ON THE GENERALIZED ORDER- k FIBONACCI AND LUCAS NUMBERS

EMRAH KILIÇ and DURSUN TAŞCI

Abstract

In this paper we consider the generalized order- k Fibonacci and Lucas numbers. We give the generalized Binet formula, combinatorial representation and some relations involving the generalized order- k Fibonacci and Lucas numbers.

1. Introduction. We consider the generalized order- k Fibonacci and Lucas numbers. In [1] Er defined k sequences of the generalized order- k Fibonacci numbers as shown:

$$
g_{n}^{i}=\sum_{j=1}^{k} g_{n-j}^{i}, \quad \text { for } \quad n>0 \quad \text { and } \quad 1 \leq i \leq k
$$

with boundary conditions for $1-k \leq n \leq 0$,

$$
g_{n}^{i}= \begin{cases}1 & \text { if } i=1-n \\ 0 & \text { otherwise }\end{cases}
$$

where g_{n}^{i} is the nth term of the i th sequence. For example, if $k=2$, then $\left\{g_{n}^{2}\right\}$ is the usual Fibonacci sequence, $\left\{F_{n}\right\}$, and, if $k=4$, then the fourth sequence of the generalized order-4 Fibonacci numbers is

$$
1,1,2,4,8,15,29,56,108,208,401,773,1490, \ldots
$$

In [6] the authors defined k sequences of the generalized order- k Lucas numbers as shown:

$$
l_{n}^{i}=\sum_{j=1}^{k} l_{n-j}^{i}, \quad \text { for } \quad n>0 \quad \text { and } \quad 1 \leq i \leq k
$$

[^0]with boundary conditions for $1-k \leq n \leq 0$,
\[

l_{n}^{i}= $$
\begin{cases}-1 & \text { if } i=1-n \\ 2 & \text { if } i=2-n \\ 0 & \text { otherwise }\end{cases}
$$
\]

where l_{n}^{i} is the nth term of the i th sequence. For example, if $k=2$, then $\left\{l_{n}^{2}\right\}$ is the usual Lucas sequence, $\left\{L_{n}\right\}$, and, if $k=4$, then the fourth sequence of the generalized order- 4 Lucas numbers is
$1,3,4,8,16,31,59,114,220,424,817,1575,30636, \ldots$.

Also, Er showed that

$$
\left[\begin{array}{c}
g_{n+1}^{i} \\
g_{n}^{i} \\
\vdots \\
g_{n-k+2}^{i}
\end{array}\right]=A\left[\begin{array}{c}
g_{n}^{i} \\
g_{n-1}^{i} \\
\vdots \\
g_{n-k+1}^{i}
\end{array}\right]
$$

where

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \tag{1.1}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

is a $k \times k$ companion matrix. Then he derived

$$
G_{n+1}=A G_{n}
$$

where

$$
G_{n}=\left[\begin{array}{cccc}
g_{n}^{1} & g_{n}^{2} & \cdots & g_{n}^{k} \tag{1.2}\\
g_{n-1}^{1} & g_{n-1}^{2} & \cdots & g_{n-1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n-k+1}^{1} & g_{n-k+1}^{2} & \cdots & g_{n-k+1}^{k}
\end{array}\right]
$$

Moreover, Er showed that $G_{1}=A$ and $G_{n}=A^{n}$. The matrix A is said to be the generalized order- k Fibonacci matrix. Furthermore, in [3], recently Karaduman proved that

$$
\operatorname{det} G_{n}= \begin{cases}(-1)^{n} & \text { if } k \text { is even } \\ 1 & \text { if } k \text { is odd }\end{cases}
$$

