
Information and Software Technology 51 (2009) 1291–1307
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
On the generation of requirements specifications from software engineering
models: A systematic literature review

Joaquín Nicolás *, Ambrosio Toval
Software Engineering Research Group, Departamento de Informática y Sistemas, Universidad de Murcia, Campus de Espinardo, 30071 Murcia, Spain

a r t i c l e i n f o a b s t r a c t
Article history:
Received 29 October 2008
Received in revised form 27 March 2009
Accepted 1 April 2009
Available online 9 April 2009

Keywords:
Specification generation from software
engineering model
Textual requirements generation from
software engineering model
Requirements document generation from
software engineering model
Systematic literature review
0950-5849/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.infsof.2009.04.001

* Corresponding author. Tel.: +34 968 39 85 25; fax
E-mail addresses: jnr@um.es (J. Nicolás), atoval@um
System and software requirements documents play a crucial role in software engineering in that they
must both communicate requirements to clients in an understandable manner and define requirements
in precise detail for system developers. The benefits of both lists of textual requirements (usually written
in natural language) and software engineering models (usually specified in graphical form) can be
brought together by combining the two approaches in the specification of system and software require-
ments documents. If, moreover, textual requirements are generated from models in an automatic or clo-
sely monitored form, the effort of specifying those requirements is reduced and the completeness of the
specification and the management of the requirements traceability are improved. This paper presents a
systematic review of the literature related to the generation of textual requirements specifications from
software engineering models.

� 2009 Elsevier B.V. All rights reserved.
Contents
1. Introduction . 1292
2. Planning the systematic literature review . 1292
2.1. Scope . 1293
2.2. Research questions . 1293
2.3. Search process . 1293
2.4. Inclusion and exclusion criteria . 1293
2.5. Quality assessment . 1293
2.6. Data collection. 1294
2.7. Data analysis . 1294
3. Results. 1294

3.1. Search results and deviations from protocol . 1294
3.2. Synthesis of the proposals . 1295
4. Discussion. 1298

4.1. RQ1. What value can be drawn from the literature with regard to the generation of requirements specifications from software engineering

models? . 1298
4.2. RQ2. What techniques have been addressed in this field? . 1299
4.2.1. Literate modelling. 1299
4.2.2. RESCUE and REDEPEND: generation of candidate natural language requirements from the i* framework 1300
4.2.3. Goal-oriented requirements engineering with KAOS and Objectiver . 1300
4.2.4. Other requirements specification derivations from goal modelling . 1301
4.2.5. Deriving requirements from business modelling . 1301
4.2.6. Deriving requirements from UML models. 1301
4.2.7. Use cases, scenarios and user stories . 1302
4.2.8. Deriving requirements from user interface modelling . 1303
4.2.9. Limitations of this SLR . 1303
ll rights reserved.

: +34 968 36 41 51.
.es (A. Toval).

mailto:jnr@um.es
mailto:atoval@um.es
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

1292 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
5. Product requirements derivation in software product lines . 1304
6. Conclusions and further work . 1305

Acknowledgements . 1306
References . 1306
1. Introduction

In a study on future research directions in requirements engi-
neering, Cheng and Atlee [18] affirm that there has been little work
on how to interconnect various types of requirements models, and
that further research is needed on how to integrate requirements
engineering techniques so that they can be used synergistically.
According to Goldsmith [29], despite widely held beliefs stating
that models and/or code prototypes are the appropriate means to
capture and communicate requirements, requirements need to
be written in words if they are to be appropriately reviewable. Fur-
thermore, Davis’ reflection [20] on the improvement of the require-
ments management process concludes that the combined use of
software engineering models and lists of requirements in natural
language is a good practice to improve such a process, since it per-
mits the benefits of the two approaches to be combined. On the
one hand, modelling techniques are usually expressive, precise,
and facilitate the development team’s specification and under-
standing of the requirements. On the other hand, lists of require-
ments in natural language can serve as a contract between
clients and developers and simplify requirements management.
These requirements lists both make the validation of requirements
by clients easier and clarify the size of the project and the actual
state of the requirements development. The study of the proposals
to combine business (system) or software models and textual
requirements, thereby, becomes relevant.

The norm in software engineering has been the specification of
system or software models from requirements written in natural
language. However, if the possibility of extracting information
from models as textual requirements in an automatic or closely
monitored manner is also included, then the combined use of mod-
els and textual requirements is made easier, and some additional
benefits can be obtained:

� The effort of writing the requirements is reduced. As is widely
accepted (see for example the IEEE 830-1998 standard [31]), a
requirement must be unambiguous, complete, consistent and
verifiable. The writing of a requirements specification satisfying
these criteria is a meticulous task and may require considerable
effort. The automatic or closely monitored derivation of textual
requirements from models can lead to productivity gains in the
requirements specification process.

� The completeness of the requirements specification is improved.
The generation of part of the requirements in an automatic or
closely monitored manner contributes to the completeness of
the requirements specification, since it is easier for the stake-
holders to accept or refine requirements than to recall them.
In the opinion of Maiden et al. [45], people are better at identi-
fying errors of commission rather than those of omission.

� The traceability between models and textual requirements is
automated. CMMI (Capability Maturity Model Integration) [16]
recommends bidirectional traceability between requirements
and development products. The CMMI’s Level 2 (within the
Requirements Management process area) specifically recom-
mends the maintenance of ‘‘bidirectional traceability (among
requirements and work products)” (SP 1.4).

The overall objective of this work is to carry out a comprehen-
sive review and synthesis of the current research and practices re-
ported in the literature related to the combination of software
engineering models and textual requirements in the requirements
specification process, and in particular those approaches that gen-
erate text with which to document the models. Our intention is to
study the literature to find methods and techniques dealing with
the generation, translation, combination, integration, or synchroni-
zation of (system or software) models and textual requirements, in
this order (from models to requirements), thus taking advantage of
the benefits listed above. The reverse problem (from textual
requirements to models) is not within the scope of this paper. It
is a problem that practitioners have traditionally addressed in an
informal, ad hoc manner, and more research is needed to achieve
software engineering models generation which starts from infor-
mal requirements.

