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ABSTRACT

The bilinearisation of infinite dimensional nonlinear
systems defined on a Hilbert space H is examined and Volterra
series on £2 are also considered. This will be achieved by

introducing a new Hilbert space sz[H; Eﬂ.



(1) Introduction

In this paper we shall be concerned with nonlinear systems
and their linear and bilinear representations by nonlinear state
transformations. Several methods have been proposed to intro-
duce transformations which will linearise a nonlinear system;
see for example, Hunt et al (1983) and Takata (1979). These
depend to a large extent on a global inverse function theorem,
as discussed in Sandberg (1981).

In order to generalise the ideas of Takata (1979) to infinite
dimensional systems we shall introduce the Hilbert space
sz[ﬂi Eﬂ which consists of functions from (a subset) of H into
R guch that

wh) | £(h)]%an < =
H n D)

where D(f) is the domain of £ and h is an infinite dimensional
measure defined on H. The function w is a weighting function
and will be introduced in the paper. The space L2W[H;H] will
be defined as the space of functions f = D(f) € H~H guch that
<f, e;> € LZWEH; R]| for all i, where {ei} is a basis of (the
assumed sepa;able) space H. We shall prove that sz[H; R] is,
in fact,a Hilbert space and exhibit an explicit basi; in terms
of a basis of LZWDR; mj where w is a scalar weighting function.
A typical basis of the latter space can be expressed in terms
of Hermite polynomials.

IE

w = £i{x) i xeH ' (1.1)
is a differential equation defined on H, then, denotmﬁ a basis
of LZWEF’R] by {¢i} , the idea is to replace (1.1l) with the

system



b = FX &k = Fxf(x) (F‘ denote s Trdchet dlﬂuahﬁg)
Then, if Fxf(x)e sz[ﬁ; H] , We can write

(Fpflx)) = 32y ya,q

and so
U = Ay,

We shall then consider a certain class of nonlinear control
systems and show that, by using the above technique, these can
be 'reduced' to bilinear systems. - This generalises Brockett's
(1976) Volterra series expansion of linear analytic systems.

We shall end with a simple example and show how to calculate
explicitly the bilinearisation.

In this paper we shall use the standard notation of Hilbert
space theory. In particular, L2 [_m,m] will denote the space
of real valued functions f such that

c;|f(t) ldt < =

-0

and 22 will denote the space of sequences -&i} such that
2

X, ®,
Zl<

Note that any separable Hilbert space is isomorphic to 22, and
so we shall use the latter space as a standard model whenever
necessary.

(2) Infinite-Dimensional Integration.

The space LZWE-m,m] is well known to have a basis consis-
ting of a sequence of polynomials ¢ with respect to some weigh-
ting function w ; i.e. any function fgL2w Gcmcﬂ may be written

in the form

f= 1< ¢i,f>¢i .
i=1

where

<f,g> = f £(t)g(t)w(t)dt.

-—00

If the sequence ¢n is chosen to be orthonormal with respect to

w (for example, the Hermite functions Hen, with weighting



R
-x2/2
function w = e ), then any function f : R>R, which
belongs to sz E<a=ﬂ has an orthogonal series expansion
with coefficients <%} £f>.

In this section we shall be interested in generalising
this result to the case of functions f : H*R for some
separable Hilbert space H, and hence to define a space
L%, [H ; R]
of functions f : HsR such that

fy £2(h) w(n)ah< o
for some weighting function w and some measure dh on H.

In order to define such a space we first note that if

i=1
57 under the standard isomorphism u: H +22 given by

{e.} is a basis of H, we may regard H as the space

i

u (h) ={hi}i:1

where
h = I <h, ei> e,
i=1
and
h, = <h,e.>
i i

Any function £ : H+R can then be represented equivalently as a
function f : 22+R (we shall use the same letter f for either
function, since no confusion is likely) given by

£ (xl, Xor Xqy o) = £(x)
where X ¢ H corresponds to (xl,xz,x3,...) € 22 under the above
isomorphism,

Definition 2.1. We shall call a function f: H-R eventually

constant if there exists, for any >0, a function gE:Rn(Etyﬁ\
such that

| £ (X01%y0 <o) = g, (xl,xz,...,xn(e))l < e (21}

for all x = (Xl,x2, <:) e H (=3%), Nore that both the function



w B s
g and the dimension of its domain depend on g.