In [5], we showed

$$
\left[\begin{array}{c}
l_{n+1}^{i} \\
l_{n}^{i} \\
\vdots \\
l_{n-k+2}^{i}
\end{array}\right]=A\left[\begin{array}{c}
l_{n}^{i} \\
l_{n-1}^{i} \\
\vdots \\
l_{n-k+1}^{i}
\end{array}\right]
$$

and derived

$$
H_{n+1}=A H_{n}
$$

where

$$
H_{n}=\left[\begin{array}{cccc}
l_{n}^{1} & l_{n}^{2} & \ldots & l_{n}^{k} \\
l_{n-1}^{1} & l_{n-1}^{2} & \ldots & l_{n-1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
l_{n-k+1}^{1} & l_{n-k+1}^{2} & \ldots & l_{n-k+1}^{k}
\end{array}\right]
$$

also

$$
H_{1}=A K
$$

where

$$
K=\left[\begin{array}{cccccc}
-1 & 2 & 0 & 0 & \ldots & 0 \\
0 & -1 & 2 & 0 & \ldots & 0 \\
0 & 0 & -1 & 2 & \ldots & 0 \\
0 & 0 & 0 & -1 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1
\end{array}\right]
$$

Further, we proved

$$
\operatorname{det} H_{n+1}= \begin{cases}-1 & \text { if } k \text { is odd } \\ (-1)^{n+1} & \text { if } k \text { is even }\end{cases}
$$

and showed that

$$
\begin{equation*}
H_{n}=G_{n} K \tag{1.3}
\end{equation*}
$$

which is a well-known fact for $k=2$, see $[\mathbf{6}]$.
2. Some relations involving the generalized order- k Fibonacci and Lucas numbers. In this section we present and extend some relationships between the generalized order-k Fibonacci and Lucas numbers by matrix methods. From [1], it is well known that, for all positive integers n, m and $1 \leq i \leq k$,

$$
g_{m+n}^{i}=\sum_{j=1}^{k} g_{n}^{j} g_{m+1-j}^{i}
$$

where g_{n}^{i} is the generalized order- k Fibonacci number.
We note that, for example, if $k=2$, then $\left\{g_{n}^{2}\right\}$ is the usual Fibonacci sequence. For all $n, m \in Z^{+}$,

$$
\begin{aligned}
g_{m+n}^{2} & =\sum_{j=1}^{2} g_{n}^{j} g_{m+1-j}^{2} \\
& =g_{n}^{1} g_{m}^{2}+g_{n}^{2} g_{m-1}^{2}
\end{aligned}
$$

and, since $g_{m}^{1}=g_{m+1}^{2}$ for $i=1, k=2$ and all $m \in Z^{+}$, we write

$$
g_{m+n}^{2}=g_{n+1}^{2} g_{m}^{2}+g_{n}^{2} g_{m-1}^{2}
$$

Indeed, we generalize the following relation between Fibonacci numbers

$$
F_{n+m}=F_{n+1} F_{m}+F_{n} F_{m-1}
$$

see [7, p. 176].

Theorem 1. Let l_{n}^{i} be the generalized order-k Lucas number. For all positive integers n, m and $1 \leq i \leq k$,

$$
l_{n+m}^{i}=\sum_{j=1}^{k} g_{n}^{j} l_{m+1-j}^{i}
$$

Proof. From [6], we know that $H_{n}=G_{n} K$, so we can write that

$$
H_{n+m}=G_{n+m} K=A^{n+m} K=A^{n} A^{m} K=A^{n} H_{m}=G_{n} H_{m}
$$

or

$$
H_{n+m}=G_{m} H_{n}
$$

Since $H_{n+m}=G_{n} H_{m}, l_{n+m}^{i}=\left(H_{n+m}\right)_{1, i}$,

$$
\begin{aligned}
l_{n+m}^{i}= & g_{n}^{1} l_{m}^{i}+g_{n}^{2} l_{m-1}^{i}+\cdots+g_{n}^{k} l_{m-k+1}^{i} \\
= & g_{n}^{1} l_{m}^{i}+\left(g_{n-1}^{2}+g_{n-2}^{2}\right) l_{m-1}^{i}+\cdots \\
& +\left(g_{n-1}^{k}+g_{n-2}^{k}+\cdots+g_{n-k}^{k}\right) l_{m-k+1}^{i}
\end{aligned}
$$

Thus, we obtain

$$
l_{n+m}^{i}=\sum_{j=1}^{k} g_{n}^{j} l_{m+1-j}^{i}
$$

so the proof is completed.