The objective of this work has been achieved through a sys-
tematic literature review (SLR), following the approach of Biolchi-
ni et al. [12]. A SLR is a research technique to analyze the state-
of-the-art in a particular field of knowledge by formally defining
the problem statement, the sources of information, the search
strings, the criteria for inclusion and exclusion of the papers
found in the searches, the quantitative analysis to be undertaken
(if necessary), and the templates for ordering the information col-
lected from the papers. This technique comes from Medical Re-
search and has recently been adapted to software engineering
(see the work of Kitchenham et al., e.g. [36,37]; the presentation
of the SLR in this paper is particularly inspired by the structure of
[37]).

The structure of this paper is as follows: Section 2 summarizes
the main aspects of the design of the SLR. Section 3 presents the re-
sults of the searches, reports on some deviations from the previ-
ously established protocol, and tabulates a synthesis of the
results of the SLR which uses a taxonomy to classify the studies re-
viewed. Section 4 discusses the results based on the research ques-
tions formulated in Section 2: the interest in the integration
between models and textual requirements is first justified (Section
4.1), and each proposal selected in the SLR is then briefly analyzed
(Section 4.2). Product requirements derivation from software prod-
uct lines models is an interesting issue not covered by the papers
found in the SLR. We have therefore decided to perform a kind of
‘‘mini-SLR” on this topic which is fully reported in Section 5. Final-
ly, Section 6 presents our conclusions and further work, including
five issues that we consider to be key for a RMDB (Requirements
Management Database) tool supporting a seamless integration be-
tween models and textual requirements.
2. Planning the systematic literature review

The review protocol followed in this work is summarized in this
section. Section 2.1 states the scope of this research. Section 2.2
presents the research questions that guide the SLR. Section 2.3 pre-
sents the planning of the search process. Section 2.4 presents the
inclusion and exclusion criteria. Section 2.5 shows the data col-
lected from the selected studies, and finally Section 2.6 shows
the data analysis. The SLR protocol has been designed and executed
by the first author of this paper as part of his PhD work, and his
advisor (the second author of this paper) has revised the protocol,
the included and excluded papers, and has discussed the results of
the review with him.

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1293
2.1. Scope

The overall objective of the SLR has been stated in Section 1, but
its scope requires further refinement if it is to be precisely defined.
We are interested in reviewing the correspondences m2rs:
MOD ? REQ and m2rd: MOD ? REQDOC that are present in the
literature, where:

� MOD is the set of all the models used in software development
that provide a graphical, diagrammatical representation of the
specification of an aspect of a system or item of software (e.g.
a UML class diagram, an i* SD context model, a feature model,
or even a GUI navigation model). A model is constructed by
means of a technique. In terms of the Meta Object Facility
(MOF) layered metadata architecture [4], MOD consists of all
the Level M1 models that are suitable for graphical
representation.

� REQ is a set that consists of all the sets of textual requirements. In
short a requirement is a condition or capability that must be met
or possessed by a system or item of software. A textual require-
ment is a requirement defined either (1) as a textual statement;
(2) as a textual statement plus attributes, including traceability
relationships (e.g. IEEE 830 [31]); or (3) as a template filled in
with text (e.g. VOLERE [52]). Options (2) and (3) are clearly
equivalent. Textual requirements can be specified either by
means of natural language (e.g. traditional shall-statements) or
by a formal language (e.g. SCR [21]).

� REQDOC is the set of all system and software requirements docu-
ments, which usually combine narrative descriptions, textual
requirements and graphical models.

� m2rs is a correspondence that maps a system or software model
m to a set of requirements rs.

� m2rd is a correspondence that maps a system or software model
m to a requirements document rd.

As regards the REQ set, as was explained in Section 1, we are
especially interested in textual requirements written in natural
language, but formal languages also play an important role in cer-
tain specific domains and are therefore included within the scope
of the SLR.

Regarding m2rs and m2rd, we are especially interested in those
approaches that are suitable for automation, and which allow these
mappings to be performed automatically or in a closely monitored
form. Those approaches that describe the creation of a require-
ments document starting from models are also included within
the scope of the SLR, despite the fact that they are not presented
with the aim of being automated, but solely to ‘‘guide” the work
of a requirements engineer when writing a requirements docu-
ment starting from models. Note that m2rs and m2rd are defined
as correspondences and not as applications, so that an element in
the MOD domain may have more than one image.
2.2. Research questions

The research questions that we intend to answer in this SLR are
the following:

RQ1. What value can be drawn from the literature with regard
to the generation of requirements specifications (textual
requirements and requirements documents) from software
engineering models?
RQ2. What techniques have been addressed in this field? (i.e.
the techniques used to build the initial software engineering
models, the techniques used to build the corresponding textual
requirements and requirements documents, and the transfor-
mation procedures).
2.3. Search process

The following sources have been selected to perform the SLR:

� IEEE Digital Library (www.computer.org/portal/site/csdl/
index.jsp)

� ACM Digital Library (portal.acm.org)
� Science@Direct (www.sciencedirect.com)
� MetaPress (Kluwer + Springer) (www.metapress.com)
� Wiley InterScience (www.interscience.wiley.com)
� Google Scholar (scholar.google.com)

The main journals and events of the software engineering com-
munity were sought starting from these sources, in particular
those concerning requirements engineering (including conferences
and workshops such as RE, ICRE, REFSQ, SREIS, AWRE and WER).
Google scholar was selected to complete the set of conferences
and workshops searched, and to seek grey literature in the field
(e.g. white papers and technical reports).

All of the previously-mentioned sources have search engines
based on keywords. The search string defined is the following:
(‘‘from” OR ‘‘generation” OR ‘‘generating” OR ‘‘combination” OR
‘‘combining” OR ‘‘derivation” OR ‘‘deriving” OR ‘‘integration” OR
‘‘integrating”) AND (‘‘models” OR ‘‘specifications” OR ‘‘scenarios”
OR ‘‘use cases” OR ‘‘features” OR ‘‘stories”) AND (‘‘documentation”
OR ‘‘documents” OR ‘‘requirements”).

