# ON THE GENERALIZED RIESZ B-DIFFERENCE SEQUENCE SPACES 

Metin Başarir


#### Abstract

In this paper, we define the new generalized Riesz B-difference sequence spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B), r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ which consist of the sequences whose $R^{q} B$-transforms are in the linear spaces $l_{\infty}(p), c(p), c_{0}(p)$ and $l(p)$, respectively, introduced by I.J.Maddox[8],[9]. We give some topological properties and compute the $\alpha-, \beta$ - and $\gamma$-duals of these spaces. Also we determine the neccesary and sufficient conditions on the matrix transformations from these spaces into $l_{\infty}$ and $c$.


## 1 Introduction

By w, we denote the space of all real valued sequences. Any vector subspace of w is called as a sequence space. We write $l_{\infty}, c, c_{0}$ for the sequence spaces of all bounded, convergent and null sequences, respectively. Also by, $b s, c s, l_{1}$ and $l_{p}$ we denote the spaces of all bounded, convergent, absolutely and $p$-absolutely convergent series, respectively; where $1<p<\infty$.

A linear topological space $X$ over the real field $R$ is said to be a paranormed space if there is a subadditive function $g: X \rightarrow R$ such that $g(\theta)=0, g(x)=g(-x)$ and scalar multiplication is continuous, i.e., $\left|\alpha_{n}-\alpha\right| \rightarrow 0$ and $g\left(x_{n}-x\right) \rightarrow 0$ imply $g\left(\alpha_{n} x_{n}-\alpha x\right) \rightarrow 0$ for all $\alpha$ 's in $R$ and all $x$ 's in $X$, where $\theta$ is the zero vector in the linear space $X$. Assume here and after that $p=\left(p_{k}\right)$ be a bounded sequence of strictly positive real numbers with $\sup p_{k}=H$ and $M=\max \{1, H\}$. Then the linear spaces $l_{\infty}(p), c(p), c_{0}(p)$ and $l(p)$ were defined by Maddox [8],[9].

For simplicity notation, here and in what follows, the summation without limits runs from 0 to $\infty$. We assume throughout $\left(p_{k}\right)^{-1}+\left(p_{k}^{\prime}\right)^{-1}=1$ provided $1<$

[^0]$\inf p_{k} \leq H<\infty$ and denote the collection of all finite subsets of $\mathbb{N}$ by $\mathcal{F}$, where $\mathbb{N}=\{0,1,2, \ldots\}$.

For the sequence spaces $\lambda$ and $\mu$, define the set $S(\lambda, \mu)$ by

$$
\begin{equation*}
S(\lambda, \mu)=\left\{z=\left(z_{k}\right) \in w: x z=\left(x_{k} z_{k}\right) \in \mu \text { for all } x \in \lambda\right\} \tag{1.1}
\end{equation*}
$$

With the notation (1.1), the $\alpha-, \beta-, \gamma-$ duals of a sequence space $\lambda$, which are respectively denoted by $\lambda^{\alpha}, \lambda^{\beta}$ and $\lambda^{\gamma}$, are defined by

$$
\lambda^{\alpha}=S\left(\lambda, l_{1}\right), \quad \lambda^{\beta}=S(\lambda, c s) \text { and } \lambda^{\gamma}=S(\lambda, b s)
$$

If a sequence space $\lambda$ paranormed by $h$ contains a sequence $\left(b_{n}\right)$ with the property that for every $x \in \lambda$ there is a unique sequence of scalars $\left(\alpha_{n}\right)$ such that

$$
\lim _{n \rightarrow \infty} h\left(x-\sum_{k=0}^{n} \alpha_{k} b_{k}\right)=0
$$

then $\left(b_{n}\right)$ is called a Schauder basis (or briefly basis) for $\lambda$. The series $\sum \alpha_{k} b_{k}$ which has the sum x is then called the expansion of $x$ with respect to $\left(b_{n}\right)$ and written as $x=\sum \alpha_{k} b_{k}$.

Let $\lambda$ and $\mu$ be two sequence spaces and $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers $a_{n k}$, where $n, k \in \mathbb{N}$. Then, we say that $A$ defines a matrix mapping from $\lambda$ into $\mu$ and we denote it by writing $A: \lambda \rightarrow \mu$, if for every sequence $x=\left(x_{k}\right) \in \lambda$ the sequence $A x=\left\{(A x)_{n}\right\}$, the $A$-transform of $x$, is in $\mu$; where

$$
\begin{equation*}
(A x)_{n}=\sum_{k} a_{n k} x_{k} \quad(n \in \mathbb{N}) \tag{1.2}
\end{equation*}
$$

By $(\lambda: \mu)$, we denote the class of all matrices $A$ such that $A: \lambda \rightarrow \mu$. Thus, $A \in(\lambda: \mu)$ if and only if the series on the right side of (1.2) converges for each $\mathrm{n} \in \mathbb{N}$ and every $\mathrm{x} \in \lambda$ and we have $A x=\left\{(A x)_{n}\right\}_{n \in \mathbb{N}} \in \mu$ for all $\mathrm{x} \in \lambda$. A sequence $x$ is said to be $A$-summable to $\alpha$ if $A x$ converges to $\alpha$ which is called as the $A$-limit of $x$.

The matrix domain $\lambda_{A}$ of an infinite matrix $A$ in sequence space $\lambda$ is defined by

$$
\begin{equation*}
\lambda_{A}=\left\{x=\left(x_{k}\right) \in w: A x \in \lambda\right\} \tag{1.3}
\end{equation*}
$$

which is a sequence space. In the most cases, the new sequence space $\lambda_{A}$ generated by the limitation matrix $A$ from a sequence space $\lambda$ is the expansion or the contraction of the original space $\lambda$.