For example, if $k=2$, then g_{n}^{2} and l_{n}^{2} are the usual Fibonacci and Lucas number, respectively; then

$$
\begin{aligned}
l_{n+m}^{2} & =\sum_{j=1}^{2} g_{n}^{j} l_{m+1-j}^{2} \\
& =g_{n}^{1} l_{m}^{2}+g_{n}^{2} l_{m-1}^{2}
\end{aligned}
$$

and, since $g_{n}^{1}=g_{n+1}^{2}$ for $i=1, k=2$, and all $n \in Z^{+}$, we write

$$
l_{n+m}^{2}=g_{n+1}^{2} l_{m}^{2}+g_{n}^{2} l_{m-1}^{2}
$$

Indeed, we generalize the following relation involving Lucas and Fibonacci numbers,

$$
\begin{aligned}
L_{n+m} & =F_{n+1} L_{m}+F_{n} L_{m-1} \\
& =\left(F_{n}+F_{n-1}\right) L_{m}+F_{n} L_{m-1} \\
& =F_{n}\left(L_{m}+L_{m-1}\right)+F_{n-1} L_{m} \\
& =F_{n} L_{m+1}+F_{n-1} L_{m},
\end{aligned}
$$

see [7, p. 176].
Note that $G_{n+m+p}=G_{n} G_{m+p}, g_{n+m}^{i}=\left(G_{n+m+p}\right)_{p-1, i}$.

Then we have the following corollary.

Corollary 1. Let g_{n}^{i} be the generalized order- k Fibonacci number. For all $n, m, p \in \mathbf{Z}^{+}$and $1 \leq i \leq k$,

$$
g_{n+m+p}^{i}=\sum_{j=1}^{k} g_{n}^{j} g_{m+1-p-j}^{i}
$$

Also we note that $G_{n-p} G_{m+p}=G_{n+m}, g_{n+m}^{i}=\left(G_{n+m}\right)_{1, i}$. Then we have the following corollary.

Corollary 2. Let g_{n}^{i} be the generalized order- k Fibonacci number. Then, for $n, m, p \in \mathbf{Z}^{+}$and $1 \leq i \leq k$,

$$
g_{m+n}^{i}=\sum_{j=1}^{k} g_{n-p}^{j} g_{m+p-j}^{i}
$$

In [4] Levesque gave a Binet formula for the Fibonacci sequence. In this paper, we derive a generalized Binet formula for the generalized order- k Fibonacci and Lucas sequence by using the determinant.
3. Generalized Binet formula. Let $f(\lambda)$ be the characteristic polynomial of the generalized order- k Fibonacci matrix A. Then $f(\lambda)=\lambda^{k}-\lambda^{k-1}-\cdots-\lambda-1$, which is a well-known fact. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of A. In [5], Miles also showed that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct. Let V be a $k \times k$ Vandermonde matrix as follows:

$$
V=\left[\begin{array}{ccccc}
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \lambda_{3}^{k-1} & \ldots & \lambda_{k}^{k-1} \\
\lambda_{1}^{k-2} & \lambda_{2}^{k-2} & \lambda_{3}^{k-2} & \ldots & \lambda_{k}^{k-2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\lambda_{1} & \lambda_{2} & \lambda_{3} & \ldots & \lambda_{k} \\
1 & 1 & 1 & \ldots & 1
\end{array}\right]
$$

Let

$$
d_{k}^{i}=\left[\begin{array}{c}
\lambda_{1}^{n+k-i} \\
\lambda_{2}^{n+k-i} \\
\vdots \\
\lambda_{k}^{n+k-i}
\end{array}\right]
$$

and $V_{j}^{(i)}$ be a $k \times k$ matrix obtained from V by replacing the j th column of V by d_{k}^{i}. Then we have the generalized Binet formula for the generalized order- k Fibonacci numbers with the following theorem.

Theorem 2. Let g_{n}^{i} be the generalized order- k Fibonacci number, for $1 \leq i \leq k$. Then

$$
t_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)}
$$

where $G_{n}=\left[t_{i j}\right]_{k \times k}$.