Remark 2.2. If £ = D(f)g'H»R is ﬁot defined on the whole of

H then we require (2.1) to hold only on D(f).

Example 2.3. Let wsL2[~m,§? be such that

(1) w(0) =1, w(t)> 0
(11) w(t)<l , £40
(iii) 4if {ti} gﬁz then .? w(ti) converges for each
n >1 and lim Fﬁ W ?E?) exists and is independent
h=ss0 1z=h
of {ti}.

Then the function w:H+R defined by

W (Xl’ Xy cees) = .j w(xi)

i=1

is well defined and eventually constant.
m
This follows easily for if xeH, W(Xi) is clearly
uniformly bounded by M, say, in m and x and if @« = lim = W(Xi)
(which is independent of x) then, if e>0, choose n so that
o =7 w(x,)| < %= and we have
isngy 1 M
o n n co
I JTw(x,) —o W(X-)ljlﬂ wix,) || = wix,)-o |<e.
1 1 Pl f=1 & i=n+l
. ~t2/2_ " : -
The function e e L [fw,%] clearly satisfies (i) =-(iii)

and so the function e : H +R defined by

o 2

_ T -x.%/9
g (Xl;xzf ..--) S l:l e 1

is well-defined on H and eventually constant (with constant
o= 1),
Definition 2.4 Let £ : H-R. Then we say that f is integrable

over H if, for any e>0 there exists a finite set Ilg N of

natural numbers such that for any finite set I with IlEIEN we
have
o o : 2
| ! cviwn f f(x)_w (dxi)—c|i EJV(Xi)iéI el o
—0 —w 1el e :
N L3 (2:2)
(1)

for some constant c. (#(I) denotes the candinality of I).



Intuitively, we are requiring that the inteqral of f over any
finite-dimensional subspace of H should exist and be eventually
constant, with the constant function c¢ taking the place of 9.
(the purpose of the factor 1/w will become clear presently.)

€ is called the integral of f over H or just the integral of f

and we write

c = & f(x)dh

where dh = 1 (dxi‘

i=1

Definition 2.5 The space Lé[H;R] is the space of functions

f : H+R such that

foz(x)E(x)dh<w

where w satisfies the conditions of example 2.3 and the measure

(dxl) ; Where

1N w

dh is given by dh = 7
=

In particular we Shall be interested in the space Li[H;R;
dx,
i

where e is defined as above and dh = ? (
i=1]

~V2m/

Example 2.6 Let us first note that IH e(x)dh exists and

has the value 1. In faet, AF T = {1l;¢s: 00}, thHawn
. ® oX0/2 _~x2/2 22, e Cpar /2t
Lo s0ee [ {e 71 e 72 ceese n’7} = X
\W
n
dxl . dxn
A 2T
= 2 /;)_+....)
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and so condition (2.2) is clearly satisfied if n is large enough,

since {xi} £ 22.

We would now like to prove that Li [H;IR]is separable

which we shall do by specifying a basis. Let us first introduce
some notation. If N+ = {1,2,...} denotes the set of positive
natural numbers, then Nﬁ will denote the subset of §N+ {(i.e.

i=1
the countable Cartesian product of copies of N+) consisting of

those n ¢ X N, (§=(nl,n2...)) for which n,=1 for all but finitely
i=1
X . 2 . .
many i. Now let {¢i}lii<w be a basis of LW[—w’m] , With weight-

ing function w (for example, the Hermite functions as above).

Then we shall show that

B = (T 4y )Y g 1 2= ynyee)
is a basis of Li[H;fK]. Note first that,since Nﬁ is countable,
we can order'g in the form {y¢, (x)1}. ,where
i lEN+
wi(x) jil ¢nj(xj) for some n elN,. {2-3)

We shall use either representation of B without further comment.

Theorem 2.7 Li[H;!R]is a separable Hilbert space with basis B.