Let $\left(q_{k}\right)$ be a sequence of positive numbers and

$$
Q_{n}=\sum_{k=0}^{n} q_{k}, \quad(n \in \mathbb{N})
$$

Then the matrix $R^{q}=\left(r_{n k}^{q}\right)$ of the Riesz mean is given by

$$
r_{n k}^{q}=\left\{\begin{array}{llr}
\frac{q_{k}}{Q_{n}} & , \quad(0 \leq k \leq n) \\
0 & , & (k>n)
\end{array}\right.
$$

The Riesz sequence space introduced in [1] is ;

$$
r^{q}(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|\frac{1}{Q_{k}} \sum_{j=0}^{k} q_{j} x_{j}\right|^{p_{k}}<\infty\right\} ; \quad \text { with } \quad\left(0<p_{k} \leq H<\infty\right)
$$

which is sequence space of the $R^{q}$ - transform of $x$ are in $l(p)$. Recently, Başarır and Öztürk [11] defined the Riesz difference sequence space $r^{q}(p, \triangle)$ which consist of the sequences whose $\triangle$-transforms are in the linear space $r^{q}(p)$, where $\triangle$ denotes the matrix $\triangle=\left(\triangle_{n k}\right)$ defined by

$$
\triangle_{n k}=\left\{\begin{array}{ll}
(-1)^{n-k} & , \quad(n-1 \leq k \leq n) \\
0 & , \quad(k<n-1) \text { or }(k>n)
\end{array} .\right.
$$

Altay and Başar [3] introduced the generalized difference matrix $B=\left(b_{n k}\right)$ by

$$
b_{n k}=\left\{\begin{array}{llr}
r & , & (k=n) \\
s, & (k=n-1) \\
0 & , & (0 \leq k<n-1)
\end{array} \text { or }(k>n)\right.
$$

for all $k, n \in \mathbb{N}, r, s \in \mathbb{R}-\{0\}$. The matrix $B$ can be reduced the difference matrix $\triangle$ in case $r=1, s=-1$. The results related to the matrix domain of the matrix $B$ are more general and more comprehensive than the corresponding consequences of matrix domain of $\triangle$, and include them [11],[6].

Then main purpose of this paper is to introduce the Riesz $B$-difference sequence spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B), r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ and to investigate some topological properties.

## 2 The Riesz B-Difference Sequence Spaces

Let define the sequence $y=\left\{y_{k}(q)\right\}$, which is used, as the $\left(R^{q} B\right)$-transform of a sequence $x=\left(x_{k}\right)$, i.e.,

$$
\begin{equation*}
y_{k}(q)=\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right] \quad(k \in \mathbb{N}) \tag{2.1}
\end{equation*}
$$

We define the Riesz $B$-difference sequence spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B), r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ by

$$
\begin{aligned}
r_{\infty}^{q}(p, B) & =\left\{x=\left(x_{j}\right) \in w: y_{k}(q) \in l_{\infty}(p)\right\}, \\
r_{c}^{q}(p, B) & =\left\{x=\left(x_{j}\right) \in w: y_{k}(q) \in c(p)\right\} \\
r_{0}^{q}(p, B) & =\left\{x=\left(x_{j}\right) \in w: y_{k}(q) \in c_{0}(p)\right\}
\end{aligned}
$$

and

$$
r^{q}(p, B)=\left\{x=\left(x_{j}\right) \in w: y_{k}(q) \in l(p)\right\} .
$$

Where the linear spaces $l_{\infty}(p), c(p), c_{0}(p)$ and $l(p)$ were defined as follows ;

$$
\begin{gathered}
l_{\infty}(p)=\left\{x=\left(x_{k}\right) \in w: \sup _{k \in \mathbb{N}}\left|x_{k}\right|^{p_{k}}<\infty\right\}, \\
c(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0 \text { for some } l \in \mathbb{R}\right\}, \\
c_{0}(p)=\left\{x=\left(x_{k}\right) \in w: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=0\right\}
\end{gathered}
$$

which are the complete spaces paranormed by

$$
g_{1}(x)=\sup _{k \in \mathbb{N}}\left|x_{k}\right|^{\frac{p_{k}}{M}}
$$

and

$$
l(p)=\left\{x=\left(x_{k}\right) \in w: \sum_{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}
$$

which is the complete spaces paranormed by

$$
g_{2}(x)=\left(\sum_{k}\left|x_{k}\right|^{p_{k}}\right)^{\frac{1}{M}}
$$

If we take $\mathrm{r}=1$ and $\mathrm{s}=-1$ in the matrix $B$ as in the Riesz $B$-difference sequence spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B), r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ then these spaces reduce the sequence spaces $r_{\infty}^{q}(p, \Delta), r_{c}^{q}(p, \Delta), r_{0}^{q}(p, \Delta)$ and $r^{q}(p, \Delta)$.

If we take $p_{k}=p$ for all k then we denote $r_{\infty}^{q}(p, B)=r_{\infty}^{q}(B), r_{c}^{q}(p, B)=$ $r_{c}^{q}(B), r_{0}^{q}(p, B)=r_{0}^{q}(B)$ and $r^{q}(p, B)=r^{q}(B)$.

We may begin with the following theorem .
Theorem 1. (a) $r_{0}^{q}(p, B)$ is a complete linear metric space paranormed by $g_{B}$, defined by

$$
\begin{equation*}
g_{B}(x)=\sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right]\right|^{\frac{p_{k}}{M}} \tag{2.2}
\end{equation*}
$$

$g$ is paranorm for the spaces $r_{\infty}^{q}(p, B)$ and $r_{c}^{q}(p, B)$ only in the trivial case with $\inf p_{k}>0$ when $r_{\infty}^{q}(p, B)=r_{\infty}^{q}(B)$ and $r_{c}^{q}(p, B)=r_{c}^{q}(B)$.
(b) $r^{q}(p, B)$ is a complete linear metric space paranormed by

$$
\begin{equation*}
g_{B}^{*}(x)=\left(\sum_{k}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right]\right|^{p_{k}}\right)^{\frac{1}{M}} \tag{2.3}
\end{equation*}
$$

with $0<p_{k} \leq \sup p_{k}=H<\infty$ and $M=\max \{1, H\}$.

