gn+mK = An+mK = AnAmK = AnHm = GnHm



GENERALIZED FIBONACCI AND LUCAS NUMBERS 1919

or
Hn+m = Gm Hn.

Since Hn+m = Gn Hm, lin+m = (Hn+m)1,i,

lin+m = g1
n lim + g2

n lim−1 + · · · + gk
n lim−k+1

= g1
n lim + (g2

n−1 + g2
n−2) lim−1 + · · ·

+ (gk
n−1 + gk

n−2 + · · · + gk
n−k) lim−k+1.

Thus, we obtain

lin+m =
k∑

j=1

gj
n lim+1−j ,

so the proof is completed.

For example, if k = 2, then g2
n and l2n are the usual Fibonacci and

Lucas number, respectively; then

l2n+m =
2∑

j=1

gj
n l2m+1−j

= g1
n l2m + g2

n l2m−1,

and, since g1
n = g2

n+1 for i = 1, k = 2, and all n ∈ Z+, we write

l2n+m = g2
n+1 l2m + g2

n l2m−1.

Indeed, we generalize the following relation involving Lucas and
Fibonacci numbers,

Ln+m = Fn+1 Lm + Fn Lm−1

= (Fn + Fn−1) Lm + Fn Lm−1

= Fn(Lm + Lm−1) + Fn−1 Lm

= Fn Lm+1 + Fn−1 Lm,

see [7, p. 176].

Note that Gn+m+p = GnGm+p, gi
n+m = (Gn+m+p)p−1,i.
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Then we have the following corollary.

Corollary 1. Let gi
n be the generalized order-k Fibonacci number.

For all n, m, p ∈ Z+ and 1 ≤ i ≤ k,

gi
n+m+p =

k∑
j=1

gj
n gi

m+1−p−j .

Also we note that Gn−p Gm+p = Gn+m, gi
n+m = (Gn+m)1,i. Then

we have the following corollary.

Corollary 2. Let gi
n be the generalized order-k Fibonacci number.

Then, for n, m, p ∈ Z+ and 1 ≤ i ≤ k,

gi
m+n =

k∑
j=1

gj
n−p gi

m+p−j .

In [4] Levesque gave a Binet formula for the Fibonacci sequence. In
this paper, we derive a generalized Binet formula for the generalized
order-k Fibonacci and Lucas sequence by using the determinant.

3. Generalized Binet formula. Let f(λ) be the characteristic
polynomial of the generalized order-k Fibonacci matrix A. Then
f(λ) = λk − λk−1 − · · · − λ − 1, which is a well-known fact. Let
λ1, λ2, . . . , λk be the eigenvalues of A. In [5], Miles also showed that
λ1, λ2, . . . , λk are distinct. Let V be a k × k Vandermonde matrix as
follows:

V =

⎡
⎢⎢⎢⎢⎢⎣

λk−1
1 λk−1

2 λk−1
3 . . . λk−1

k

λk−2
1 λk−2

2 λk−2
3 . . . λk−2

k
...

...
...

. . .
...

λ1 λ2 λ3 . . . λk

1 1 1 . . . 1

⎤
⎥⎥⎥⎥⎥⎦

.



GENERALIZED FIBONACCI AND LUCAS NUMBERS 1921

Let

di
k =

⎡
⎢⎢⎣

λn+k−i
1

λn+k−i
2

...
λn+k−i

k

⎤
⎥⎥⎦

and V
(i)
j be a k × k matrix obtained from V by replacing the jth

column of V by di
k. Then we have the generalized Binet formula for

the generalized order-k Fibonacci numbers with the following theorem.

Theorem 2. Let gi
n be the generalized order-k Fibonacci number,

for 1 ≤ i ≤ k. Then

tij =
det(V (i)

j )
det(V )

where Gn = [tij ]k×k.

Proof. Since the eigenvalues of A are distinct, A is diagonalizable. It
is easy to show that AV = V D, where D = diag (λ1, λ2, . . . , λk). Since
V is invertible, V −1AV = D. Hence, A is similar to D. So we have
AnV = V Dn. In [1], it is known that Gn = An. So we can write that
GnV = V Dn. Let Gn = [tij ]k×k. Then we have the following linear
system of equations:

ti1λ
k−1
1 + ti2λ

k−2
1 + · · · + tik = λn+k−i

1

ti1λ
k−1
2 + ti2λ

k−2
2 + · · · + tik = λn+k−i

2

...

ti1λ
k−1
k + ti2λ

k−2
k + · · · + tik = λn+k−i

k .

And, for each j = 1, 2, . . . , k, we get

(3.1) tij =
det(V (i)

j )
det(V )

.

So the proof is complete.
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Corollary 3. Let gk
n be the generalized order-k Fibonacci number,

then

gk
n = t1k =

det(V (1)
k )

det(V )
.

Proof. If we take i = 1 and j = k, then t1,k = gk
n. Also, employing

Theorem 2, the proof is immediately seen.

Now we are going to give a generalized Binet formula for the general-
ized order-k Lucas sequence. Firstly, we give a lemma for a relationship
between the generalized order-k Fibonacci and Lucas numbers.

Lemma 1. Let lkn and gk
n be the generalized order-k Lucas and

Fibonacci numbers, respectively. Then, for k ≥ 2,

lkn = gk
n + 2gk

n−1.

Proof. We will use the induction method to prove that lkn = gk
n +

2gk
n−1. From the definition of the generalized order-k Lucas and

Fibonacci numbers, we know that, for all k ∈ Z+ with k ≥ 2,
lk1 = gk

1 = 1 and gk
0 = 0. Then, it is true for n = 1, i.e.,

lk1 = gk
1 + 2gk

0 = 1.