Proof The only nontrivial part to prove is completeness; i.e.
Parseval's relation
2 2 2
NE02 = & l<€u]% £ L2

Let e >0 and choose n so that
) © 2
e S
| J_eee [ F (xl,...xn,xn+l,...)E(x)dxl...dxn | < %
\_W'J/

n

for any (x ..)et?, as in the definition (2.2) of the

n+l'xn+2"

integral, where c = ]|f||2. Also, if g(x -x ) is any function

1reee

; 2r.m
of n variables such that g ¢ Lw[m ;m] then let {mi}iEI g

|



= T ow

for some finite set Iggﬂ+, be a subset of the basis so that

2 2
‘ Il gll Liﬁkp;mj * igll<g.¢i>f =

J

(Note that the set Ig is chosen so that the wi's depend only

on X PR this is clearly possihble. Of course, Ig depends

l'lll
on g.) Hence we have

2 12
I F [ SR P ANk
ie,If
n
< c - 1 S fz(x e X_,X Jw(x)dx dx_ |
= —— - l.v ’ nr n+l! i e n
]I e 4 EPIR e o Yw(x)dx. .. .dx
— e 1’ n'“n+l’c" =S N n
w0 o 2 n
= S e J_ (xl, B G050, ) m w(xi)dxl"'dx |
_ i=1
2
+ £ - 2
A L
n
S E

where we have written

fn(xl,...,xn) = f(xl,...,xn,0,0,. 5 (Xl' ,Xn)EIRP
The result now follows. [
Definition 2.8 Let f:H+H and let fl(x) = <f(x),ei>, ¥eH,
where {e,} is a basis of H. Then, if f£' eLiEH;R] for each 1

we say that sti[H;H].

In the next section we shall consider nonlinear differential

equations and linear equivalent systems.
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(3) Differential Equations on a Hilbert Space

In this section we shall consider the differential equation

x(t) = £(x(t))  x(t )=x_ecH (3.1)
: , nxi*/e
where H is a Hilbert space and suppose that f(x)e
€ Li[H;Hj for some e>o0. Let £={wi(x)} be the basis of
Li[ﬁ;ﬁﬂ introduced above. Then, for each i, wi: H+® and so the

Fréchet derivative F@i of wi is a map from H into i(H,R); H.

Now, along a solution of (3.1), we have

Ay dx A
Io (X)) = Fy, (%) ¥ = Fy, (x) £(x(t)) = £ (x),
where fi : H-R, (This is a standard trick. See for example,
Takata, 1979). Note that this makes sense, since Fwi(x)
H+f: (H,R) and f : H+H.
2
Lemma 3.1. fi e L . [H;R] .
Proof. Let {ei} be a basis of H. Then, by definition fl(x) =
2 - _
<f(x), e,> eL " [H; ] . Also, if x = Exiei, then wi(x) depends
only on a finite number of the Xi‘s, SaY Xqiy eeeey X . Hence
we can write
ERUA v, (x) D . (x) N
Fy, (x) -/ s )y ey awn 3 " Bailesas) 2R K
RN %,y Sl
and so
n ERIP .
£, (%) = - £ (x) . (3,2]
= 7

2
Now each awi/axj is a polynomial and so is dominated by e ] /e,

Hence each term in the sum (3.2) is in L2 [H,R] and therefore, so
w

is fi(x) « B

Since f. ¢ L2 [E;.R ], we can write
+ w
£, (x) = _Z <fi(x), 1bj(x) > lI)j(x)
j=1
= I a,. ¥, (x), say
j=1 1] 3
where a;. = <£., ¥ > .

J el A 5 THyR]
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Hence, equation (3.1) is equivalent to the system of linear equations

av, (x) _ v .
i s -21 a;s¥y (X)), b (x(0)) =¥, (x)  (3.3a)
dt J
or,
as AT W.(0) = ¢, (x ) (3.3b)
. ~ d e Yi%¥o *
where
A= a9, 9o
and
Blo) = (b x(e)) , wyx(8)),..0b & px(e)).  (3.4)

We have therefore ‘reduced the original nonlinear differential
equation (3.1) to a linear countable system of differential equations