Proof. We only prove the theorem for the space $r_{0}^{q}(p, B)$. The proof of other spaces can be done similarly. The linearity of $r_{0}^{q}(p, B)$ with respect to the co-ordinatewise addition and scalar multiplication follows from the inequalities which are satisfied for $u, v \in r_{0}^{q}(p, B)[10]$.

$$
\begin{align*}
\sup _{k \in \mathbb{N}} \mid & \left.\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right)\left(u_{j}+v_{j}\right)+q_{k} \cdot r \cdot\left(u_{k}+v_{k}\right)\right]\right|^{\frac{p_{k}}{M}}  \tag{2.4}\\
& \leq \sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) u_{j}+q_{k} \cdot r \cdot u_{k}\right]\right|^{\frac{p_{k}}{M}}  \tag{2.1}\\
& +\sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) v_{j}+q_{k} \cdot r \cdot v_{k}\right]\right|^{\frac{p_{k}}{M}} \tag{2.2}
\end{align*}
$$

and for any $\alpha \in \mathbb{R}[8]$

$$
\begin{equation*}
\left|\alpha_{k}\right|^{p_{k}} \leq \max \left\{1,|\alpha|^{M}\right\} \tag{2.5}
\end{equation*}
$$

It is clear that $g_{B}(\theta)=0$ and $g_{B}(-x)=g_{B}(x)$ for all $u \in r_{0}^{q}(p, B)$. Again the inequalities (2.4) and (2.5) yield the subadditivity of $g_{B}$ and

$$
\begin{equation*}
g_{B}(\alpha u) \leq \max \{1,|\alpha|\} g_{B}(u) \tag{2.3}
\end{equation*}
$$

Let $\left\{x^{n}\right\}$ be any sequence of the elements of the space $r_{0}^{q}(p, B)$ such that

$$
\begin{equation*}
g_{B}\left(x^{n}-x\right) \rightarrow 0 \tag{2.4}
\end{equation*}
$$

and $\left(\lambda_{n}\right)$ also be any sequence of scalars such that $\lambda_{n} \rightarrow \lambda$. Then, since the inequality

$$
\begin{equation*}
g_{B}\left(x^{n}\right) \leq g_{B}(x)+g_{B}\left(x^{n}-x\right) \tag{2.5}
\end{equation*}
$$

holds by subadditivity of $g_{B},\left\{g_{B}\left(x^{n}\right)\right\}$ is bounded, and thus we have

$$
\begin{array}{r}
g_{B}\left(\lambda_{n} x^{n}-\lambda x\right)=\sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right)\left(\lambda_{n} x_{j}^{n}-\lambda x_{j}\right)+q_{k} \cdot r\left(\lambda_{n} x_{k}^{n}-\lambda x_{k}\right)\right]\right|^{\frac{p_{k}}{M}} \\
=\left|\lambda_{n}-\lambda\right|^{\frac{1}{M}} \sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}^{n}+q_{k} \cdot r \cdot x_{k}^{n}\right]\right|^{\frac{p_{k}}{M}} \\
+|\lambda|^{\frac{1}{M}} \sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right)\left(x_{j}^{n}-x_{j}\right)+q_{k} \cdot r\left(x_{k}^{n}-x_{k}\right)\right]\right|^{\frac{p_{k}}{M}} \tag{2.8}
\end{array}
$$

$$
\begin{equation*}
\leq\left|\lambda_{n}-\lambda\right|^{\frac{1}{M}} g_{B}\left(x^{n}\right)+|\lambda|^{\frac{1}{M}} g_{B}\left(x^{n}-x\right) \tag{2.9}
\end{equation*}
$$

which tends to zero as $n \rightarrow \infty$. Hence the continuity of the scalar multiplication has shown. Finally; it is clear to say that $g_{B}$ is a paranorm on the space $r_{0}^{q}(p, B)$. Moreover; we will prove the completeness of the space $r_{0}^{q}(p, B)$. Let $\left\{x^{i}\right\}$ be a Cauchy sequence in the space $r_{0}^{q}(p, B)$, where $x^{i}=\left\{x_{k}^{(i)}\right\}=\left\{x_{0}^{i}, x_{1}^{i}, x_{2}^{i}, \ldots\right\} \in$ $r_{0}^{q}(p, B)$. Then, for a given $\varepsilon>0$ there exists a positive integer $n_{0}(\varepsilon)$ such that

$$
\begin{equation*}
g_{B}\left(x^{i}-x^{j}\right)<\varepsilon \tag{2.6}
\end{equation*}
$$

for all $i, j \geq n_{0}(\varepsilon)$. If we use the definition of $g_{B}$ we obtain for each fixed $k \in \mathbb{N}$ that

$$
\begin{equation*}
\left|\left(R^{q} B x^{i}\right)_{k}-\left(R^{q} B x^{j}\right)_{k}\right| \leq \sup _{k \in \mathbb{N}}\left|\left(R^{q} B x^{i}\right)_{k}-\left(R^{q} B x^{j}\right)_{k}\right|^{\frac{p_{k}}{M}}<\varepsilon \tag{2.7}
\end{equation*}
$$

for $i, j \geq n_{0}(\varepsilon)$ which leads us to the fact that

$$
\begin{equation*}
\left\{\left(R^{q} B x^{0}\right)_{k},\left(R^{q} B x^{1}\right)_{k},\left(R^{q} B x^{2}\right)_{k}, \ldots\right\} \tag{2.10}
\end{equation*}
$$

is a Cauchy sequence of real numbers for every fixed $k \in \mathbb{N}$. Since $\mathbb{R}$ is complete, it converges, so we write $\left(R^{q} B x^{i}\right)_{k} \rightarrow\left(R^{q} B x\right)_{k}$ as $i \rightarrow \infty$. Hence by using these infinitely many limits $\left(R^{q} B x\right)_{0},\left(R^{q} B x\right)_{1},\left(R^{q} B x\right)_{2}, \ldots$, we define the sequence $\left\{\left(R^{q} B x\right)_{0},\left(R^{q} B x\right)_{1},\left(R^{q} B x\right)_{2}, \ldots\right\}$. From (2.7) with $j \rightarrow \infty$ we have

$$
\begin{equation*}
\left|\left(R^{q} B x^{i}\right)_{k}-\left(R^{q} B x\right)_{k}\right| \leq \varepsilon \tag{2.8}
\end{equation*}
$$

$i \geq n_{0}(\varepsilon)$ for every fixed $k \in \mathbb{N}$. Since $x^{i}=\left\{x_{k}^{(i)}\right\} \in r_{0}^{q}(p, B)$,

$$
\begin{equation*}
\left|\left(R^{q} B x^{i}\right)_{k}\right|^{\frac{p_{k}}{M}}<\varepsilon \tag{2.11}
\end{equation*}
$$

for all $k \in \mathbb{N}$. Therefore, by (2.8) we obtain that

$$
\begin{equation*}
\left|\left(R^{q} B x\right)_{k}\right|^{\frac{p_{k}}{M}} \leq\left|\left(R^{q} B x\right)_{k}-\left(R^{q} B x^{i}\right)_{k}\right|^{\frac{p_{k}}{M}}+\left|\left(R^{q} B x^{i}\right)_{k}\right|^{\frac{p_{k}}{M}}<\varepsilon \tag{2.9}
\end{equation*}
$$

for all $i \geq n_{0}(\varepsilon)$. This shows that the sequence $R^{q} B x$ belongs to the space $c_{0}(p)$. Since $\left\{x^{i}\right\}$ was an arbitrary Cauchy sequence, the space $r_{0}^{q}(p, B)$ is complete.