2.4. Inclusion and exclusion criteria

A tentative application of the search string has shown that, in
many cases, it is sufficient to read the title of the contributions
to consider them as candidates for selection in the SLR, since the
terms of the query are commonly used in literature, and lead to
many papers which are not related to the subject of this SLR. When
the title is not sufficient to determine the inclusion of the paper as
a candidate, the abstract is then read and, if necessary, the intro-
duction and even the whole paper.

With regard to the exclusion criteria, candidate papers present-
ing RMDB tools which do not present specific procedures for com-
bining models and requirements are not within the scope of this
research. Our intention is that this SLR should concentrate upon
techniques and transformation procedures, leaving aside the tool
market, since (1) it is difficult to obtain access to all the tools
(many are proprietary tools); (2) there is a vast number of RMDB
tools; and (3) the market changes continuously. Duplicate reports
of the same study are also excluded in the SLR: only the most com-
plete version of the study is included. Papers are not excluded on
the basis of their publication date (1) in order to be able to detect
whether the subject of the SLR was actively addressed in literature
during a certain period and then abandoned; and (2) to enable us
to discover old papers that could provide ideas which could be
adapted to current software engineering techniques.

2.5. Quality assessment

In this SLR the quality of the selected studies is addressed by
using the following criteria as a basis:

� Publication place. In this respect all the selected sources seek
scholarship journals and conferences only, with the exception
of Google Scholar, which seeks a wider spectrum of papers.
We do not expect a large number of papers in this SLR and thus
we are initially open to analyze ideas coming from any journal
or conference, including grey literature. We opt to remark in
the analysis of the studies which are technical reports or white
papers.

http://www.computer.org/portal/site/csdl/index.jsp
http://www.computer.org/portal/site/csdl/index.jsp
http://portal.acm.org
http://www.sciencedirect.com
http://www.metapress.com
http://www.interscience.wiley.com
http://scholar.google.com

Table 2
Number of found, candidate and selected studies, by source. Identical studies in
different sources have not yet been eliminated.

Source Studies found Candidate studies Selected studies

IEEE Digital Library 50 2 2
ACM Digital Library 214 8 7
Science@Direct 45 2 2
Meta-Press 87 2 2
Wiley Interscience 5 0 0
Google Scholar 394 12 10
Total 795 26 23

1294 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
� Tool support. If any, we study the tool supporting the approach
and whether it consists of a prototype or a more mature tool.

� Validation procedures. We encode each study with three levels of
validation. From lower to higher: (ACS) The study is shown
through academic case studies or even through examples. In
some cases these are drawn from literature; (ICS) The study
has been put into practice in an industrial case study; (IP) The
study can be considered as part of the industrial practice in a
company or domain, for example because a commercial tool
supporting the approach is available in the marketplace. The
research method – e.g. Action-Research – , if any, it is also
reported.

2.6. Data collection

A data extraction form adapted from Biolchini et al. [12] was
filled in for each selected work (see Table 1). The form consists of
a section of objective results which correspond to those written
by the authors of the work and another section of subjective results
related to the reviewers’ impressions with regard to the topic of
this SLR. The section of objective results brings together the re-
search method of the study (if reported), the problems and limita-
tions reported by the authors (if any), and a summary of the results
of the study. When analyzing the contributions, special attention
was paid in the results summary to the sentences that reinforce
the interest of the subject under study (research question RQ1);
the method proposed in the approach, the initial models, and the
target statements (research question RQ2); and the RMDB tools in-
volved, together with the validation procedures.

2.7. Data analysis

The data collected were tabulated to show:

� The identifier assigned to the study in the SLR, its authors, bib-
liographic reference, source and year of publication.

� The classification of the study following the taxonomy proposed
(presented in Section 3.2).

� The initial model and the kind of textual statements generated,
either in formal or natural language (concerning RQ2).

� The method in which the proposal takes place, tool support, and
the validation procedures (concerning RQ2).

In our view, the tabulation of results related to research ques-
tion RQ1 is not the best manner of presentation since the rationale
is of a narrative nature. The justifications for interest in the subject
of this SLR that have been collected from the selected studies and
Table 1
Data collection form.

Objective results extraction
Study identification Full bibliographical reference
Study origin The source/s from which the study has

belongs to the baseline of papers previo
Validation and study

methodology
The validation procedures and the rese

Study results The results of the study related to the r
based their work, the initial models, th
if reported

Study problems and
limitations

Those problems and limitations reporte

Subjective results extraction
General impressions and

abstractions
Here the reviewers raise their own con
which we consider to be of most note are therefore presented in
Section 4.1.

3. Results

3.1. Search results and deviations from protocol

The search string was adapted to be used in the search engine of
each source. The number of papers found per source is summarized
in Table 2, together with those marked as candidates and those fi-
nally selected. The search string was formulated by using words in
common usage and, after applying the inclusion criteria, most of
the studies found were not labelled as candidate studies. After
applying the exclusion criteria to the candidate studies, the se-
lected studies were then defined by source. Table 3 shows the can-
didate studies which were not selected, and why. A total of 23
studies were selected (see Table 2). Finally, identical studies found
in several sources had to be removed, resulting in 15 different se-
lected studies.

After studying the bibliographies of the selected papers we no-
ticed an important trend related to the research questions, literate
modelling (Sections 4.1 and 4.2.1), and believed that the SLR would
not be complete if this trend were not reported. We therefore
decided to introduce a deviation from protocol by completing the
set of selected studies with the sections of bibliography and related
work of these 15 selected papers. Three interesting papers not ini-
tially found in the SLR were thus selected, which were traced from
the bibliographies and related work of the studies that already ap-
peared in the SLR. Six papers that we knew were related to this to-
pic were also selected, despite their not appearing in the searches.
We are conscious that this is another deviation from protocol that
concerns the repeatability of the SLR, but the interest of working
with a more complete set of papers finally prevailed. Twenty-four
contributions were therefore eventually selected.
been selected, the paper from which the study is drawn, or (prev.SLR) if the paper
us to the SLR

arch method(s) used to achieve the results, if reported

esearch questions of the review, including the rationale on which the authors
e target requirements, the RMDB tool, and the method used in the proposal,

d by the study authors

clusions after reading the study

Table 3
Candidate studies not selected.