(3.3) and the algebraic problem of solving (3.4). Then,

x(t) = ¢ L (®(e)) ,

provided that ¢ is invertible on Range ¢ . (Note that ¢ maps
Sk
H into R and that Range ¢y may not equal R .) In order to

consider (3.3) on a Hilbert space we must ensure that w(xo)

belongs to this space. Consider the space zi defined as the

set of sequences {xi} such that 7 cixi2<m » where {c.} is
- i=1
chosen to satisfy z c_w.z(x <oy Clearly c. depends on
j=7 11 o i
Xo' which is the initial condition of the original equation.
2] 2 )

b(x Nis

) ) 2 ; T o
consider equation (3.3b) on 3 o for a given initial condition

(For example, we could take c, =[?/( We can then

X of (3.1).Alternatively we can consider the eguation

d(c, y. (x)) w @
——~i§%———— = Iogmagsleiix))
Jrl =
citbi(X(o)) = ciwi(xo) (3+5)
on Q?. Hence the matrix A generates a semigroup on 22 if and

* oo i [35) . R
We tl_e_v\ote_, t‘h( SrO\_CQ O‘g SR%MQMCQS {Ii%i:i , Wagkle JL,;_Q"*., b'j A



o :
Cy

only if the matrix ( E% aij) generates a semigroup on 22.
Note, however, that notjall solutions of the linear equation
(3.5) will correspond to solutions of (3.1). Only those with
initial conditions in Range y will be related to a corresponding
solution of the nonlinear equation.

Relating existence results for equations (3.1) and (3.3)
is not particularly easy, but we can use the following result
of Shinderman (1968), in order to prove existence theorems

for the nonlinear equation.

Lemma 3.2 Consider the countable system

X, = -a,, X, - § @a.. X. , is1,
3 id. & % i =
Tt -
-1

where Re a,. > y max  fla.. |, |&a..]} and rla..@a.. | <1

i = & i . 1 |

le lj j j#:l j jj

for i> 1.
Then A = (aij) generates a contraction semigroup. O

This lemma then implies

Theorem 3.3, Suppose that y : H »Range ¢ ¢ R~ is invertible

and assume that the conditions of lemma 3.2 are satisfied with
2.3

p. (X :
a,. = <f, ,yp.> § el (for v, (x )F o, Vi)
ij i j .2 . 2.2 io
L E[H,tR] Y (x)
Then equation (3.1) has a solution x(t) with x(0) = X defined
on [0,T) provided the solution T(t) of d® = AFE , T (o) = b(x,

dt
belongs to Range v on [o,T).

Proof This follows directly from lemma 3.2 since the conditions
imply that the equation (3.3b) has a solution on [o,®), since A
generates a contraction semigroup. This will then imply the
existence of a solution of (3.1) on an interval [o,T) for as

long as ' (t) is in Range v.



- 11 -
Alternatively, suppose we know that the nonlinear equation
(3.1) has unique local solutions,for t e [0,T) and for x,e UgH
for some set U,which are continuous in t and X and assume again
that ¢ : H> R is invertible on Range ¢ . Then let

U w*l(iz)n U

Il

and define

splu (@) ¢ 2%,

m

where Sp denotes the closed linear span of a subset of 2.

Then we have

Il

Theorem 3.4 If the system (3.3) with {* (o) o has the unique

solution T (t) = o, and U is invariant, then the matrix A in
(3.3) generates a strongly continuous semigroup on m,

Proof Using the above notation, let xosﬁ. Then (3.1) has &
solution on [0,T) by assumption and, therefore, so does (3.3).
Denote the solution of (3.1) by x(t;xo) and that of (3.3) by
T(t)w(xo). Then x(t;xO) = wul(T(t)w(xO)). However, by unique-

ness of the solutionsof (3.1}, x(t;xo) satisfies the dynamical

system ph°P‘r§j

x(t+T;xO) = X(t;X(T;XO))-
Hence

-1 =1 -1 _

] (T(t+1)w(xo)) =y T(T(E) vy (T(T)w(xo)).

