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ON THE GENERALIZED RIESZ B-DIFFERENCE

SEQUENCE SPACES

Metin Başarir

Abstract

In this paper, we define the new generalized Riesz B-difference sequence
spaces rq

∞ (p, B) , rq
c (p, B) , rq

0 (p, B) and rq (p, B) which consist of the se-
quences whose RqB-transforms are in the linear spaces l∞ (p) , c (p) , c0 (p)
and l (p) , respectively, introduced by I.J.Maddox[8],[9]. We give some topo-
logical properties and compute the α−, β− and γ−duals of these spaces. Also
we determine the neccesary and sufficient conditions on the matrix transfor-
mations from these spaces into l∞ and c.

1 Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of w is
called as a sequence space. We write l∞, c, c0 for the sequence spaces of all bounded,
convergent and null sequences, respectively. Also by, bs, cs, l1 and lp we denote the
spaces of all bounded, convergent, absolutely and p-absolutely convergent series,
respectively; where 1 < p < ∞.

A linear topological space X over the real field R is said to be a paranormed
space if there is a subadditive function g : X → R such that g(θ) = 0, g(x) = g(−x)
and scalar multiplication is continuous, i.e.,|αn − α| → 0 and g(xn − x) → 0 imply
g(αnxn − αx) → 0 for all α’s in R and all x’s in X, where θ is the zero vector in
the linear space X. Assume here and after that p = (pk) be a bounded sequence
of strictly positive real numbers with sup pk = H and M = max{1, H}. Then the
linear spaces l∞(p), c(p), c0(p) and l(p) were defined by Maddox [8],[9] .

For simplicity notation, here and in what follows, the summation without limits

runs from 0 to ∞. We assume throughout (pk)−1 +
(
p
′
k

)−1

= 1 provided 1 <
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inf pk ≤ H < ∞ and denote the collection of all finite subsets of N by F , where
N = {0, 1, 2, ...} .

For the sequence spaces λ and µ, define the set S(λ, µ) by

S(λ, µ) = {z = (zk) ∈ w : xz = (xkzk) ∈ µ for all x ∈ λ} (1.1)

With the notation (1.1), the α−, β−, γ−duals of a sequence space λ, which are
respectively denoted by λα, λβ and λγ , are defined by

λα = S(λ, l1) , λβ = S(λ, cs) and λγ = S(λ, bs).

If a sequence space λ paranormed by h contains a sequence (bn) with the property
that for every x ∈ λ there is a unique sequence of scalars (αn) such that

lim
n→∞

h

(
x−

n∑

k=0

αkbk

)
= 0

then (bn) is called a Schauder basis (or briefly basis) for λ. The series
∑

αkbk which
has the sum x is then called the expansion of x with respect to (bn) and written as
x =

∑
αkbk.

Let λ and µ be two sequence spaces and A = (ank) be an infinite matrix of real
numbers ank, where n, k ∈ N. Then, we say that A defines a matrix mapping from
λ into µ and we denote it by writing A : λ → µ, if for every sequence x = (xk) ∈ λ
the sequence Ax = {(Ax)n}, the A−transform of x, is in µ; where

(Ax)n =
∑

k

ankxk (n ∈ N) . (1.2)

By (λ : µ), we denote the class of all matrices A such that A : λ → µ. Thus,
A ∈ (λ : µ) if and only if the series on the right side of (1.2) converges for each n∈ N
and every x∈ λ and we have Ax = {(Ax)n}n∈N ∈ µ for all x∈ λ. A sequence x is
said to be A−summable to α if Ax converges to α which is called as the A−limit
of x.

The matrix domain λA of an infinite matrix A in sequence space λ is defined by

λA = {x = (xk) ∈ w : Ax ∈ λ} (1.3)

which is a sequence space. In the most cases, the new sequence space λA gener-
ated by the limitation matrix A from a sequence space λ is the expansion or the
contraction of the original space λ.

Let (qk) be a sequence of positive numbers and

Qn =
n∑

k=0

qk , (n ∈ N) .