If we take $r=1, s=-1$ in the theorem 1 then we have the following result.
Corollary 1. (a) $r_{0}^{q}(p, \Delta)$ is a complete linear metric space paranormed by $g_{\Delta}$, defined by $g_{\Delta}(x)=\sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j}-q_{j+1}\right) x_{j}+q_{k} \cdot x_{k}\right]\right|^{\frac{p_{k}}{M}}$.
$g_{\Delta}$ is paranorm for the spaces $r_{\infty}^{q}(p, \Delta)$ and $r_{c}^{q}(p, \Delta)$ only in the trivial case with $\inf p_{k}>0$ when $r_{\infty}^{q}(p, \Delta)=r_{\infty}^{q}(\Delta)$ and $r_{c}^{q}(p, \Delta)=r_{c}^{q}(\Delta)$.
(b) $[11] r^{q}(p, \Delta)$ is a complete linear metric space paranormed by
$g_{\Delta}^{\star}(x)=\left(\sum_{k}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j}-q_{j+1} .\right) x_{j}+q_{k} \cdot x_{k}\right]\right|^{p_{k}}\right)^{\frac{1}{M}}$ with $0<p_{k} \leq \sup p_{k}=$ $H<\infty$ and $M=\max \{1, H\}$.

Theorem 2. Let $r q_{j}+s q_{j+1} \neq 0$ for all $j$. Then the Riesz $B$-difference sequence spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B), r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ are linearly isomorphic to the space $l_{\infty}(p), c(p), c_{0}(p)$ and $l(p)$, respectively; where $0<p_{k} \leq H<\infty$.
Proof. We establish this for the the space $r_{\infty}^{q}(p, B)$. For proof of the theorem, we should show the existence of a linear bijection between the space $r_{\infty}^{q}(p, B)$ and $l_{\infty}(p)$ for $0<p_{k} \leq H<\infty$. With the notation of

$$
y_{k}=\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right]
$$

define the transformation $T$ from $r_{\infty}^{q}(p, B)$ to $l_{\infty}(p)$ by $x \mapsto y=T x . T$ is a linear transformation, morever; it is obviuos that $x=\theta$ whenever $T x=\theta$ and hence $T$ is injective.

Let $y=\left(y_{k}\right) \in l_{\infty}(p)$ and define the sequence $x=\left(x_{k}\right)$ by

$$
x_{k}=\sum_{n=0}^{k-1}(-1)^{k-n}\left(\frac{s^{k-n-1}}{r^{k-n} q_{n+1}}+\frac{s^{k-n}}{r^{k-n+1} q_{n}}\right) Q_{n} y_{n}+\frac{Q_{k} y_{k}}{r \cdot q_{k}} \quad \text { for } \quad k \in \mathbb{N}
$$

Then

$$
\begin{gathered}
g_{B}(x)=\sup _{k \in \mathbb{N}}\left|\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right]\right|^{\frac{p_{k}}{M}} \\
=\sup _{k \in \mathbb{N}}\left|\sum_{j=0}^{k} \delta_{k j} y_{j}\right|^{\frac{p_{k}}{M}}=\sup _{k \in \mathbb{N}}\left|y_{k}\right|^{\frac{p_{k}}{M}}=g_{1}(y)<\infty
\end{gathered}
$$

where

$$
\delta_{k j}=\left\{\begin{array}{ll}
1, & k=j \\
0, & k \neq j
\end{array} .\right.
$$

Thus, we have that $x \in r_{\infty}^{q}(p, B)$. Consequently; $T$ is surjective and is paranorm preserving. Hence, $T$ is linear bijection and this explains that the spaces $r_{\infty}^{q}(p, B)$ and $l_{\infty}(p)$ are linearly isomorphic, as was desired.

Corollary 2. Let $q_{j}-q_{j+1} \neq 0$ for all $j$. Then the $\Delta$-Riesz sequence spaces $r_{\infty}^{q}(p, \Delta), r_{c}^{q}(p, \Delta), r_{0}^{q}(p, \Delta)$ and $r^{q}(p, \Delta)$ are linearly isomorphic to the spaces $l_{\infty}(p), c(p), c_{0}(p)$ and $l(p)$, respectively; where $0<p_{k} \leq H<\infty$.

And now we shall quote some lemmas which are needed in proving our theorems.
Lemma 1. [5] $A \in\left(l_{\infty}(p): l_{1}\right)$ if and only if

$$
\begin{equation*}
\sup _{K \in \mathcal{F}} \sum_{n}\left|\sum_{k \in K} a_{n k} K^{\frac{1}{p_{k}}}\right|<\infty \text { for all integers } K>1 \tag{2.10}
\end{equation*}
$$

Lemma 2. [7] Let $p_{k}>0$ for every $k \in \mathbb{N}$. Then $A \in\left(l_{\infty}(p): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}\right| K^{\frac{1}{p_{k}}}<\infty \text { for all integers } K>1 \tag{2.11}
\end{equation*}
$$

Lemma 3. [7] Let $p_{k}>0$ for every $k \in \mathbb{N}$. Then $A \in\left(l_{\infty}(p): c\right)$ if and only if

$$
\begin{gather*}
\sum_{k}\left|a_{n k}\right| K^{\frac{1}{p_{k}}} \quad \text { convergence uniformly in } n \text { for all integers } K>1  \tag{2.12}\\
\lim _{n \rightarrow \infty} a_{n k}=\alpha_{k} \text { for all } k \in \mathbb{N} \tag{2.13}
\end{gather*}
$$

Lemma 4. [5] (i) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(l(p): l_{1}\right)$ if and only if there exists an integer $K>1$ such that

$$
\sup _{K \in \mathcal{F}} \sum_{k}\left|\sum_{n \in K} a_{n k} K^{-1}\right|^{p_{k}^{\prime}}<\infty
$$

(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(l(p): l_{1}\right)$ if and only if

$$
\sup _{K \in \mathcal{F}} \sup _{k \in \mathbb{N}}\left|\sum_{n \in K} a_{n k}\right|^{p_{k}}<\infty
$$

Lemma 5. [7] (i) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(l(p): l_{\infty}\right)$ if and only if there exists an integer $K>1$ such that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|a_{n k}^{-1} K^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{2.14}
\end{equation*}
$$