Proof. Since the eigenvalues of A are distinct, A is diagonalizable. It is easy to show that $A V=V D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Since V is invertible, $V^{-1} A V=D$. Hence, A is similar to D. So we have $A^{n} V=V D^{n}$. In [1], it is known that $G_{n}=A^{n}$. So we can write that $G_{n} V=V D^{n}$. Let $G_{n}=\left[t_{i j}\right]_{k \times k}$. Then we have the following linear system of equations:

$$
\begin{gathered}
t_{i 1} \lambda_{1}^{k-1}+t_{i 2} \lambda_{1}^{k-2}+\cdots+t_{i k}=\lambda_{1}^{n+k-i} \\
t_{i 1} \lambda_{2}^{k-1}+t_{i 2} \lambda_{2}^{k-2}+\cdots+t_{i k}=\lambda_{2}^{n+k-i} \\
\vdots \\
t_{i 1} \lambda_{k}^{k-1}+t_{i 2} \lambda_{k}^{k-2}+\cdots+t_{i k}=\lambda_{k}^{n+k-i}
\end{gathered}
$$

And, for each $j=1,2, \ldots, k$, we get

$$
\begin{equation*}
t_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)} \tag{3.1}
\end{equation*}
$$

So the proof is complete.

Corollary 3. Let g_{n}^{k} be the generalized order-k Fibonacci number, then

$$
g_{n}^{k}=t_{1 k}=\frac{\operatorname{det}\left(V_{k}^{(1)}\right)}{\operatorname{det}(V)}
$$

Proof. If we take $i=1$ and $j=k$, then $t_{1, k}=g_{n}^{k}$. Also, employing Theorem 2 , the proof is immediately seen.

Now we are going to give a generalized Binet formula for the generalized order- k Lucas sequence. Firstly, we give a lemma for a relationship between the generalized order- k Fibonacci and Lucas numbers.

Lemma 1. Let l_{n}^{k} and g_{n}^{k} be the generalized order- k Lucas and Fibonacci numbers, respectively. Then, for $k \geq 2$,

$$
l_{n}^{k}=g_{n}^{k}+2 g_{n-1}^{k}
$$

Proof. We will use the induction method to prove that $l_{n}^{k}=g_{n}^{k}+$ $2 g_{n-1}^{k}$. From the definition of the generalized order- k Lucas and Fibonacci numbers, we know that, for all $k \in \mathbf{Z}^{+}$with $k \geq 2$, $l_{1}^{k}=g_{1}^{k}=1$ and $g_{0}^{k}=0$. Then, it is true for $n=1$, i.e.,

$$
l_{1}^{k}=g_{1}^{k}+2 g_{0}^{k}=1
$$

Suppose that the equation holds for n. So we have

$$
l_{n}^{k}=g_{n}^{k}+2 g_{n-1}^{k}
$$

Now we show that the equation is true for $n+1$. From the definition of l_{n}^{k}, we have

$$
\begin{equation*}
l_{n+1}^{k}=l_{n}^{k}+l_{n-1}^{k}+\cdots+l_{n-k+1}^{k} \tag{3.2}
\end{equation*}
$$

Since $l_{n}^{k}=g_{n}^{k}+2 g_{n-1}^{k}$, we can write equation (3.2) as follows

$$
\begin{aligned}
l_{n+1}^{k} & =g_{n}^{k}+2 g_{n-1}^{k}+\left(g_{n-1}^{k}+2 g_{n-2}^{k}\right)+\cdots+\left(g_{n-k+1}^{k}+2 g_{n-k}^{k}\right) \\
& =\left(g_{n}^{k}+g_{n-1}^{k}+\cdots+g_{n-k+1}^{k}\right)+2\left(g_{n-1}^{k}+g_{n-2}^{k}+\cdots+g_{n-k}^{k}\right) \\
& =g_{n+1}^{k}+2 g_{n}^{k}
\end{aligned}
$$

So the equation holds for $n+1$. Thus the proof is complete.