Suppose that the equation holds for n. So we have

lkn = gk
n + 2gk

n−1.

Now we show that the equation is true for n + 1. From the definition
of lkn, we have

(3.2) lkn+1 = lkn + lkn−1 + · · · + lkn−k+1.

Since lkn = gk
n + 2gk

n−1, we can write equation (3.2) as follows

lkn+1 = gk
n + 2gk

n−1 + (gk
n−1 + 2gk

n−2) + · · · + (gk
n−k+1 + 2gk

n−k)

= (gk
n + gk

n−1 + · · · + gk
n−k+1) + 2(gk

n−1 + gk
n−2 + · · · + gk

n−k)

= gk
n+1 + 2gk

n.

So the equation holds for n + 1. Thus the proof is complete.
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For example, if k = 2, {l2n} is the usual Lucas sequence, {Ln}, and
{g2

n} is the usual Fibonacci sequence, {Fn}, then it is a well-known fact
that

Ln = Fn + 2Fn−1.

If k = 4 and n = 9, then

l49 = g4
9 + 2g4

8 = 108 + 2.56 = 220.

Then we have the following theorem.

Theorem 3. Let lkn be the generalized order-k Lucas number. Then,
for k ≥ 2,

lkn =
det(V (1)

k ) + 2 det(V (2)
k )

det(V )
.

Proof. From Lemma 1, we know that lkn = gk
n + 2gk

n−1. Also, by
Theorem 2, we have Gn = [tij ]k×k and tij = det(V (i)

j )/det(V ). If we
take i = 2, j = k in equation (3.1), and since t2k = gk

n−1, we write

lkn = gk
n + 2gk

n−1

=
det(V (1)

k ) + 2 det(V (2)
k )

det(V )
.

So the proof is complete.

For a further generalization of Theorem 3, we give a lemma which is
immediately seen from equation (1.3).

Lemma 2. Let lin and gi
n be the generalized order-k Lucas and

Fibonacci numbers for 1 ≤ i ≤ k. Then

lin = 2gi−1
n − gi

n

for 1 ≤ i ≤ k.

Then we obtain the following theorem.
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Theorem 4. Let lin be the generalized order-k Lucas number, for
1 ≤ i ≤ k. Then

lin =
2 detV

(1)
i−1 + det V

(1)
i

detV
.

Proof. From Gn = [tij ] = [gj
n−i+1] and Lemma 2, we obtain for

1 ≤ i ≤ k,
lin = 2t1,i−1 − t1,i,

and by using Theorem 2, the proof is immediately seen.

4. Combinatorial representation of the generalized order-
k Fibonacci and Lucas numbers. In this section, we consider a
combinatorial representation of lkn and gk

n for n > 0. Recall that A is
the k × k (0, 1) matrix given by (1.1):

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 . . . 1 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎦ .

Also we know from [1] that Gn ia as in (1.2):

Gn = [tij ] =

⎡
⎢⎢⎢⎣

g1
n g2

n . . . gk
n

g1
n−1 g2

n−1 . . . gk
n−1

...
...

. . .
...

g1
n−k+1 g2

n−k+1 . . . gk
n−k+1

⎤
⎥⎥⎥⎦ .

Lemma 3 [4].

tij =
∑

(m1,... ,mk)

mj + mj+1 + · · · + mk

m1 + m2 + · · · + mk
×

(
m1 + m2 + · · · + mk

m1, m2, . . . , mk

)

where the summation is over nonnegative integers satisfying m1+2m2+
· · · + kmk = n − i + j and defined to be 1 if n = i − j.
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Corollary 4. Let gk
n be the generalized order-k Fibonacci number.

Then

gk
n =

∑
(m1,... ,mk)

mk

m1 + m2 + · · · + mk
×

(
m1 + m2 + · · · + mk

m1, m2, . . . , mk

)
,

where the summation is over nonnegative integers satisfying m1+2m2+
· · · + kmk = n − 1 + k.

Proof. In Lemma 2, if we take i = 1 and j = k, then the conclusion
can be directly from (1.2).

Corollary 5. Let gk
n be the generalized order-k Fibonacci number.

Then

gk
n−1 =

∑
(d1,... ,dk)

dk

d1 + d2 + · · · + dk
×

(
d1 + d2 + · · · + dk

d1, d2, . . . , dk

)

where the summation is over nonnegative integers satisfying d1 +2d2 +
· · · + kdk = n − 2 + k.

Proof. In Lemma 3, if we take i = 2 and j = k, then the conclusion
follows directly from (1.2).

From Corollaries 4 and 5 and Lemma 1, we have the following
corollary.

Corollary 6. Let lkn be the generalized order-k Lucas number. Then

lkn =
∑

(m1,... ,mk)

mk

m1 + m2 + · · · + mk
×

(
m1 + m2 + · · · + mk

m1, m2, . . . , mk

)

+ 2
∑

(d1,... ,dk)

dk

d1 + d2 + · · · + dk
×

(
d1 + d2 + · · · + dk

d1, d2, . . . , dk

)

where the summation is over nonnegative integers satisfying m1+2m2+
· · · + kmk = n − 1 + k and d1 + 2d2 + . . . + kdk = n − 2 + k.
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Proof. From Lemma 1, we know that lkn = gk
n + 2gk

n−1 and if i = 1
and j = k and, i = 2 and j = k, in Lemma 3, respectively, then the
conclusion can be derived directly from (1.2).
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