(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(l(p): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n, k \in N}\left|a_{n k}\right|^{p_{k}}<\infty \tag{2.15}
\end{equation*}
$$

Lemma 6. [7] Let $0<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in(l(p): c)$ if and only if (2.6) and (2.7) hold, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=\beta_{k} \quad \text { for } \quad k \in \mathbb{N} \tag{2.16}
\end{equation*}
$$

also holds.
Theorem 3. (a) Define the sets $R_{1}(p), R_{2}(p), R_{3}(p), R_{4}(p), R_{5}(p)$ and $R_{6}(p)$ as follows:

$$
R_{1}(p)=\cap_{K>1}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sum_{n}\left|\sum_{k \in N}\left[\nabla(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right] K^{\frac{1}{p_{k}}}\right|<\infty\right\}
$$

$$
\begin{gathered}
R_{2}(p)=\cap_{K>1}^{\cap}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{1}{p_{k}}}<\infty\right. \\
\left.\quad \text { and }\left(\frac{a_{k} Q_{k}}{r \cdot q_{k}} K^{\frac{1}{p_{k}}}\right) \in c_{0}\right\}, \\
R_{3}(p)=\underset{K>1}{\cap}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{1}{p_{k}}}<\infty\right. \\
\\
\left.\quad \text { and }\left\{\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{n}\right\} \in l_{\infty}\right\}, \\
R_{4}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sum_{n}\left|\sum_{k \in N}\left[\nabla(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right] K^{\frac{-1}{p_{k}}}\right|<\infty\right\}, \\
R_{5}(p)=\left\{a=\left(a_{k}\right) \in w: \sum_{n}\left|\sum_{k}\left[\nabla(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right]\right|<\infty\right\}
\end{gathered}
$$

and

$$
R_{6}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{-1}{p_{k}}}<\infty\right\},
$$

where

$$
\nabla(k, n)=(-1)^{n-k}\left(\frac{s^{n-k-1}}{r^{n-k} q_{k+1}}+\frac{s^{n-k}}{r^{n-k+1} q_{k}}\right) .
$$

Then

$$
\left\{r_{\infty}^{q}(p, B)\right\}^{\alpha}=R_{1}(p) \quad\left\{r_{\infty}^{q}(p, B)\right\}^{\beta}=R_{2}(p) \quad\left\{r_{\infty}^{q}(p, B)\right\}^{\gamma}=R_{3}(p),
$$

$$
\left\{r_{c}^{q}(p, B)\right\}^{\alpha}=R_{4}(p) \cap R_{5}(p) \quad\left\{r_{c}^{q}(p, B)\right\}^{\beta}=R_{6}(p) \cap c s \quad\left\{r_{c}^{q}(p, B)\right\}^{\gamma}=R_{6}(p) \cap b s
$$

$$
\left\{r_{0}^{q}(p, B)\right\}^{\alpha}=R_{4}(p) \quad\left\{r_{0}^{q}(p, B)\right\}^{\beta}=\left\{r_{0}^{q}(p, B)\right\}^{\gamma}=R_{6}(p)
$$

(b) (i) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Define the sets $R_{7}(p), R_{8}(p)$ as follows:

$$
\begin{aligned}
& R_{7}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sum_{k}\left|\sum_{n \in N}\left[\nabla(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right] K^{-1}\right|^{p_{k}^{\prime}}<\infty\right\} . \\
& R_{8}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left[\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right] K^{-1}\right|^{p_{k}^{\prime}}<\infty\right\} .
\end{aligned}
$$

Then; $\left[r^{q}(p, B)\right]^{\alpha}=R_{7}(p),\left[r^{q}(p, B)\right]^{\beta}=R_{8}(p) \cap c s,\left[r^{q}(p, B)\right]^{\gamma}=R_{8}(p)$.
(ii) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Define the sets $R_{9}(p), R_{10}(p)$ by

$$
\begin{gathered}
R_{9}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sup _{k \in \mathbb{N}}\left|\sum_{n \in N}\left[\nabla(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right] K^{-1}\right|^{p_{k}}<\infty\right\} . \\
R_{10}(p)=\left\{a=\left(a_{k}\right) \in w: \sup _{k \in N}\left|\left[\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right]\right|^{p_{k}}<\infty\right\} . \\
,\left[r^{q}(p, B)\right]^{\gamma}=R_{10}(p) . \quad \text { Then; }\left[r^{q}(p, B)\right]^{\alpha}=R_{8}(p),\left[r^{q}(p, B)\right]^{\beta}=R_{10}(p) \cap c s
\end{gathered}
$$

Proof. We give the proof for the space $r_{\infty}^{q}(p, B)$. Let us take any $a=\left(a_{n}\right) \in w$. We easily derive with the notation

$$
y_{k}=\frac{1}{Q_{k}}\left[\sum_{j=0}^{k-1}\left(q_{j} \cdot r+q_{j+1} \cdot s\right) x_{j}+q_{k} \cdot r \cdot x_{k}\right]
$$

that

$$
\begin{equation*}
a_{n} x_{n}=\sum_{k=0}^{n-1} \nabla(k, n) a_{n} Q_{k} y_{k}+\frac{a_{n} Q_{n} y_{n}}{r \cdot q_{n}}=\sum_{k=0}^{n} u_{n k} y_{k}=(U y)_{n} \tag{2.17}
\end{equation*}
$$

( $n \in \mathbb{N}$ ), where $U=\left(u_{n k}\right)$ is defined by

$$
u_{n k}=\left\{\begin{array}{llc}
\nabla(k, n) a_{n} Q_{k} & , & (0 \leq k \leq n-1) \\
\frac{a_{n} Q_{n}}{r . q_{n}} & , & (k=n) \\
0 & , & (k>n)
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. Thus we deduce from (2.17) that $a x=\left(a_{n} x_{n}\right) \in l_{1}$ whenever $x=\left(x_{k}\right) \in r_{\infty}^{q}(p, B)$ if and only if $U y \in l_{1}$ whenever $y=\left(y_{k}\right) \in l_{\infty}(p)$. From Lemma1, we obtain the desired result that

$$
\left[r_{\infty}^{q}(p, B)\right]^{\alpha}=R_{1}(p)
$$

Consider the equation

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x_{k}=\sum_{k=0}^{n-1}\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k} y_{k}+\frac{a_{k} Q_{k} y_{k}}{r \cdot q_{k}}=(V y)_{n},(n \in \mathbb{N}) \tag{2.18}
\end{equation*}
$$