Then the matrix Rq = (rq
nk) of the Riesz mean is given by

rq
nk =

{ qk

Qn
, (0 ≤ k ≤ n)

0 , (k > n)
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The Riesz sequence space introduced in [1] is ;

rq (p) =



x = (xk) ∈ w :

∑

k

∣∣∣∣∣∣
1

Qk

k∑

j=0

qjxj

∣∣∣∣∣∣

pk

< ∞


 ; with (0 < pk ≤ H < ∞)

which is sequence space of the Rq−transform of x are in l(p). Recently, Başarır and
Öztürk [11] defined the Riesz difference sequence space rq (p,4) which consist of
the sequences whose 4-transforms are in the linear space rq (p) , where 4 denotes
the matrix 4 = (4nk) defined by

4nk =
{

(−1)n−k , (n− 1 ≤ k ≤ n) ,
0 , (k < n− 1) or (k > n)

.

Altay and Başar [3] introduced the generalized difference matrix B = (bnk) by

bnk =





r , (k = n)
s , (k = n− 1)
0 , (0 ≤ k < n− 1) or (k > n)

for all k, n ∈ N , r, s ∈ R−{0} . The matrix B can be reduced the difference matrix
4 in case r = 1, s = −1. The results related to the matrix domain of the matrix B
are more general and more comprehensive than the corresponding consequences of
matrix domain of 4 , and include them [11],[6].

Then main purpose of this paper is to introduce the Riesz B−difference se-
quence spaces rq

∞ (p,B) , rq
c (p,B), rq

0 (p,B) and rq (p,B) and to investigate some
topological properties.

2 The Riesz B-Difference Sequence Spaces

Let define the sequence y = {yk (q)} , which is used , as the (RqB)−transform of
a sequence x = (xk) , i.e.,

yk (q) =
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)xj + qk.r.xk


 (k ∈ N) . (2.1)

We define the Riesz B−difference sequence spaces rq
∞ (p,B) , rq

c (p,B), rq
0 (p,B) and

rq (p,B) by
rq
∞ (p,B) = {x = (xj) ∈ w : yk (q) ∈ l∞ (p)} ,

rq
c (p,B) = {x = (xj) ∈ w : yk (q) ∈ c (p)} ,

rq
0 (p,B) = {x = (xj) ∈ w : yk (q) ∈ c0 (p)}

and
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rq (p,B) = {x = (xj) ∈ w : yk (q) ∈ l (p)} .

Where the linear spaces l∞(p), c(p), c0(p) and l(p) were defined as follows ;

l∞(p) =
{

x = (xk) ∈ w : sup
k∈N

|xk|pk < ∞
}

,

c(p) =
{

x = (xk) ∈ w : lim
k→∞

|xk − l|pk = 0 for some l ∈ R
}

,

c0(p) =
{

x = (xk) ∈ w : lim
k→∞

|xk|pk = 0
}

which are the complete spaces paranormed by

g1(x) = sup
k∈N

|xk|
pk
M

and

l(p) =

{
x = (xk) ∈ w :

∑

k

|xk|pk < ∞
}

,

which is the complete spaces paranormed by

g2(x) =

(∑

k

|xk|pk

) 1
M

.

If we take r=1 and s=-1 in the matrix B as in the Riesz B−difference sequence
spaces rq

∞ (p,B) , rq
c (p,B), rq

0 (p,B) and rq (p,B) then these spaces reduce the se-
quence spaces rq

∞ (p, ∆), rq
c (p, ∆) , rq

0 (p, ∆) and rq (p, ∆) .
If we take pk = p for all k then we denote rq

∞ (p,B) = rq
∞ (B), rq

c (p,B) =
rq
c (B), rq

0 (p,B) = rq
0 (B) and rq (p, B) = rq (B).

We may begin with the following theorem .

Theorem 1. (a) rq
0 (p,B) is a complete linear metric space paranormed by gB,

defined by

gB(x) = sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s) xj + qk.r.xk




∣∣∣∣∣∣

pk
M

(2.2)

g is paranorm for the spaces rq
∞ (p,B) and rq

c (p,B) only in the trivial case with
inf pk > 0 when rq

∞ (p,B) = rq
∞ (B) and rq

c (p,B) = rq
c (B) .