-1
=9 T(t)T(T)u‘)(xo)

and so, for each x ¢ v ; T(t)y(x ) satisfies the semigroup
property. Moreover, by continuity of x(t;xo) in t and X, o
it is clear that T(t) isstrongly continuous. By uniqueness of

(3.3) we can extend T(t) to m (using the strong continuity and
linearity), and the result follows, since T(t) is clearly invariant

on m by the invariance of U under the dynamics of (3.1). O
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(4) Reducing Nonlinear systems to Bilinear Systems

In this section we shall consider the nonlinear control problem

; = f(x) + g(x)u P xeH (4.1)
where :
2 24
f(x)e “XH /E, , g(x) e ”X” /E EL\?} [H ; H]
for some e¢>o0. Then we may write -
dy = Fuo(x) dx = Fy(x) (F(x) + g(x)u)
dt dt
= Ay + uBy , (4.2)
where
(Ay), = <Fu(x)f(x), ¢, (x)>
3 A L2 I:H,'R:]
w
and
(Bp), = <Fy(x)g(x) , v, (x)>
1 5 L‘i [H??\]

Hence we can reduce the nonlinear problem (4.1) to the bilinear
system defined by (4.2). The system (4.2) defines, in the usual

way (Brockett, 1976), the Volterra series

o5 £
p(t) = Wo(t) + Y fo [ wn(t,dl,.. ’Un)u(oi) ..u(on).
g eaii
dol. .don (4.3)
where
wn(t,ol,...cn) =T(t—ol)BT(ol-o2)B...BT(on)wo
for tioliozi'"'ign and wn=0 otherwise. This series is defined

for all ueLwﬁ,t] , if B is bounded, for then,



I

© n t S
v | < llw el + % Qi Bl s A S
n= 0 o S
dol. .don
o B n wt n
= wg@ll + T lall, (Bl -mett . €/
n=1
= [lw, (&) [| + M explot +[|B|| [lu]l ,t}
where
|| w|| = ess sup |u(s)|
@ Se O.tj

Alternatively, if B is not bounded on 22 but is a bounded
operator as a map from %* into some space W and T(t) is a semigroup
. . e 1
which satisfies “T(t)i[i(v422)i g(t) , where geLgoc[o, ],

then, by estimating (4.3) again, we have

[es]

n n
leer i Mgl + Tl 2HBI T, 42 lo*a*eeorall 2p
v n n n
fw () |+ 21 lwll l1B]] HgIILer,t] c
= =T
nl
We have assumed that g also satisfies
n
“g*g*.”*gHLlfO,tj ngHLl[O,tj'C
ni
where * denotes convolution and C is some constant. (An example
of such a function g(t) is l/ta . a<l, and then C = l+co.

The system

d
3

t e
I
Q2
Nf-s
+
[
g
(o2
)
1
"



= 14 =
; Ty . 2 2
is a bilinear system whose semigroup generated by 3°/5x has
this property.)

The series (4.3) is obtained, of course from the mild form

t

p(t) = T(t)w  + J T(t-s)u(s)By(s)ds (4.4)
by Picard iteration. If we let Pn denote the projection

an = (xl,xz,...xn,o,o,...)
for x = (xl,xz,...)eﬂz, then we can also consider the finite

dimensional system

.
Tm(t)l‘bom " fo

Py (t)
where
Tm(t) = PmT(t)P PR =P ’ BmZPmBPm

m om m'o

Then we obtain the Volterra series
v

_ .m t m
wm(t) = Wo(t) + nzl fo ...IO wn{t,cl,...,on)um(cl) um(o
dUl. do (4.6)
where
W (t,cl,...,an) = Tm(t—ol)Bme(Ul—az)Bm...Bme(on)wOm,

P
Il

@) otherwise
Note that,in general,

Tm(t) # exp(Amt).
where

A =P AP
m m m
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Lemma 4.1 Th = %
e operator Tm(t ol)Bme(cl Uz)Bm...Bme(gn)

converges strongly to T(t—ol)BT(c -Uz)B...BT(on) uniformly on

1
compact sets in mﬁ*l.
Proof. We shall prove that Tm(t) —E%T(t) (strong convergence)
uniformly on compact intervals. The lemma then follows easily
by induction. Since T(t) is a semigroup we have ||T(t)]] < Me®t
for some M,y and so lT(t) ]| is bounded on compact intervals.

However, if xaﬂz, we have
Tty - B T(t)p _x|| <||T(t)x = P T(E)x [[+][P T(t)x -P T(t)P x|
<[lT()x - P TEIx|[+[[ P || [|T(t)]] [l %=P_x]]| .
The second term on the right hand side clearly converges to zero,
uniformly in t. The first term also converges to zero; however,
if the convergence is not uniform for all x on the compact interval
[b,T], say, then there exists an x and ¢>0 such that, for each m,
there is a tms DD,T] such that
[Tl )% - P T(t )x|]|>¢.