Source Study reference Reason for rejection

ACM A. van Lamsweerde, Requirements engineering in the year 00: a research perspective, in: 22nd Intl. Conf. on
Software Eng. (ICSE’00), ACM Press, Limerick, Ireland, 2000.

[59] (S8 in Table 4) is a more recent version
of the study

Google
Scholar

B. Jiang, Combining Graphical Scenarios with a Requirements Management System, Master Thesis, University
of Ottawa, Ottawa, Ontario, Canada, 2005

RMDB tool prototype

Google
Scholar

N.A.M. Maiden, S. Manning, S. Jones, J. Greenwood, Towards pattern-based generation of requirements from
software model, in: Requirements Engineering: Foundation for Software Quality 2004 (REFQS’04), Riga, Latvia,
2004

[45] (S3 in Table 4) is a more recent and
complete version of the study

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1295
3.2. Synthesis of the proposals

The proposals selected in this SLR are arranged in Table 4, which
shows the summarized data from each selected study. These data
are analyzed in this section. A more detailed analysis of each paper
can be found in Section 4.2.

A taxonomy is proposed for the proposals selected in this SLR,
based on the establishment of two dimensions: combination mode
and scope (columns C. Mode and Scope in Table 4), our intention
being to provide a synthesized vision of the field of knowledge ad-
dressed by research questions RQ1 and RQ2.

With regard to the combination mode, we have identified what
we refer to as generative and integrative approaches:

� Combination mode: Generative. These approaches propose algo-
rithms, rules or patterns to generate textual requirements start-
ing from models. These proposals are presented with or without
automatic support and the text generated can be written in nat-
ural or formal language:
– Generative (natural language). These approaches generate

candidate natural language requirements which must be val-
idated. In this group we should stress the work of Maiden
et al. on the generation of requirements from i* models
[45] (S3 in Table 4); the research of Meziane et al. [47]
(S13), to generate English specifications that paraphrase
UML class diagrams; the proposal of Firesmith [28] (S19)
which derives textual requirements from use cases, scenar-
ios and user stories; and a proposal by Berenbach [10]
(S17) which does not, strictly speaking, generate natural lan-
guage text but rather a hierarchy of requirements from use
case diagrams.

– Generative (formal language). These approaches generate
requirements written in a formal notation. Formal methods
bring benefits such as the mechanical analysis of a system
to check for deadlock and livelock freedom, but the adoption
of formal methods in industry is challenged by the cost and
complexity involved in the formal specification of the
system. Hence some approaches in literature have investi-
gated the derivation of formal specifications from require-
ments models. In this group we should highlight the work
on goals models by van Lamsweerde et al., which addresses
the automatic generation of operational requirements
described by means of pre- and post-conditions and triggers
[40] (S5), and the generation of requirements described by
means of the tabular technique SCR [21] (S7). In addition,
Cabral and Sampaio [15] (S20) research the generation of
operational requirements in CSP process algebra from use
case specifications.
� Combination mode: Integrative. These studies do not provide
algorithms, rules or patterns to generate requirements from
models, but rather a kind of open-ended guides to relate models
and textual requirements (or, on occasions, a philosophy of
work). The resulting requirements can be written in natural lan-
guage or in a formal notation. This SLR concentrates particularly
upon generative approaches but integrative approaches may be
of interest in the generation of requirements and requirements
documents and have thus also been included. Examples of this
are Arlow’s proposal [9] (S1) for literate modelling and Fire-
smith’s vision of what a modern requirements specification
should be like [27] (S2).

With regard to the scope of the approach, some proposals deal
with the generation of single requirements (correspondence
m2rs, explained in Section 2.1) while others deal with the genera-
tion of requirements documents (correspondence m2rd, described
in Section 2.1). Obviously, this dimension is not disjointed, since
the same study can address requirements and requirements docu-
ments generation. With regard to this SLR both approaches are of
equal interest:

� Scope: Requirement. These approaches deal with the generation
of requirements or sets of requirements, but do not address
the requirements documents in which the requirements should
be placed. One example is the approach of Maiden et al. [45] (S3)
which deals with deriving requirements from i* SD models.

� Scope: Documental. These studies concentrate on the manual,
automatic or semi-automatic generation of requirements docu-
ments. For example, van Lamsweerde’s group [59] (S8) has
developed a tool (Objectiver) with which to semi-automatically
generate requirements documents structured from a goal spec-
ification. The literate modelling trend as a whole can also be
included in the documental approach, including the works of
Arlow [9] and Firesmith [27] (studies S1 and S2 in Table 4).

Based on the results in Table 4, Fig. 1 relates combination mode
to scope, distinguishing between results in natural and formal lan-
guage. From this figure we can conclude that more attention has
been paid to the generation of single requirements (24 studies)
than of documents (10), while generative approaches (23 studies)
are more numerous than integrative approaches (11). In relation
to the target requirements, i.e. regarding the Gen.Statem. column
(Generated Statements) in Table 4, most of the approaches deal with
natural language rather than formal language (26 studies to 8).
This column also shows whether the studies report on a particular
template for natural language requirements specification (e.g. Vol-
ere) or a formal notation (e.g. SCR, KAOS, Albert). Note that the
same study may address both requirements and documents and
both natural and formal language.

The studies collected in Table 4 are applied to a variety of models
(see the Initial Model column), which are summarized in Fig. 2. This
figure does not compute literate modelling approaches (S1 and S2
in Table 4) because they are applicable to any visual modelling lan-
guage. The number of studies related to use cases and scenarios (10
studies, 7 of them generative) and goals models (7 studies, 5 of
them generative) is particularly noteworthy. On the one hand,
although use cases and scenarios have convenient, well-known
graphical notations, they are techniques in which text traditionally
plays a more important role than diagrams. On the other hand, goal

Table 4
Systematic review studies regarding RQ2.