(b) rq (p, B) is a complete linear metric space paranormed by

g∗B(x) =


∑

k

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)xj + qk.r.xk




∣∣∣∣∣∣

pk



1
M

(2.3)

with 0 < pk ≤ sup pk = H < ∞ and M = max {1,H} .
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Proof. We only prove the theorem for the space rq
0 (p,B). The proof of other spaces

can be done similarly. The linearity of rq
0 (p,B) with respect to the co-ordinatewise

addition and scalar multiplication follows from the inequalities which are satisfied
for u, v ∈ rq

0 (p,B) [10].

sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s) (uj + vj) + qk.r. (uk + vk)




∣∣∣∣∣∣

pk
M

(2.4)

≤ sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s) uj + qk.r.uk




∣∣∣∣∣∣

pk
M

(2.1)

+ sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s) vj + qk.r.vk




∣∣∣∣∣∣

pk
M

(2.2)

and for any α ∈ R [8]
|αk|pk ≤ max

{
1, |α|M

}
. (2.5)

It is clear that gB(θ) = 0 and gB(−x) = gB(x) for all u ∈ rq
0 (p,B) . Again the

inequalities (2.4) and (2.5) yield the subadditivity of gB and

gB (αu) ≤ max {1, |α|} gB (u) . (2.3)

Let {xn} be any sequence of the elements of the space rq
0 (p,B) such that

gB (xn − x) → 0 (2.4)

and (λn) also be any sequence of scalars such that λn → λ. Then, since the inequality

gB (xn) ≤ gB (x) + gB (xn − x) (2.5)

holds by subadditivity of gB , {gB (xn)} is bounded, and thus we have

gB (λnxn − λx) = sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)
(
λnxn

j − λxj

)
+ qk.r (λnxn

k − λxk)




∣∣∣∣∣∣

pk
M

(2.6)

= |λn − λ| 1
M sup

k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)xn
j + qk.r.xn

k




∣∣∣∣∣∣

pk
M

(2.7)

+ |λ| 1
M sup

k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)
(
xn

j − xj

)
+ qk.r (xn

k − xk)




∣∣∣∣∣∣

pk
M

(2.8)
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≤ |λn − λ| 1
M gB (xn) + |λ| 1

M gB (xn − x) (2.9)

which tends to zero as n → ∞. Hence the continuity of the scalar multiplication
has shown. Finally; it is clear to say that gB is a paranorm on the space rq

0 (p,B).
Moreover; we will prove the completeness of the space rq

0 (p,B). Let
{
xi

}
be a

Cauchy sequence in the space rq
0 (p,B) , where xi =

{
x

(i)
k

}
=

{
xi

0, x
i
1, x

i
2, ...

} ∈
rq
0 (p, B) . Then, for a given ε > 0 there exists a positive integer n0 (ε) such that

gB

(
xi − xj

)
< ε (2.6)

for all i, j ≥ n0 (ε) . If we use the definition of gB we obtain for each fixed k ∈ N
that ∣∣(RqBxi

)
k
− (

RqBxj
)
k

∣∣ ≤ sup
k∈N

∣∣(RqBxi
)
k
− (

RqBxj
)
k

∣∣ pk
M < ε (2.7)

for i, j ≥ n0 (ε) which leads us to the fact that
{(

RqBx0
)
k
,
(
RqBx1

)
k
,
(
RqBx2

)
k
, ...

}
(2.10)

is a Cauchy sequence of real numbers for every fixed k ∈ N. Since R is com-
plete, it converges, so we write

(
RqBxi

)
k
→ (RqBx)k as i → ∞. Hence by using

these infinitely many limits (RqBx)0 , (RqBx)1 , (RqBx)2 , ..., we define the sequence
{(RqBx)0 , (RqBx)1 , (RqBx)2 , ...}. From (2.7) with j →∞ we have

∣∣(RqBxi
)
k
− (RqBx)k

∣∣ ≤ ε (2.8)

i ≥ n0 (ε) for every fixed k ∈ N. Since xi =
{

x
(i)
k

}
∈ rq

0 (p,B) ,

∣∣(RqBxi
)
k

∣∣ pk
M < ε (2.11)

for all k ∈ N. Therefore, by (2.8) we obtain that

|(RqBx)k|
pk
M ≤ ∣∣(RqBx)k −

(
RqBxi

)
k

∣∣ pk
M +

∣∣(RqBxi
)
k

∣∣ pk
M < ε (2.9)

for all i ≥ n0 (ε) . This shows that the sequence RqBx belongs to the space c0 (p) .
Since

{
xi

}
was an arbitrary Cauchy sequence, the space rq

0 (p,B) is complete.

If we take r=1, s=-1 in the theorem 1 then we have the following result.