For example, if $k=2,\left\{l_{n}^{2}\right\}$ is the usual Lucas sequence, $\left\{L_{n}\right\}$, and $\left\{g_{n}^{2}\right\}$ is the usual Fibonacci sequence, $\left\{F_{n}\right\}$, then it is a well-known fact that

$$
L_{n}=F_{n}+2 F_{n-1} .
$$

If $k=4$ and $n=9$, then

$$
l_{9}^{4}=g_{9}^{4}+2 g_{8}^{4}=108+2.56=220 .
$$

Then we have the following theorem.
Theorem 3. Let l_{n}^{k} be the generalized order-k Lucas number. Then, for $k \geq 2$,

$$
l_{n}^{k}=\frac{\operatorname{det}\left(V_{k}^{(1)}\right)+2 \operatorname{det}\left(V_{k}^{(2)}\right)}{\operatorname{det}(V)}
$$

Proof. From Lemma 1, we know that $l_{n}^{k}=g_{n}^{k}+2 g_{n-1}^{k}$. Also, by Theorem 2, we have $G_{n}=\left[t_{i j}\right]_{k \times k}$ and $t_{i j}=\operatorname{det}\left(V_{j}^{(i)}\right) / \operatorname{det}(V)$. If we take $i=2, j=k$ in equation (3.1), and since $t_{2 k}=g_{n-1}^{k}$, we write

$$
\begin{aligned}
l_{n}^{k} & =g_{n}^{k}+2 g_{n-1}^{k} \\
& =\frac{\operatorname{det}\left(V_{k}^{(1)}\right)+2 \operatorname{det}\left(V_{k}^{(2)}\right)}{\operatorname{det}(V)} .
\end{aligned}
$$

So the proof is complete.

For a further generalization of Theorem 3, we give a lemma which is immediately seen from equation (1.3).

Lemma 2. Let l_{n}^{i} and g_{n}^{i} be the generalized order-k Lucas and Fibonacci numbers for $1 \leq i \leq k$. Then

$$
l_{n}^{i}=2 g_{n}^{i-1}-g_{n}^{i}
$$

for $1 \leq i \leq k$.
Then we obtain the following theorem.

Theorem 4. Let l_{n}^{i} be the generalized order-k Lucas number, for $1 \leq i \leq k$. Then

$$
l_{n}^{i}=\frac{2 \operatorname{det} V_{i-1}^{(1)}+\operatorname{det} V_{i}^{(1)}}{\operatorname{det} V}
$$

Proof. From $G_{n}=\left[t_{i j}\right]=\left[g_{n-i+1}^{j}\right]$ and Lemma 2, we obtain for $1 \leq i \leq k$,

$$
l_{n}^{i}=2 t_{1, i-1}-t_{1, i}
$$

and by using Theorem 2, the proof is immediately seen.
4. Combinatorial representation of the generalized orderk Fibonacci and Lucas numbers. In this section, we consider a combinatorial representation of l_{n}^{k} and g_{n}^{k} for $n>0$. Recall that A is the $k \times k(0,1)$ matrix given by (1.1):

$$
A=\left[\begin{array}{cccccc}
1 & 1 & 1 & \ldots & 1 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

Also we know from [1] that G_{n} ia as in (1.2):

$$
G_{n}=\left[t_{i j}\right]=\left[\begin{array}{cccc}
g_{n}^{1} & g_{n}^{2} & \cdots & g_{n}^{k} \\
g_{n-1}^{1} & g_{n-1}^{2} & \cdots & g_{n-1}^{k} \\
\vdots & \vdots & \ddots & \vdots \\
g_{n-k+1}^{1} & g_{n-k+1}^{2} & \cdots & g_{n-k+1}^{k}
\end{array}\right]
$$

Lemma 3 [4].

$$
t_{i j}=\sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{j}+m_{j+1}+\cdots+m_{k}}{m_{1}+m_{2}+\cdots+m_{k}} \times\binom{ m_{1}+m_{2}+\cdots+m_{k}}{m_{1}, m_{2}, \ldots, m_{k}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+$ $\cdots+k m_{k}=n-i+j$ and defined to be 1 if $n=i-j$.