ID Author/s [ref.] (source) Date C. Mode Scope Initial Model Gen. Statem. Method Tool Validation

Gen. Int. Req. Doc. FL NL

Section 4.2.1. literate modelling
S1 Arlow and Neustadt [9]

(very similar and more recent
than [8], which is cited by S12)

2004 h j j j UML or any other
visual modelling
language

h j Not specific Not reported (ICS) Enterprise Object
Models at British
Airways

S2 Firesmith [27] (prev. SLR) 2003 j h j j Not specific h j Not specific Not reported Not reported (vision
paper)

Sections 4.2.2–4.2.4. Goal-oriented requirements frameworks
S3 Maiden et al. [45]

(acm, mpress, gs)
2005 j h j h i* goal-oriented

model (SD
diagram)

h j (V) RESCUE REDEPEND (ICS) (A-R) DMAN, air
traffic management

S4 van Lamsweerde and Willemet
[60] (acm, gs)

1998 j h j h Scenarios and use
cases

j (K) h KAOS Not included in GRAIL (ACS) ATM and Lift
systems

S5 Letier and van Lamsweerde [40]
(cited by S6 and S7)

2002 j h j h KAOS goal-
oriented model

j (O) h KAOS Validation with SteP
verif. system

(ACS) Mine pump
control system

S6 Alrajeh et al. [6] (acm) 2006 j h j h Temporal logic
goal-oriented
model

j (O) h Not specific Validation with LTSA
model checker and
Progol5 inductive
learning tool

(ACS) Preconditions in
KAOS models in the
mine pump control
system

S7 De Landtsheer et al. [21]
(acm, mpress, gs)

2004 j h j h KAOS goal-
oriented model

j (S) h KAOS Validation through
SMV model checker

(ACS) Safety injection
system for a nuclear
power plant

S8 van Lamsweerde [59]
(cited by S3)

2004 j h j j KAOS goal-
oriented model

j (O) j KAOS Commercial CASE
Objectiver (previously
GRAIL prototype)

(IP) About 20 industrial
projects; Objectiver is a
commercial tool

S9 Yu et al. [61] (gs) 1995 h j j h i* goal-oriented
model

j (A) h Not reported Not reported (ACS) Banking system

S10 Antón and Potts [7] (prev. SLR) 1998 h j j j Goal-oriented
model

h j GBRAM Not reported (ICS) (A-R)
CommerceNet Web

Section 4.2.5. Business modelling
S11 Cox et al. [17] (sd, gs) 2005 h j j h RAD business

model
h j Not specific Not reported (ICS) (A-R)e-business

system
S12 Türetken et al. [58] (gs) 2004 j h j h eEPC business

model
h j Not specific ‘‘KAOS” plug-in for the

ARIS toolset
(ICS) two military
applications

Section 4.2.6. UML-based approaches
S13 Meziane et al. [47] (prev. SLR) 2007 j h j j UML class diagram h j Any UML-based

method
GeNLangUML Java
prototype

(ACS) University
system

Section 4.2.7. Use cases and scenario modelling
S14 Maiden et al. [42] (ieee) 1998 j h j h Scenarios and use

cases
h j CREWS-SAVRE CREWS-SAVRE (ICS) London

Ambulance Service
S15 Mavin and Maiden [46] (ieee, gs) 2003 j h j h Scenarios and use

cases
h j CREWS-SAVRE CREWS-SAVRE (ICS) OCD (naval) &

CORA-2 (air traffic
managem.)

S16 Maiden and Robertson [44] (acm) 2005 j h j h Scenarios and use
cases

h j (V) RESCUE (evolves
CREWS-SAVRE)

ART-SCENE (evolves
CREWS-SAVRE)

(ICS) (A-R) DMAN, air
traffic management

S17 Berenbach [10] (acm, gs) 2003 j h j h Use case diagrams h j Any use case
driven process

Based on CASE tool
scripts

(ICS) Use case models
used in Siemens

S18 Berenbach [11] (prev. SLR) 2004 h j j j Use case diagrams h j Any use case
driven process

Not reported (ICS) Mail sorting
system at Siemens

S19 Firesmith [28] (gs) 2004 j h j h Stories, scenarios
and use cases

h j Any use case
driven process

Not automated (ACS) ATM example

S20 Cabral and Sampaio [15] (sd, acm) 2008 j h j h Use case
templates

j (C) h Not specific Ms Word plug-in, CNL/
CSP translator, FDR,
CSP model checker

(ICS) Research
cooperation involving
Motorola

S21 Daniels et al. [19] (prev. SLR) 2005 h j j j Use cases h j Rational Unified
Process

Not automated (ACS) microwave oven
SPL example

S22 Probasco and Leffingwell [49] (gs) 1999 h j h j Use cases h j Rational Unified
Process

Rational Suite Not reported (white
paper)

Section 4.2.8. User interface modelling
S23 Jungmayr and Stumpe [33] (gs) 1998 j h j j Extended usage

model
h j Not specific Java prototype (ACS) UNIrech,

bibliographic
databases query

S24 Smith [55] (prev. SLR) 1982 j h j h User-system
interface

h j Not specific Prototype on UNIX Not reported

Source: acm, ieee, sd (ScienceDirect), mpress (MetaPress), wi (Wiley Interscience), gs (Google Scholar), prev.SLR (baseline previous to SLR), cited by [ref.]; C. Mode (Combination
Mode): Gen.: Generative/Int: Integrative; Scope: Req.: Requirement/Doc: Document Gen.Statem. (Generated Statements): FL: Formal Language/NL: Natural Language; (K) KAOS,
(O) Operation Model, (S) SCR, (A) Albert, (C) CSP, (V) Volere; Validation: (ACS) Academic Case Study/(ICS) Industrial Case Study/(IP) Industrial Practice; A-R: Action-Research.