Corollary 1. (a) rq
0 (p, ∆) is a complete linear metric space paranormed by g∆,

defined by g∆(x) = supk∈N
∣∣∣ 1
Qk

[∑k−1
j=0 (qj − qj+1)xj + qk.xk

]∣∣∣
pk
M

.

g∆ is paranorm for the spaces rq
∞ (p, ∆) and rq

c (p, ∆) only in the trivial case
with inf pk > 0 when rq

∞ (p, ∆) = rq
∞ (∆) and rq

c (p,∆) = rq
c (∆) .

(b) [11] rq (p, ∆) is a complete linear metric space paranormed by

g?
∆(x) =

(∑
k

∣∣∣ 1
Qk

[∑k−1
j=0 (qj − qj+1.)xj + qk.xk

]∣∣∣
pk

) 1
M

with 0 < pk ≤ sup pk =
H < ∞ and M = max {1,H} .
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Theorem 2. Let rqj + sqj+1 6= 0 for all j. Then the Riesz B−difference se-
quence spaces rq

∞ (p,B) , rq
c (p,B), rq

0 (p,B) and rq (p,B) are linearly isomorphic to
the space l∞ (p), c (p) , c0 (p) and l (p) , respectively; where 0 < pk ≤ H < ∞.

Proof. We establish this for the the space rq
∞ (p,B) . For proof of the theorem, we

should show the existence of a linear bijection between the space rq
∞ (p,B) and

l∞ (p) for 0 < pk ≤ H < ∞. With the notation of

yk =
1

Qk




k−1∑

j=0

(qj .r + qj+1.s) xj + qk.r.xk




define the transformation T from rq
∞ (p,B) to l∞ (p) by x 7→ y = Tx. T is a linear

transformation, morever; it is obviuos that x = θ whenever Tx = θ and hence T is
injective.

Let y = (yk) ∈ l∞ (p) and define the sequence x = (xk) by

xk =
k−1∑
n=0

(−1)k−n

(
sk−n−1

rk−nqn+1
+

sk−n

rk−n+1qn

)
Qnyn +

Qkyk

r.qk
for k ∈ N.

Then

gB(x) = sup
k∈N

∣∣∣∣∣∣
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)xj + qk.r.xk




∣∣∣∣∣∣

pk
M

= sup
k∈N

∣∣∣∣∣∣

k∑

j=0

δkjyj

∣∣∣∣∣∣

pk
M

= sup
k∈N

|yk|
pk
M = g1 (y) < ∞

where

δkj =
{

1 , k = j
0 , k 6= j

.

Thus, we have that x ∈ rq
∞ (p,B) . Consequently; T is surjective and is paranorm

preserving. Hence, T is linear bijection and this explains that the spaces rq
∞ (p, B)

and l∞ (p) are linearly isomorphic, as was desired.

Corollary 2. Let qj − qj+1 6= 0 for all j. Then the ∆-Riesz sequence spaces
rq
∞ (p, ∆) , rq

c (p, ∆), rq
0 (p, ∆) and rq (p,∆) are linearly isomorphic to the spaces

l∞ (p),c (p) , c0 (p) and l (p) , respectively; where 0 < pk ≤ H < ∞.

And now we shall quote some lemmas which are needed in proving our theorems.

Lemma 1. [5] A ∈ (l∞ (p) : l1) if and only if

sup
K∈F

∑
n

∣∣∣∣∣
∑

k∈K

ankK
1

pk

∣∣∣∣∣ < ∞ for all integers K > 1. (2.10)
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Lemma 2. [7] Let pk > 0 for every k ∈ N. Then A ∈ (l∞ (p) : l∞) if and only if

sup
n∈N

∑

k

|ank|K
1

pk < ∞ for all integers K > 1. (2.11)

Lemma 3. [7] Let pk > 0 for every k ∈ N. Then A ∈ (l∞ (p) : c) if and only if
∑

k

|ank|K
1

pk convergence uniformly in n for all integers K > 1, (2.12)

lim
n→∞

ank = αk for all k ∈ N. (2.13)

Lemma 4. [5] (i) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (l (p) : l1) if
and only if there exists an integer K > 1 such that

sup
K∈F

∑

k

∣∣∣∣∣
∑

n∈K

ankK−1

∣∣∣∣∣

p
′
k

< ∞.

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (l (p) : l1) if and only if

sup
K∈F

sup
k∈N

∣∣∣∣∣
∑

n∈K

ank

∣∣∣∣∣

pk

< ∞.