where $V=\left(v_{n k}\right)$ defined by

$$
v_{n k}=\left\{\begin{array}{lr}
\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k} & ,(0 \leq k \leq n-1) \\
\frac{a_{k} Q_{k}}{r \cdot q_{k}} & \quad(k=n) \\
0 & ,(k>n)
\end{array}\right.
$$

for all $k, n \in \mathbb{N}$. Thus we deduce by with (2.18) that $a x=\left(a_{k} x_{k}\right) \in c s$ whenever $x=\left(x_{k}\right) \in r_{\infty}^{q}(p, B)$ if and only if $V y \in c$ whenever $y=\left(y_{k}\right) \in l_{\infty}(p)$. Therefore we derive from Lemma3 that

$$
\sum_{k}\left|\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{1}{p_{k}}}<\infty
$$

and

$$
\lim _{k \rightarrow \infty} \frac{a_{k} Q_{k}}{r \cdot q_{k}} K^{\frac{1}{p_{k}}}=0
$$

which shows that $\left[r_{\infty}^{q}(p, B)\right]^{\beta}=R_{2}(p)$.
As this, we deduce by (2.18) that $a x=\left(a_{k} x_{k}\right) \in b s$ whenever $x=\left(x_{k}\right) \in$ $r_{\infty}^{q}(p, B)$ if and only if $V y \in l_{\infty}$ whenever $y=\left(y_{k}\right) \in l_{\infty}(p)$. Therefore we obtain by Lemma2 that $\left[r_{\infty}^{q}(p, B)\right]^{\gamma}=R_{3}(p)$ and this completes proof.

Corollary 3. Define the sets $T_{1}(p), T_{2}(p), T_{3}(p), T_{4}(p), T_{5}(p)$ and $T_{6}(p)$ as follows:

$$
\begin{gathered}
T_{1}(p)=\cap_{K>1}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sum_{n}\left|\sum_{k \in N}\left[\Lambda(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{q_{n}}\right] K^{\frac{1}{p_{k}}}\right|<\infty\right\}, \\
T_{2}(p)=\cap_{K>1}^{\cap}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{1}{p_{k}}}<\infty\right. \\
\left.a n d\left(\frac{a_{k} Q_{k}}{q_{k}} K^{\frac{1}{p_{k}}}\right) \in c_{0}\right\}, \\
T_{3}(p)=\underset{K>1}{\cap}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{1}{p_{k}}}<\infty\right. \\
T_{4}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sup _{N \in \mathcal{F}} \sum_{n}\left|\sum_{k \in N}\left[\Lambda(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{q_{n}}\right] K^{\frac{-1}{p_{k}}}\right|<\infty\right\}, \\
T_{5}(p)=\left\{a=\left(a_{k}\right) \in w: \sum_{i=k+1}\left|\sum_{k}\left[\Lambda(k, n) Q_{k} a_{n}+\frac{Q_{n} a_{n}}{r \cdot q_{n}}\right]\right|<\infty\right\}
\end{gathered}
$$

and

$$
T_{6}(p)=\underset{K>1}{\cup}\left\{a=\left(a_{k}\right) \in w: \sum_{k}\left|\left(\frac{a_{k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{i}\right) Q_{k}\right| K^{\frac{-1}{p_{k}}}<\infty\right\}
$$

where

$$
\Lambda(k, n)=(-1)^{n-k}\left(\frac{(-1)^{n-k-1}}{q_{k+1}}+\frac{(-1)^{n-k}}{q_{k}}\right)
$$

Then

$$
\begin{gathered}
\left\{r_{\infty}^{q}(p, \Delta)\right\}^{\alpha}=T_{1}(p) \quad\left\{r_{\infty}^{q}(p, \Delta)\right\}^{\beta}=T_{2}(p) \quad\left\{r_{\infty}^{q}(p, \Delta)\right\}^{\gamma}=T_{3}(p), \\
\left\{r_{c}^{q}(p, \Delta)\right\}^{\alpha}=T_{4}(p) \cap T_{5}(p) \quad\left\{r_{c}^{q}(p, \Delta)\right\}^{\beta}=T_{6}(p) \cap c s \quad\left\{r_{c}^{q}(p, \Delta)\right\}^{\gamma}=T_{6}(p) \cap b s, \\
\left\{r_{0}^{q}(p, \Delta)\right\}^{\alpha}=T_{4}(p) \quad\left\{r_{0}^{q}(p, \Delta)\right\}^{\beta}=\left\{r_{0}^{q}(p, \Delta)\right\}^{\gamma}=T_{6}(p) .
\end{gathered}
$$

## 3 The Basis for the Spaces $r_{0}^{q}(p, B)$ and $r_{c}^{q}(p, B)$

In the present section, we give two sequences of the points of the spaces $r_{0}^{q}(p, B)$ and $r_{c}^{q}(p, B)$ which form the basis for those spaces.
Theorem 4. Let $\mu_{k}(t)=\left(R^{q} B x\right)_{k}$ for all $k \in \mathbb{N}$ and $0<p_{k} \leq H<\infty$. Define the sequence $b^{(k)}(q)=\left\{b_{n}^{(k)}(q)\right\}_{n \in \mathbb{N}}$ of the elements of the space $r_{0}^{q}(p, B)$ for every fixed $k \in \mathbb{N}$ by

$$
b_{n}^{(k)}(q)=\left\{\begin{array}{lll}
\nabla(k, n) Q_{k} & , & (0 \leq n \leq k-1)  \tag{3.1}\\
\frac{Q_{k}}{r \cdot q_{k}} & , & (k=n) \\
0 & , & (n>k-1)
\end{array}\right.
$$

where

$$
\nabla(k, n)=(-1)^{n-k}\left(\frac{s^{n-k-1}}{r^{n-k} q_{k+1}}+\frac{s^{n-k}}{r^{n-k+1} q_{k}}\right)
$$

Then,
(a) The sequence $\left\{b^{(k)}(q)\right\}_{k \in \mathbb{N}}$ is a basis for the space $r_{0}^{q}(p, B)$ and any $x \in$ $r_{0}^{q}(p, B)$ has a unique representation of the form

$$
\begin{equation*}
x=\sum_{k} \mu_{k}(q) b^{(k)}(q) . \tag{3.2}
\end{equation*}
$$