1296 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307

0

2

4

6

8

10

12

14

16

18

Scope (NL, Natural Language; FL, Formal Language)

N
um

be
r o

f s
tu

di
es

Integrative 5 1 5 0

Generative 12 6 4 1

Requirement (NL) Requirement (FL) Document (NL) Document (FL)

Fig. 1. Number of studies by scope and combination mode.

0

1

2

3

4

5

6

7

8

9

Initial models

N
um

be
r o

f s
tu

di
es

Requirement 7 2 8 1 2

Document 2 0 3 1 1

Goal-oriented
models

Business
models

Use cases &
scenarios

UML (other
than use cases

& scenarios)
User interface

Fig. 2. Number of studies by scope and initial model.

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1297
models benefit from van Lamsweerde et al.’s attention to KAOS (4
generative studies, S4–5 and S7–8 in Table 4). Two approaches con-
cern business modelling, but none of them addresses document
generation. There are also two studies on interface models. It is
worth noting that there is only one generative approach on UML,
leaving apart use cases and scenarios. It seems that more effort
should be made in this area, particularly in those UML techniques
which are more suitable for use in requirements engineering.

With regard to the Method column in Table 4, few studies are
part of a software development method. This is hardly surprising
since we believe that these approaches can be used in the context
of any method in which the initial models are used.

The first quality assessment criteria established in Section 2.5 is
Publication place. Only one white paper appears in the selected
studies, which is that of Probasco and Leffingwell [49] (S22). The
remaining studies do appear to have been published after a referee
process with, perhaps, the exception of the two columns of Fire-
smith at JOT [27,28] (S2 and S19). Arlow and Neustadt’s book chap-
ter on literate modelling [9] (S1) comes from a contribution to a
refereed conference [8]. Data regarding Tool and Validation can also
be found in Table 4:

� As regards Tool, to the best of our knowledge, REDEPEND and
Objectiver are the most mature tools found in this SLR. Objecti-
ver is even commercially available. Besides, automation is not
reported in some of the studies, notably in Arlow and Neustadt’s
proposal [9] (S1) for literate modelling and in Firesmith’s vision
of modern requirements specification [27] (S2). The remaining
approaches which report automation show their viability by
means of prototypes whose real maturity level is difficult to
assess from the information reported in the papers.

� Fig. 3 presents a summary of Validation, and makes it is clear that
real industrial practice is scarce in this field. A case study in a com-
pany must overcome an important gap if it is to become part of
that company’s real practice. The reading of the papers does not
allow us to make a precise assessment of the size of this gap in
all cases. The number of academic and industrial case studies is
similar (9 and 11 studies, respectively). Industrial case studies

Academic Case
Studies (ACS); 9;

38%

Industrial Case
Studies (ICS); 11;

45%

Industrial Practice
(IP); 1; 4%

Not reported; 3;
13%

Fig. 3. Types of validation (including number of studies and percentage).

1298 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
are in principle preferable, although it is often difficult to make a
precise assessment of the real scope of an industrial case study by
reading the papers. Nevertheless, some papers present rigorous
theoretical research and are illustrated by means of an academic
case study (e.g. S4, S5 and S7 in Table 4 by van Lamsweerde et al.).

Finally, but of no less importance, no approach exists to address
the issue of maintaining synchronization between the documents
or requirements generated and the initial models. In the papers se-
lected the generation always takes place in one direction, from mod-
els to requirements. No approach exists to permit the changes in the
generated requirements to be automatically propagated in the initial
models. We believe that this synchronization could be useful in an
iterative and incremental software process, especially during valida-
tion with customers. Validation could therefore be carried out
directly on the widely understandable generated textual require-
ments, which could be changed to make the related models evolve
automatically through traceability relationships. We are obviously
referring to the synchronization of certain predefined changes in
the generated textual requirements or documents, since synchroni-
zation in general may be difficult.

4. Discussion

Having filled in the data collection forms and analyzed the se-
lected contributions, we now present answers to the research
questions presented in Section 2.2.

4.1. RQ1. What value can be drawn from the literature with regard to
the generation of requirements specifications from software
engineering models?

An a priori justification of the interest of this topic was
formulated in Section 1, before the SLR was performed. This
question (RQ1) permits us to look for statements found in literature
which justify an interest in this topic. In this section we collect some
of the statements that we consider to be most representative.

Arlow and Neustadt [9] (S1 in Table 4) believe that in many
cases not all stakeholders are able to understand the syntax and
semantics of a business model that uses UML and other visual
models. Furthermore, these authors discuss the following concerns
with regard to visual models:

� In order to access the information embedded in a model it may
be necessary to know how to operate a modelling tool. The
reports that all modelling tools generate – usually in HTML for-
mat – are often difficult to read and navigate and are thus, in
Arlow and Neustadt’s experience, of limited practical use.

� Unless one is familiar with the general ‘‘shape” of a visual model,
it can be difficult to determine where to start reading, either
when reading the model in a modelling tool or when reading a
generated report.
� It is sometimes difficult, or even impossible, to uncover the busi-
ness requirements and the rationale underlying the visual
model, as these become invisible when taken out of the business
context and expressed in a visual notation. For instance, a highly
important requirement can be expressed in such a concise way
that the requirement can be easily overlooked during a walk-
through. Arlow and Neustadt call this ‘‘the trivialisation of busi-
ness requirements by visual modelling” [9]. The same authors
show this trivialisation through an example in which a highly
important business requirement is finally expressed in the mod-
els as an association multiplicity ‘‘n” rather than ‘‘1”: this
requirement could easily pass unnoticed during the validation
of the model.