Lemma 5. [7] (i) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (l (p) : l∞) if
and only if there exists an integer K > 1 such that

sup
n∈N

∑

k

∣∣a−1
nk K−1

∣∣p
′
k < ∞. (2.14)

(ii) Let 0 < pk ≤ 1 for every k ∈ N. Then A ∈ (l (p) : l∞) if and only if

sup
n,k∈N

|ank|pk < ∞. (2.15)

Lemma 6. [7] Let 0 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (l (p) : c) if and
only if (2.6) and (2.7) hold, and

lim
n→∞

ank = βk for k ∈ N (2.16)

also holds.

Theorem 3. (a) Define the sets R1 (p), R2 (p), R3 (p) , R4 (p) , R5 (p) and R6 (p)
as follows:

R1 (p) = ∩
K>1

{
a = (ak) ∈ w : sup

N∈F

∑
n

∣∣∣∣∣
∑

k∈N

[
∇ (k, n) Qkan +

Qnan

r.qn

]
K

1
pk

∣∣∣∣∣ < ∞
}

,
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R2 (p) = ∩
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
1

pk < ∞

and
(

akQk

r.qk
K

1
pk

)
∈ c0

}
,

R3 (p) = ∩
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
1

pk < ∞

and

{(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qn

}
∈ l∞

}
,

R4 (p) = ∪
K>1

{
a = (ak) ∈ w : sup

N∈F

∑
n

∣∣∣∣∣
∑

k∈N

[
∇ (k, n)Qkan +

Qnan

r.qn

]
K

−1
pk

∣∣∣∣∣ < ∞
}

,

R5 (p) =

{
a = (ak) ∈ w :

∑
n

∣∣∣∣∣
∑

k

[
∇ (k, n)Qkan +

Qnan

r.qn

]∣∣∣∣∣ < ∞
}

and

R6 (p) = ∪
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
−1
pk < ∞

}
,

where

∇ (k, n) = (−1)n−k

(
sn−k−1

rn−kqk+1
+

sn−k

rn−k+1qk

)
.

Then

{rq
∞ (p,B)}α = R1 (p) {rq

∞ (p,B)}β = R2 (p) {rq
∞ (p,B)}γ = R3 (p) ,

{rq
c (p,B)}α = R4 (p) ∩R5 (p) {rq

c (p, B)}β = R6 (p)∩cs {rq
c (p,B)}γ = R6 (p)∩bs,

{rq
0 (p, B)}α = R4 (p) {rq

0 (p,B)}β = {rq
0 (p,B)}γ = R6 (p) .

(b) (i) Let 1 < pk ≤ H < ∞ for every k ∈ N. Define the sets R7 (p) , R8 (p) as
follows:

R7 (p) = ∪
K>1





a = (ak) ∈ w : sup
N∈F

∑

k

∣∣∣∣∣
∑

n∈N

[
∇ (k, n) Qkan +

Qnan

r.qn

]
K−1

∣∣∣∣∣

p
′
k

< ∞





.

R8 (p) = ∪
K>1





a = (ak) ∈ w :
∑

k

∣∣∣∣∣

[(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

]
K−1

∣∣∣∣∣

p
′
k

< ∞





.

Then; [rq (p,B)]α = R7 (p) , [rq (p, B)]β = R8 (p) ∩ cs , [rq (p,B)]γ = R8 (p) .
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(ii) Let 0 < pk ≤ 1 for every k ∈ N. Define the sets R9 (p) , R10 (p) by

R9 (p) =

{
a = (ak) ∈ w : sup

N∈F
sup
k∈N

∣∣∣∣∣
∑

n∈N

[
∇ (k, n)Qkan +

Qnan

r.qn

]
K−1

∣∣∣∣∣

pk

< ∞
}

.

R10 (p) =

{
a = (ak) ∈ w : sup

k∈N

∣∣∣∣∣

[(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

]∣∣∣∣∣

pk

< ∞
}

.

Then; [rq (p,B)]α = R8 (p) , [rq (p,B)]β = R10 (p) ∩ cs
, [rq (p,B)]γ = R10 (p) .

Proof. We give the proof for the space rq
∞ (p,B). Let us take any a = (an) ∈ w. We

easily derive with the notation

yk =
1

Qk




k−1∑

j=0

(qj .r + qj+1.s)xj + qk.r.xk




that

anxn =
n−1∑

k=0

∇ (k, n) anQkyk +
anQnyn

r.qn
=

n∑

k=0

unkyk = (Uy)n ; (2.17)

(n ∈ N) , where U = (unk) is defined by

unk =




∇ (k, n) anQk , (0 ≤ k ≤ n− 1)
anQn

r.qn
, (k = n)

0 , (k > n)

for all k, n ∈ N. Thus we deduce from (2.17) that ax = (anxn) ∈ l1 whenever
x = (xk) ∈ rq

∞ (p,B) if and only if Uy ∈ l1 whenever y = (yk) ∈ l∞ (p) . From
Lemma1 , we obtain the desired result that

[rq
∞ (p,B)]α = R1 (p) .