(b) The set $\left\{\left(R^{q} B\right)^{-1} e, b^{(k)}(q)\right\}$ is a basis for the space $r_{c}^{q}(p, B)$ and any $x \in$ $r_{c}^{q}(p, B)$ has a unique representation of the form

$$
\begin{equation*}
x=l e+\sum_{k}\left|\mu_{k}(q)-l\right| b^{(k)}(q) ; \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
l=\lim _{k \rightarrow \infty}\left(R^{q} B x\right)_{k} \tag{3.4}
\end{equation*}
$$

Proof. It is clear that $\left\{b^{(k)}(q)\right\} \subset r_{0}^{q}(p, B)$, since

$$
\begin{equation*}
R^{q} B b^{(k)}(q)=e^{(k)} \in c_{0}(p),(\text { for } k \in \mathbb{N}) \tag{3.5}
\end{equation*}
$$

for $0<p_{k} \leq H<\infty$; where $e^{(k)}$ is the sequence whose only non-zero term is a 1 in $k^{t h}$ place for each $k \in \mathbb{N}$.

Let $x \in r_{0}^{q}(p, B)$ be given. For every non-negative integer $m$, we put

$$
\begin{equation*}
x^{[m]}=\sum_{k=0}^{m} \mu_{k}(q) b^{(k)}(q) . \tag{3.6}
\end{equation*}
$$

Then, we obtain by applying $R^{q} B$ to (3.6) with (3.5) that

$$
R^{q} B x^{[m]}=\sum_{k=0}^{m} \mu_{k}(q) R^{q} B b^{(k)}(q)=\sum_{k=0}^{m}\left(R^{q} B\right)_{k} e^{(k)}
$$

and

$$
\left(R^{q} B\left(x-x^{[m]}\right)\right)_{i}=\left\{\begin{array}{lr}
0 & (0 \leq i \leq m) \\
\left(R^{q} B x\right)_{i} & , \quad(i>m)
\end{array} ;(i, m \in \mathbb{N})\right.
$$

Given $\varepsilon>0$, then there exists an integer $m_{0}$ such that

$$
\sup _{i \geq m}\left|\left(R^{q} B x\right)_{i}\right|^{\frac{p_{k}}{M}}<\frac{\varepsilon}{2}
$$

for all $m \geq m_{0}$. Hence,

$$
g_{B}\left(x-x^{[m]}\right)=\sup _{i \geq m}\left|\left(R^{q} B x\right)_{i}\right|^{\frac{p_{k}}{M}} \leq \sup _{i \geq m_{0}}\left|\left(R^{q} B x\right)_{i}\right|^{\frac{p_{k}}{M}}<\frac{\varepsilon}{2}<\varepsilon
$$

for all $m \geq m_{0}$ which proves that $x \in r_{0}^{q}(p, B)$ is represented as in (3.2).
To show the uniqueness of this representation, we suppose that

$$
x=\sum_{k} \lambda_{k}(q) b^{(k)}(q) .
$$

Since the linear transformation $T$, from $r_{0}^{q}(p, B)$ to $c_{0}(p)$ used in Theorem 2, is continuous we have

$$
\left(R^{q} B x\right)_{n}=\sum_{k} \lambda_{k}(q)\left\{R^{q} B b^{(k)}(q)\right\}_{n}=\sum_{k} \lambda_{k}(q) e_{n}^{(k)}=\lambda_{n}(q) ; n \in \mathbb{N}
$$

which contradicts the fact that $\left(R^{q} B x\right)_{n}=\mu_{k}(q)$ for all $n \in \mathbb{N}$. Hence, the representation (3.2) of $x \in r_{0}^{q}(p, B)$ is unique. Thus the proof of the part ( $a$ ) of Theorem is completed.
(b) Since $\left\{b^{(k)}(q)\right\} \subset r_{0}^{q}(p, B)$ and $e \in c$, the inclusion $\left\{e, b^{(k)}(q)\right\} \subset r_{c}^{q}(p, B)$ trivially holds. Let us take $x \in r_{c}^{q}(p, B)$. Then, there uniquely exists an $l$ satisfying (3.4). We thus have the fact that $u \in r_{0}^{q}(p, B)$ whenever we set $u=x-l e$. Therefore, we deduce by part ( $a$ ) of the present theorem that the representation of $x$ given by (3.3) is unique and this step concludes the proof of the part (b) of Theorem.

Now we characterize the matrix mappings from the spaces $r_{\infty}^{q}(p, B), r_{c}^{q}(p, B)$ ,$r_{0}^{q}(p, B)$ and $r^{q}(p, B)$ to the spaces $l_{\infty}$ and $c$. The following theorems can be proved by used standart methods and we omit the detail.

Theorem 5. (i) $A \in\left(r_{\infty}^{q}(p, B): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{n k}}{q_{k}} Q_{k} M^{\frac{1}{p_{k}}}=0,(\forall n, M \in \mathbb{N}) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right| Q_{k} M^{\frac{1}{p_{k}}}<\infty,(\forall M \in \mathbb{N}) \tag{3.8}
\end{equation*}
$$

hold.
(ii) $A \in\left(r_{c}^{q}(p, B): l_{\infty}\right)$ if and only if (3.7),

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}=0,(\exists M \in \mathbb{N}) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right|<\infty \tag{3.10}
\end{equation*}
$$

hold.
(iii) $A \in\left(r_{0}^{q}(p, B): l_{\infty}\right)$ if and only if (3.7) and (3.9) hold.
(iv) Let $1<p_{k} \leq H<\infty$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(p, B): l_{\infty}\right)$ if and only if there exists an integer $K>1$ such that

$$
\begin{equation*}
R(K)=\sup _{n \in \mathbb{N}} \sum_{k}\left|\left[\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right] K^{-1}\right|^{p_{k}^{\prime}}<\infty \tag{3.11}
\end{equation*}
$$

and

$$
\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in c s
$$

for each $n \in \mathbb{N}$.
(v) Let $0<p_{k} \leq 1$ for every $k \in \mathbb{N}$. Then $A \in\left(r^{q}(p, B): l_{\infty}\right)$ if and only if

$$
\sup _{n, k \in \mathbb{N}}\left|\left[\left(\frac{a_{k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right]\right|^{p_{k}}<\infty
$$

and

$$
\left\{a_{n k}\right\}_{k \in \mathbb{N}} \in c s
$$

for each $n \in \mathbb{N}$.