Literate modelling is a technique drawn from the literate pro-
gramming proposed by Knuth in the eighties, in which modelling
and natural language documentation are seamlessly bound to-
gether in a synergetic manner, and the functionality of CASE (Com-
puter-Aided Software Engineering) and RMDB tools are truly
integrated. We believe that many software engineers have been
using literate modelling intuitively in an ad hoc manner through-
out their professional careers, without being aware of this term.
In a paper referenced by Türetken et al. [58] (S12), Finkelstein
and Emmerich [26] examine the future of RMDB tools and place lit-
erate modelling within the long-term future of these tools. These
authors claim that there is no suitable manner in which to syner-
gistically use models and natural language in RMDB tools. These
authors foresee that literate modelling has a role to play in these
tools. There is a school of thought that argues that natural language
requirements are a vestige of outmoded practice which survives
because of the lack of technological transfer to the IT industry of
R&D modelling methods. Finkelstein and Emmerich, however, be-
lieve that natural language plays a valuable role which is, further-
more, unlikely to be supplanted. Natural language is useful to show
the correspondences between the components of the models and
those of real-world phenomena, and allows the stakeholders to
validate the specification. Meziane et al. [47] (S13) add another
benefit: the automatic generation of natural language require-
ments for maintenance purposes. Software implementations are
often not consistent with the documentation, since developers do
not update analysis and design models when they change the code.
Design models can be generated from the evolved implementation
by means of a tool allowing reverse engineering. It would therefore
be useful if natural language requirements were generated based
on that updated design.

Maiden et al. [45] (S3) believe that their work is part of an
important trend towards the integration of requirements models.
These authors state that although many model-based specification
and analysis approaches with which to specify the requirements of
computer-based systems exist, most organizations continue to
represent requirements textually. ‘‘Unfortunately”, they write,
‘‘most modelling approaches have not been designed to support
the derivation of requirements statements from models, or to be
used alongside textual requirements descriptions”.

When van Lamsweerde [59] (S8) exposes the lessons learned in
the application of goal-oriented requirements engineering, he
states that ‘‘the diversity of requirements engineering projects in
type, size, and focus call for highly flexible technologies. We felt
that a multi-button method and tool that by default supports
graphical and textual specifications, plus formal specifications only
when and where needed for incremental analysis of critical model
fragments, is a promising step in that direction”. van Lamsweerde
also asserts that requirements documents are generally perceived
as being big, complex, outdated, and too far away from the execut-
able products customers are paying for. He adds that ‘‘in the end,
what bothers customers the most is the quality of project delivera-

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1299
bles. The model-driven requirements document generated with
our tool [Objectiver] was perceived as the main success indicator
in many projects”.

Firesmith [27] (S2) discusses the problems of traditional
requirements specifications and proposes the requirements in an
approach to manage those problems in an iterative and incremen-
tal software process. Such an approach should enable the
automatic generation of audience-specific requirements specifica-
tions. For example, the needs of executive managers or project
directors are very different from those of software testers. With
regard to iterative process models, the need for requirements
documents to have unresolved questions annotated is made expli-
cit in Antón and Potts’s approach [7] (S10) towards goal-oriented
requirements engineering. In a requirements specification the
listing of requirements can be as important as the tracking of open
issues, which appear and disappear dynamically.

Türetken et al. [58] (S12) work on the automatic generation of
requirements in natural language from business process models
and state that their approach can be used to manage the minimiza-
tion of ‘‘non-value-added tasks” such as the rewriting and docu-
menting of requirements, thus improving their quality as well as
facilitating their modification. The functional requirements of the
system and the software are generally based on visual models,
but the traceability and the interaction between these models
and the requirements represented in natural language are gener-
ally missed. One of the benefits of their approach is that the stan-
dard format for the requirements generated simplifies the
understanding, verification, validation, and management of these
requirements for all stakeholders.

Berenbach’s [10] (S17) experiences in Siemens have led him to
observe the disconnection between a UML model and the require-
ments of the processes modelled. This author believes that this gap
tends to widen: as models become more complex the extraction of
detailed requirements becomes more difficult. Failure to develop
complete requirements sets from UML models may have serious
consequences at a later date. For example, the derived test cases
might not provide complete coverage. Berenbach [11] (S18) states
that the solution arises from the planned integration between
models, the text of the use cases, and the requirements. He believes
that ‘‘a UML model is a repository, not a set of diagrams”. He also
provides a list of best practices, including the suggestion that doc-
umentation should be generated ‘‘on demand”.

With regard to the integration of use cases and textual require-
ments, Daniels et al. [19] (S21) state that use cases provide under-
standability, context, and direct traceability to actor needs and
interfaces, while shall-statement requirements add the precision
necessary to completely and unambiguously specify the system.
Despite the usefulness of use cases, shall-statements, diagrams, ta-
bles, equations, graphs, pictures, pseudo-code, state machines and
other methods must still be used to capture additional require-
ments and add richness to provide a sufficient level of detail to
characterize a system. These authors conclude that ‘‘use case mod-
els and traditional shall-statement requirements are synergistic
specification techniques that should be employed in a complemen-
tary fashion to best communicate and document requirements”.

4.2. RQ2. What techniques have been addressed in this field?

For reasons of clarity, the selected proposals described in this
section have been grouped as they are shown in Table 4.

4.2.1. Literate modelling
A detailed introduction to the intention of literate modelling

was given in Section 4.1. Arlow et al.’s original proposal on this to-
pic [8] is later refined in [9] (S1 in Table 4). In this approach a new
type of document is defined, Business Context Document (BCD), in
which (1) the diagrams are embedded as figures in a document
written in natural language and the visual model is paraphrased
(for example, in relation to certain UML associations it can be writ-
ten as ‘‘Each Product has a Price List which contains zero or more
Prices”); (2) brief explanations of the relevant UML syntax are in-
cluded in footnotes; (3) real, yet simple examples of the notation
are presented to illustrate specific points; and (4) some important
questions such as the rationale are emphasized. Literate models
are thus UML models that are embedded in a natural language text
which explains them.