Consider the equation

n∑

k=0

akxk =
n−1∑

k=0

(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qkyk +

akQkyk

r.qk
= (V y)n , (n ∈ N) ;

(2.18)
where V = (vnk) defined by

vnk =





(
ak

r.qk
+∇ (k, n)

n∑
i=k+1

ai

)
Qk , (0 ≤ k ≤ n− 1)

akQk

r.qk
, (k = n)

0 , (k > n)



ON THE GENERALIZED RIESZ B-DIFFERENCE SEQUENCE SPACES 45

for all k, n ∈ N. Thus we deduce by with (2.18) that ax = (akxk) ∈ cs whenever
x = (xk) ∈ rq

∞ (p, B) if and only if V y ∈ c whenever y = (yk) ∈ l∞ (p) . Therefore
we derive from Lemma3 that

∑

k

∣∣∣∣∣

(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
1

pk < ∞

and
lim

k→∞
akQk

r.qk
K

1
pk = 0

which shows that [rq
∞ (p, B)]β = R2 (p) .

As this, we deduce by (2.18) that ax = (akxk) ∈ bs whenever x = (xk) ∈
rq
∞ (p, B) if and only if V y ∈ l∞ whenever y = (yk) ∈ l∞ (p) . Therefore we obtain

by Lemma2 that [rq
∞ (p, B)]γ = R3 (p) and this completes proof.

Corollary 3. Define the sets T1 (p), T2 (p), T3 (p) , T4 (p) , T5 (p) and T6 (p) as fol-
lows:

T1 (p) = ∩
K>1

{
a = (ak) ∈ w : sup

N∈F

∑
n

∣∣∣∣∣
∑

k∈N

[
Λ (k, n)Qkan +

Qnan

qn

]
K

1
pk

∣∣∣∣∣ < ∞
}

,

T2 (p) = ∩
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

qk
+ Λ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
1

pk < ∞

and
(

akQk

qk
K

1
pk

)
∈ c0

}
,

T3 (p) = ∩
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

qk
+ Λ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
1

pk < ∞

and

{(
ak

qk
+ Λ (k, n)

n∑

i=k+1

ai

)
Qn

}
∈ l∞

}
,

T4 (p) = ∪
K>1

{
a = (ak) ∈ w : sup

N∈F

∑
n

∣∣∣∣∣
∑

k∈N

[
Λ (k, n)Qkan +

Qnan

qn

]
K

−1
pk

∣∣∣∣∣ < ∞
}

,

T5 (p) =

{
a = (ak) ∈ w :

∑
n

∣∣∣∣∣
∑

k

[
Λ (k, n)Qkan +

Qnan

r.qn

]∣∣∣∣∣ < ∞
}

and

T6 (p) = ∪
K>1

{
a = (ak) ∈ w :

∑

k

∣∣∣∣∣

(
ak

qk
+ Λ (k, n)

n∑

i=k+1

ai

)
Qk

∣∣∣∣∣ K
−1
pk < ∞

}
,
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where

Λ (k, n) = (−1)n−k

(
(−1)n−k−1

qk+1
+

(−1)n−k

qk

)
.

Then

{rq
∞ (p, ∆)}α = T1 (p) {rq

∞ (p, ∆)}β = T2 (p) {rq
∞ (p,∆)}γ = T3 (p) ,

{rq
c (p, ∆)}α = T4 (p) ∩T5 (p) {rq

c (p, ∆)}β = T6 (p)∩cs {rq
c (p, ∆)}γ = T6 (p)∩bs,

{rq
0 (p, ∆)}α = T4 (p) {rq

0 (p, ∆)}β = {rq
0 (p, ∆)}γ = T6 (p) .

3 The Basis for the Spaces rq
0 (p,B) and rq

c (p,B)

In the present section, we give two sequences of the points of the spaces rq
0 (p,B)

and rq
c (p,B) which form the basis for those spaces.