The seguence {tm} has a cluster point, say E-Jin [O, T]and so

es [ T(e ) x - P Tt )x|| < [[T(t )x-T(E)x ||+ || T(E)x—me(E)xH

+ [P, T () x=P T (t)x ||

<P D Ol T ) x=T(R) x ||+ || T(E)x-P_T(E)x ||
for any m. The result now follows by the strong continuity of
T(t). O

An elementary argument now shows that the Volterra series
(4.6) of the finite dimensional approximations to equation (4.4)
convergef uniformly on compact intervals to the VNeolterra series
(4.3) of equation (4.4). We can therefore approximate the
infinite dimensional system with a finite dimensional Volterra
series.

The above methods are important theoretically, but when

evaluating a bilinearisation of a nonlinear system in practice
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we will usually not know T(t) explicitly and hence will not be
able to determine PnT(t)Pn. Hence we can revert to the (poorer)
approximation

&n = P AP y +u P BP y_
and obtain, for example, suboptimal controls as in Takata (1979).
In the next section we shall evaluate a simple example and show
that even in simple cases B is likely to be unbounded. We shall
then appeal to the existence theory of the nonlinear system to
guarantee that the bilinearisation also has solutions, since
finding a space W such that the function g satisfies the above

conditions will be difficult.

(5) Example
In this section we shall illustrate the bilinearisation of
the system
aT 82'1'
—= = (1l4+aT) —% + uT (5.1)
ot ax2
on the interval x ¢[0, w,]with T(o) = T(r) = 0. We have taken

B equal to the identity for simplicity of exposition; this is not
necessary, of course. This equation represents heat flow with
temperature dependent thermal conductivity. This equation is
well known to have global unique solutions (in L2 0,7] for example).

First, we recall the explicit definition and standard formula for

the Hermite polynomials (cf.Abramowitz and Stegun, 1965). These
are:
E
| l_n/Z‘_\ i 1 n-2m
(i) Definition. He (x) = n! “s (-1) o B
n m=o m! 2 (n—2mﬁ
—xz/ dx {
(ii) Orthogonality ;% He (x)Hem(x)e s, B n.gnm

oy W J2 T

(iii) Recurrence relation He ,,(x) = x He (%) - n He _,(x).

Hence we obtain, for the first four polynomials:
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Heo{x) = 1

Hel(x) = X

Hez(x) = xz-l

He3(x) = x7 = (n+l)x.

We shall write

£ . (x) = (n!)”% He_(x),

n+l
so that the sequence {fn} is orthonormal.

Next, we must specify the basis of LZWEH;RT where

w(T) = w(T,,T ) = g exp(—Ti/l}

F .
5 2 i=1 i
and H = L [Q,ﬁj, with
T= 5 T,{[2 sin ix }.
: i
i=1 T
A basis of sz[H;R] is specified by (2.3). The only thing

remaining is to decide on the order of the functions wi(T).
(Note that we shall now use T rather than x for the elements
of H = LZEO,W:I §)
The order which we choose is the following:
Define

0 (T = £(T)) £(TE (1) ... =1

and proceeding by induction suppose that, for ns>2 given, the

basis vectors wi(T) have been defined for ljij(n-l)(n_l). Then
we shall define wi(T) o (n-l)(n_l)<i k: nn. Let §n denote
the set

5, = tdrdyenna,i) l_fij<_'_n, 1<j<n}

and let Sn be given by

It is easy to see that Sn has nn—(n—l)(n—l) elements. We order

§n in the obvious way, namely {{...{{(il, o

1<i,sn}, I<ij¢n} .... 1, 1<i <n}

i.e. it varies first, then 12, etc. and Sn is given the induced

order from Sn‘ Then we define



) (n=1) (T) = £5 (T,)....f} (T YE (T ,PEAT_ )

1 n i n+2°°°°
(m=1)

IP:i_+(n—l

p— ] n__ a
= fil(Tl)....fin(Tn) ¢ lazien”~in=~1}

where (il, & s in) is the ith element of Sn in the above ordering.
Note that in the above ordering we include terms (at the nth stage)
of the form