Corollary 4. Let g_{n}^{k} be the generalized order-k Fibonacci number. Then

$$
g_{n}^{k}=\sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{k}}{m_{1}+m_{2}+\cdots+m_{k}} \times\binom{ m_{1}+m_{2}+\cdots+m_{k}}{m_{1}, m_{2}, \ldots, m_{k}}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+$ $\cdots+k m_{k}=n-1+k$.

Proof. In Lemma 2, if we take $i=1$ and $j=k$, then the conclusion can be directly from (1.2).

Corollary 5. Let g_{n}^{k} be the generalized order-k Fibonacci number. Then

$$
g_{n-1}^{k}=\sum_{\left(d_{1}, \ldots, d_{k}\right)} \frac{d_{k}}{d_{1}+d_{2}+\cdots+d_{k}} \times\binom{ d_{1}+d_{2}+\cdots+d_{k}}{d_{1}, d_{2}, \ldots, d_{k}}
$$

where the summation is over nonnegative integers satisfying $d_{1}+2 d_{2}+$ $\cdots+k d_{k}=n-2+k$.

Proof. In Lemma 3, if we take $i=2$ and $j=k$, then the conclusion follows directly from (1.2).

From Corollaries 4 and 5 and Lemma 1, we have the following corollary.

Corollary 6. Let l_{n}^{k} be the generalized order- k Lucas number. Then

$$
\begin{aligned}
l_{n}^{k}= & \sum_{\left(m_{1}, \ldots, m_{k}\right)} \frac{m_{k}}{m_{1}+m_{2}+\cdots+m_{k}} \times\binom{ m_{1}+m_{2}+\cdots+m_{k}}{m_{1}, m_{2}, \ldots, m_{k}} \\
& +2 \sum_{\left(d_{1}, \ldots, d_{k}\right)} \frac{d_{k}}{d_{1}+d_{2}+\cdots+d_{k}} \times\binom{ d_{1}+d_{2}+\cdots+d_{k}}{d_{1}, d_{2}, \ldots, d_{k}}
\end{aligned}
$$

where the summation is over nonnegative integers satisfying $m_{1}+2 m_{2}+$ $\cdots+k m_{k}=n-1+k$ and $d_{1}+2 d_{2}+\ldots+k d_{k}=n-2+k$.

Proof. From Lemma 1, we know that $l_{n}^{k}=g_{n}^{k}+2 g_{n-1}^{k}$ and if $i=1$ and $j=k$ and, $i=2$ and $j=k$, in Lemma 3, respectively, then the conclusion can be derived directly from (1.2).

REFERENCES

1. M.C. Er, Sums of Fibonacci numbers by matrix methods, Fibonacci Quart. 22 (1984), 204-207.
2. D. Kalman, Generalized Fibonacci numbers by matrix methods, Fibonacci Quart. 20 (1982), 73-76.
3. E. Karaduman, An application of Fibonacci numbers in matrices, Appl. Math. Comp. 147 (2004), 903-908.
4. C. Levesque, On $m^{t h}$-order linear recurrences, Fibonacci Quart. 23 (1985), 290-293.
5. E.P. Miles, Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly 67 (1960), 745-752.
6. D. Taşci and E. Kiliç, On the order-k generalized Lucas numbers, Appl. Math. Comp. 155 (2004), 637-641.
7. S. Vajda, Fibonacci \& Lucas numbers and the golden section, Chichester, Brisbane, 1989.

Department of Mathematics, TOBB University of Economics and Technology, TR-06560 Södütözü, Ankara, Turkey
E-mail address: ekilic@etu.edu.tr
Gazi University, Department of Mathematics, 06500 Tekniokullar, Ankara, Turkey
E-mail address: dtasci@gazi.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification. Primary 11B39, 15A24.
 Key words and phrases. Generalized order- k Fibonacci and Lucas numbers, Binet formula, combinatorial representation.

 Received by the editors on April 20, 2004, and in revised form on June 7, 2004.