Theorem 4. Let µk (t) = (RqBx)k for all k ∈ N and 0 < pk ≤ H < ∞. Define the

sequence b(k) (q) =
{

b
(k)
n (q)

}
n∈N

of the elements of the space rq
0 (p, B) for every

fixed k ∈ N by

b(k)
n (q) =





∇ (k, n)Qk , (0 ≤ n ≤ k − 1)

Qk

r.qk
, (k = n)

0 , ( n > k − 1)
(3.1)

where

∇ (k, n) = (−1)n−k

(
sn−k−1

rn−kqk+1
+

sn−k

rn−k+1qk

)
.

Then,
(a) The sequence

{
b(k) (q)

}
k∈N is a basis for the space rq

0 (p,B) and any x ∈
rq
0 (p, B) has a unique representation of the form

x =
∑

k

µk (q) b(k) (q) . (3.2)

(b) The set
{

(RqB)−1
e, b(k) (q)

}
is a basis for the space rq

c (p,B) and any x ∈
rq
c (p, B) has a unique representation of the form

x = le +
∑

k

|µk (q)− l| b(k) (q) ; (3.3)

where
l = lim

k→∞
(RqBx)k . (3.4)
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Proof. It is clear that
{
b(k) (q)

} ⊂ rq
0 (p, B) , since

RqBb(k) (q) = e(k) ∈ c0 (p) , (for k ∈ N) (3.5)

for 0 < pk ≤ H < ∞; where e(k) is the sequence whose only non-zero term is a 1
in kth place for each k ∈ N.

Let x ∈ rq
0 (p,B) be given. For every non-negative integer m, we put

x[m] =
m∑

k=0

µk (q) b(k) (q) . (3.6)

Then, we obtain by applying RqB to (3.6) with (3.5) that

RqBx[m] =
m∑

k=0

µk (q)RqBb(k) (q) =
m∑

k=0

(RqB)k e(k)

and

(
RqB

(
x− x[m]

))
i
=





0 , (0 ≤ i ≤ m)

(RqBx)i , (i > m) ; (i, m ∈ N) .

Given ε > 0, then there exists an integer m0 such that

sup
i≥m

|(RqBx)i|
pk
M <

ε

2

for all m ≥ m0. Hence,

gB

(
x− x[m]

)
= sup

i≥m
|(RqBx)i|

pk
M ≤ sup

i≥m0

|(RqBx)i|
pk
M <

ε

2
< ε

for all m ≥ m0 which proves that x ∈ rq
0 (p,B) is represented as in (3.2) .

To show the uniqueness of this representation, we suppose that

x =
∑

k

λk (q) b(k) (q) .
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Since the linear transformation T , from rq
0 (p,B) to c0 (p) used in Theorem 2, is

continuous we have

(RqBx)n =
∑

k

λk (q)
{

RqBb(k) (q)
}

n
=

∑

k

λk (q) e(k)
n = λn (q) ; n ∈ N

which contradicts the fact that (RqBx)n = µk (q) for all n ∈ N. Hence, the repre-

sentation (3.2) of x ∈ rq
0 (p,B) is unique. Thus the proof of the part (a) of Theorem

is completed.
(b) Since

{
b(k) (q)

} ⊂ rq
0 (p,B) and e ∈ c, the inclusion

{
e, b(k) (q)

} ⊂ rq
c (p,B)

trivially holds. Let us take x ∈ rq
c (p,B) . Then, there uniquely exists an l satisfy-

ing (3.4). We thus have the fact that u ∈ rq
0 (p,B) whenever we set u = x − le.

Therefore, we deduce by part (a) of the present theorem that the representation
of x given by (3.3) is unique and this step concludes the proof of the part (b) of
Theorem.

Now we characterize the matrix mappings from the spaces rq
∞ (p, B) , rq

c (p,B)

, rq
0 (p,B) and rq (p,B) to the spaces l∞ and c. The following theorems can be

proved by used standart methods and we omit the detail.

Theorem 5. (i) A ∈ (rq
∞ (p, B) : l∞) if and only if

lim
k→∞

ank

qk
QkM

1
pk = 0, (∀n,M ∈ N) (3.7)

and

sup
n∈N

∑

k

∣∣∣∣∣
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

∣∣∣∣∣ QkM
1

pk < ∞, (∀M ∈ N) (3.8)

hold.

(ii) A ∈ (rq
c (p,B) : l∞) if and only if (3.7) ,

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ M
1

pk = 0, (∃M ∈ N) (3.9)

and

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ < ∞ (3.10)

hold.