Theorem 6. (i) $A \in\left(r_{\infty}^{q}(p, B): c\right)$ if and only if (3.7),

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}<\infty,(\forall M \in \mathbb{N}) \tag{3.13}
\end{equation*}
$$

and
$\exists\left(\alpha_{k}\right) \subset \mathbb{R}$ such that $\lim _{n \rightarrow \infty}\left[\sum_{k}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right| M^{\frac{1}{p_{k}}}\right]=0$,
$(\forall M \in \mathbb{N})$ hold.
(ii) $A \in\left(r_{c}^{q}(p, B): c\right)$ if and only if (3.7), (3.9),

$$
\begin{equation*}
\exists \alpha \in \mathbb{R} \text { such that } \lim _{n \rightarrow \infty}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha\right|=0 \tag{3.15}
\end{equation*}
$$

$\exists\left(\alpha_{k}\right) \subset \mathbb{R}$ such that $\lim _{n \rightarrow \infty}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right|=0,(\forall k \in \mathbb{N})$
and
$\exists\left(\alpha_{k}\right) \subset \mathbb{R}$ such that $\sup _{n \in \mathbb{N}} L \sum_{k}\left|\left(\frac{a_{n k}}{r \cdot q_{k}}+\nabla(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right| M^{\frac{-1}{p_{k}}}<\infty$,
$(\forall L, \exists M \in \mathbb{N})$ hold.
(iii) $A \in\left(r_{0}^{q}(p, B): c\right) \quad$ if and only if $(3.7),(3.9),(3.16)$ and (3.17).

Corollary 4. (i) $A \in\left(r_{\infty}^{q}(p, \Delta): l_{\infty}\right)$ if and only if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{a_{n k}}{q_{k}} Q_{k} M^{\frac{1}{p_{k}}}=0,(\forall n, M \in \mathbb{N}) \tag{3.18}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right| Q_{k} M^{\frac{1}{p_{k}}}<\infty,(\forall M \in \mathbb{N}) \tag{3.19}
\end{equation*}
$$

hold.
(ii) $A \in\left(r_{c}^{q}(p, \Delta): l_{\infty}\right)$ if and only if (3.18),

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}=0,(\exists M \in \mathbb{N}) \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right|<\infty \tag{3.21}
\end{equation*}
$$

hold.
(iii) $A \in\left(r_{0}^{q}(p, \Delta): l_{\infty}\right)$ if and only if (3.18) and (3.20) hold.

Corollary 5. (i) $A \in\left(r_{\infty}^{q}(p, \Delta): c\right)$ if and only if (3.18),

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sum_{k}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}\right| M^{\frac{1}{p_{k}}}<\infty,(\forall M \in \mathbb{N}) \tag{3.22}
\end{equation*}
$$

and
$\exists\left(\alpha_{k}\right) \subset \mathbb{R}$ such that $\lim _{n \rightarrow \infty}\left[\sum_{k}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right| M^{\frac{1}{p_{k}}}\right]=0$,
$(\forall M \in \mathbb{N})$ hold.
(ii) $A \in\left(r_{c}^{q}(p, \Delta): c\right)$ if and only if (3.18), (3.20),

$$
\begin{align*}
& \exists \alpha \in \mathbb{R} \text { such that } \lim _{n \rightarrow \infty}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha\right|=0,  \tag{3.24}\\
& \exists\left(\alpha_{k}\right) \subset \mathbb{R} \text { such that } \lim _{n \rightarrow \infty}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right|=0,(\forall k \in \mathbb{N}) \tag{3.25}
\end{align*}
$$

and
$\exists\left(\alpha_{k}\right) \subset \mathbb{R} \quad$ such that $\sup _{n \in \mathbb{N}} L \sum_{k}\left|\left(\frac{a_{n k}}{q_{k}}+\Lambda(k, n) \sum_{i=k+1}^{n} a_{n i}\right) Q_{k}-\alpha_{k}\right| M^{\frac{-1}{p_{k}}}<\infty$,
$(\forall L, \exists M \in \mathbb{N})$ hold.
(iii) $A \in\left(r_{0}^{q}(p, \Delta): c\right) \quad$ if and only if $(3.18),(3.20),(3.25)$ and (3.26).

## References

[1] B. Altay, F. Başar, On The Paranormed Riesz Sequence Spaces Of Non-Absolute Type, Southeast Asian Bull. Math. 26 (2002), 5, 701-715.
[2] B. Altay, F. Başar, Some Euler Sequence Spaces of Non-Absolute Type, Ukranian Math. J. 57 (2005), 1-17.
[3] B. Altay, F. Başar, On The Space of Sequences of p-Bounded Variation and Related Matrix Mappings, Ukranian Math. J. 55 (2003), 1, 136-147.
[4] B. Altay, H. Polat, On Some Euler Difference Sequence Spaces, Southeast Asian Bull. Math. 30 (2006), 209-220.
[5] K.G.,Grosse-Erdmann, Matrix Transformations Between The Sequnce Space Of Maddox, J. Math. Anal. Appl. 180 1993, 223-238.
[6] H.Kızmaz, On Certain Sequence Space, Canad. Math. Bull. 24(2) 1981,169-176.
[7] C.G.Lascarides, I.J.Maddox, Matrix Transformations Between Some Classes Of Sequences, Proc.Comb. Phil. Soc. 68 1970, 99-104.
[8] I.J.Maddox,Paranormed Sequence Spaces Generated By Infinite Matrices, Proc.Comb. Phil. Soc. 64 1968, 335-340.
[9] I.J.Maddox, Spaces Of Strongly Summable Sequences,Quart.J.Math. Oxford, 18(2) 1967,345-355.
[10] I.J.Maddox, Element Of Functional Analysis , The University Press, Cambridge, 1970.
[11] M.Başarır,M.Öztürk, On The Riesz Difference Sequence Space, Rendiconti del Circolo Matematico di Palermo, 2008, 57, 377-389.

Address:
Department of Mathematics, Sakarya University, 54187, Sakarya, Turkey
E-mail: basarir@sakarya.edu.tr


[^0]:    2010 Mathematics Subject Classifications. 46A45, 46B45,46E30,46B20,40C05.
    Key words and Phrases. B-Riesz Sequence Space, Paranormed Sequence Space $\alpha-, \beta-$ duals. Received: Januar 9, 2010
    Communicated by Dragan S. Djordjević
    Thanks, The author would like to express his gratitude to the reviewer for his/her careful reading and valuable suggestions which is improved the presentation of the paper.