E. 1T.) =k, (2]

which have not already appeared. These correspond to the indices
in the set Sn' We shall now illustrate this ordering up to

n=3, which will give 27 terms, as follows:

n=1 ! vy flflfl
fﬂ Vo= f £ f R
2 251y

! =
Ve T R oy
( _ et -
Vg = 255, 27171
. ~f_f_f
b = fof_f < R
e 17371
S = £ £.f 22
Vg 253ty
vg = E5E5F,
V1o = £, 5,1,
Vi1 = £E 1,
Va2 = £35,%,
Vi3 = 55,1,
Vig = 55,58,
| ¥y = £3E,E,
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Frg = Byfqafy
Yy = Safafs
Y18 = £3f35,
¥19 = 55,15
Yo = Bpfpfy
s Yo = gty
bap = B1 50y
Yoy T Eahsly
fon = £4F,8,
Yog = Tyfaty
| Yo T fpfs%;
|
- ¥yg = EE5f,

Note that, in the above sequence we have omitted the arguments

of the functions and so, for example, wlZ should be interpreted

as
Uy, (T) = f3(Tl)fl(T2)f2(T3)fl(T4)fl(T5) .....
since £, & 1. We have also indicated on the right those basis

1
vectors in group n which have been removed because they have

appeared before in the sequence.

Returning now to the system (5.1), consider first the

term  ¢(T) = T. Then, by (3.2), we must find the coefficients
of
n
g 2 . 9y (T) Tj
+ =1 BT,

with respect to the basis {wi}, G

- =A<r; By (TIT, wj(T)> (5.2)

13 Nyop T
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Let us examine the first few terms of (5.2). Now wl =1 so that
Bij = 0 for all j. Also, w2(T) = f2(Tl) and so
df2(Tl)
P\ Tam v ‘°j> = KTy b2
_<df2(T2) T2 ’ wj (T :<¢. (T), V. (T)> = 6,
B,.= =/ 3 § 37
37 dT2
af et [Ts) i
» 2 2 27 T
Bys <:f2(T2) ar (T,) T + & T, £, (T, 3y 45\ );>

The remaining Bij's can be found in a similar manner, but it
should be noted that the resulting linear operator B is not
bounded. Hence we see that the above linearising method does
not map bounded operators to bounded operators. We must now
determine the term

n awi(T} 32
o < I =5 ( (1+ oT) —= ) , y.(T) >
1] k=1 9Ty we x4

where n is again the maximal number of nonzero derivatives of

li>
=

vy - Now, in terms of the basis v 2/w sin i x of LZ [b,n]intro-

duced above, we have

T%;% = = (Z Ti Z/HSin ix ) (2 Tl(i)z/ 2/rsin i x )
= - Zi Zj TiTj :%_(j)zsinﬁi xjsin(j x;.
However, .
sin i X sin j x = QZ S{d,d,2) sinex,
where -
48(i,3,0) = 1= (T ity

ESE iF3-1

1-(-1*I7h gy itIth
i-3+2 i-3-1

and these terms where the denominator is zero are to be interpreted

as 0, Hence,
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T T 2 S i .
— ===l (2,2, P.T.[3)"B(i;9,4)) sinix ,
8x2 T k=1 13 17 e £
and so
2 N 2 |2 B B, 2 .
(l+0.T)i_§ - E_(\Tgl +OLS; Zizj TiTj (3) S(l)j,ﬂ,))\!?{ sinfix.
B =1
o0x
Hence
2 ;5 2 .
3 g
( (1+aT) ——g) = - (Tkk2+ul—z LiZs TiTj(:,f) S(i,3,k ))
Ix“ k L

and we may then evaluate the terms Aij above in just the same way
as before.

(6) Conclusions

In this paper we have defined the space sz[h;ﬁj and
have determined a basis of this space in terms of Her;ite poly-
nomials. We have then used the space to determine infinite
dimensional bilinearisations of nonlinear distributed systems
and conditions under which bilinear systems defined onl? define
Volterra series have been examined. Finally a simple example
to illustrate the bilinearisation of a nonlinear system has been
given.
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