(iii) A ∈ (rq
0 (p,B) : l∞) if and only if (3.7) and (3.9) hold.
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(iv) Let 1 < pk ≤ H < ∞ for every k ∈ N. Then A ∈ (rq (p,B) : l∞) if and
only if there exists an integer K > 1 such that

R (K) = sup
n∈N

∑

k

∣∣∣∣∣

[(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk

]
K−1

∣∣∣∣∣

p
′
k

< ∞ (3.11)

and
{ank}k∈N ∈ cs

for each n ∈ N.

(v) Let 0 < pk ≤ 1 for every k ∈ N.Then A ∈ (rq (p,B) : l∞) if and only if

sup
n,k∈N

∣∣∣∣∣

[(
ak

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk

]∣∣∣∣∣

pk

< ∞ 3.12

and
{ank}k∈N ∈ cs

for each n ∈ N.

Theorem 6. (i) A ∈ (rq
∞ (p,B) : c) if and only if (3.7),

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ M
1

pk < ∞, (∀M ∈ N) (3.13)

and

∃ (αk) ⊂ R such that lim
n→∞

[∑

k

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ M
1

pk

]
= 0,

(3.14)
(∀M ∈ N) hold.

(ii) A ∈ (rq
c (p, B) : c) if and only if (3.7) , (3.9) ,

∃α ∈ R such that lim
n→∞

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk − α

∣∣∣∣∣ = 0, (3.15)

∃ (αk) ⊂ R such that lim
n→∞

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ = 0, (∀k ∈ N)

(3.16)
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and

∃ (αk) ⊂ R such that sup
n∈N

L
∑

k

∣∣∣∣∣

(
ank

r.qk
+∇ (k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ M
−1
pk < ∞,

(3.17)
(∀L,∃M ∈ N) hold.

(iii) A ∈ (rq
0 (p,B) : c) if and only if (3.7) , (3.9) , (3.16) and (3.17) .

Corollary 4. (i) A ∈ (rq
∞ (p, ∆) : l∞) if and only if

lim
k→∞

ank

qk
QkM

1
pk = 0, (∀n,M ∈ N) (3.18)

and

sup
n∈N

∑

k

∣∣∣∣∣
ank

qk
+ Λ (k, n)

n∑

i=k+1

ani

∣∣∣∣∣ QkM
1

pk < ∞, (∀M ∈ N) (3.19)

hold.

(ii) A ∈ (rq
c (p,∆) : l∞) if and only if (3.18) ,

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

qk
+ Λ(k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ M
1

pk = 0, (∃M ∈ N) (3.20)

and

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

qk
+ Λ (k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ < ∞ (3.21)

hold.

(iii) A ∈ (rq
0 (p, ∆) : l∞) if and only if (3.18) and (3.20) hold.

Corollary 5. (i) A ∈ (rq
∞ (p, ∆) : c) if and only if (3.18),

sup
n∈N

∑

k

∣∣∣∣∣

(
ank

qk
+ Λ(k, n)

n∑

i=k+1

ani

)
Qk

∣∣∣∣∣ M
1

pk < ∞, (∀M ∈ N) (3.22)

and

∃ (αk) ⊂ R such that lim
n→∞

[∑

k

∣∣∣∣∣

(
ank

qk
+ Λ (k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ M
1

pk

]
= 0,

(3.23)
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(∀M ∈ N) hold.

(ii) A ∈ (rq
c (p, ∆) : c) if and only if (3.18) , (3.20) ,

∃α ∈ R such that lim
n→∞

∣∣∣∣∣

(
ank

qk
+ Λ(k, n)

n∑

i=k+1

ani

)
Qk − α

∣∣∣∣∣ = 0, (3.24)

∃ (αk) ⊂ R such that lim
n→∞

∣∣∣∣∣

(
ank

qk
+ Λ(k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ = 0, (∀k ∈ N)

(3.25)
and

∃ (αk) ⊂ R such that sup
n∈N

L
∑

k

∣∣∣∣∣

(
ank

qk
+ Λ (k, n)

n∑

i=k+1

ani

)
Qk − αk

∣∣∣∣∣ M
−1
pk < ∞,

(3.26)
(∀L,∃M ∈ N) hold.

(iii) A ∈ (rq
0 (p,∆) : c) if and only if (3.18) , (3.20) , (3.25) and (3.26) .
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