In Arlow et al.’s experience, it is preferably to structure BCDs
around the key things that deliver value to the business rather than
the business processes. Things are more stable than processes and
tend to naturally form cohesive clusters that provide a suitable fo-
cus for the BCD. A simple relationship between the package struc-
ture of the UML models and the BCDs can be expected. This
proposal does not, however, mention specific patterns or algo-
rithms for generating requirements from UML models: instead,
the authors describe the base contents of the BCD and provide
guidelines with which to create it. According to Arlow et al., each
BCD has the following base structure: (1) business context; (2)
compliance to standards; (3) a roadmap UML model, showing all
the main things and relationships, with cross-references to the
appropriate parts of the BCD; and (4) a number of sections, each
describing a thing or related things and comprising: (4.1) narrative,
referencing one or more model fragments; (4.2) UML diagrams
illustrating the narrative (which, according to the authors, are typ-
ically class diagrams, use case diagrams, and sequence diagrams);
and (4.3) informal diagrams wherever they enhance the descrip-
tion. Arlow et al. also provides guidelines on the writing style to
be used in BCDs and, for example, recommend the use of concrete
examples to illustrate the models and the development of a busi-
ness nomenclature.

We believe that, in a broad sense, the proposals collected and
analyzed in this SLR could be considered as a part of this trend in
literate modelling, although no specific reference is made to this
in the papers themselves. We particularly believe that Firesmith’s
proposal with regard to requirements specifications [27] (S2) could
be considered as literate modelling. The goal of this approach is to
obtain a correct, complete, consistent, current, and audience-
appropriate (i.e., supportive of the role-specific tasks of its numer-
ous audiences) requirements specification. To improve the require-
ments specification, and based on his experience, Firesmith
proposes the use of a tool that (1) has a fine-grained repository;
(2) enables automatic specification generation, as a kind of separa-
tion between Model and View in the MVC (Model-View-Control)
paradigm; and (3) generates different specifications for different
readerships. Another interesting idea that Firesmith points out is
the need to establish some kind of publish-subscribe mechanism
which permits stakeholders to be notified when certain require-
ments of interest to them change in an iteration or are added in
incremental development. This feature would, for example, be crit-
ical to a designer.

In conclusion, in the words of Arlow and Neustadt [9]: ‘‘in prac-
tice, literate modelling, although a very good idea, didn’t really
take off well. This was partly because of its reliance on special
text-processing tools that were not widely available and partly be-
cause programmers generally prefer to write code rather than nar-
rative! In contrast to this, literate modelling has proven to be very
popular with those that have tried it. This is because a literate
model not only provides a context for a UML model that is other-
wise lacking but also helps the modeller do his or her work”. We
believe that if this proposal of literate modelling is to be successful
it should be based on the automatic or closely monitored genera-
tion of the BCD or significant parts of the BCD. If BCDs have to be
created entirely manually, then literate modelling will probably

1300 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
not be applied in practice: the manual generation of BCDs can be
cumbersome, and BCDs can be hard to write because, according
to Arlow and Neustadt, they require a very sound and broad over-
view of the business, good UML skills, and good writing and com-
munications skills.

4.2.2. RESCUE and REDEPEND: generation of candidate natural
language requirements from the i* framework

In the set of proposals of Neil Maiden et al. regarding the
requirements engineering process RESCUE, one of the premises is
that it is easier for the stakeholders to identify errors of commis-
sion rather than those of omission. In other words, the stakehold-
ers find it easier to read a possible alternative scenario in a use case
or a candidate requirement in natural language and to accept or re-
ject it than to recall all the possible scenarios or all the require-
ments of the system. In this context, two set of papers can be
found in the scope of RESCUE: (1) those generating requirements
in natural language from i* SD – Strategic Dependency – context
models (these are basically graphical context models that allow
the goals of the interactions between the agents of a socio-techni-
cal system to be captured); and (2) those attempting to complete
the set of alternative scenarios in the use cases (described in Sec-
tion 4.2.7).

In the first set of papers, Maiden et al. [45] (S3) describe 19 pat-
terns that have been developed to paraphrase an i* SD model thus
making information already included in the model explicit. These
patterns identify recurring syntactic and semantic structures in
the i* models, from which candidate requirements are generated
that must be validated. These requirements are specified in natural
language by using the VOLERE template. This approach was ap-
plied manually in an industrial case study, DMAN (DEparture MAN-
ager), an air traffic management system. The authors consider this
approach to be a success because 214 requirements statements
were generated manually in three days, of which 207 were in-
cluded in the final requirements specification (encompassing al-
most 900 requirements). Therefore, almost 25% of the
requirements in the final specification were generated in this man-
ner. This approach helps to improve the completeness of the
requirements specification although, as Regnell et al. [51] point
out, probably not the elicitation per se since the information must
already be included in the i* model. This approach can be useful in
any system in which a set of heterogeneous actors interact in order
to achieve certain dependent goals. Maiden et al. conclude this
study by asking themselves whether an automatic, pattern-based
generation of candidate requirements statements would be cost-
effective, or whether the number of duplicate and false-positive
requirements would be unacceptable.

An initial answer to this last question raised by study S3 can
be found in a subsequent paper, [41], in which Maiden et al. pres-
ent the lessons learned during the application of i* in several
industrial case studies, and discuss the use of a new version of
REDEPEND which automates the applications of the previous pat-
terns. For the purpose of this SLR, REDEPEND enables analysts to
construct i* SD models during a requirements workshop, to auto-
matically generate candidate requirement statements from this i*

model in real time, and to then walkthrough these generated
requirements to select and reject them. The 19 previous patterns
are represented in an Ms Excel file in REDEPEND, meaning that
eventual new patterns can be added without changing the tool.
In the previous DMAN case study, the automatic generation of
287 candidate requirements took REDEPEND only 12 s when
running on a standard PC. It should be noted that the number
of candidate requirements generated is larger than in [45]
because the 19 patterns had been refined, thus leading to more
requirements of different types. With regard to requirements gen-
eration, the initial evaluation of the tool made by Maiden et al. is
positive, although they aim to gather and report evaluation data
in the future.

4.2.3. Goal-oriented requirements engineering with KAOS and
Objectiver

van Lamsweerde et al. have produced an authoritative collec-
tion of work around KAOS, a goal-oriented framework that in-
cludes method and tool support. The KAOS method has been
applied in about 20 industrial projects at CEDITI (a university
spin-off) [59], covering a variety of domains. Natural language is
used in KAOS to describe the system informally, although when
necessary a temporal logic can be used to describe the system for-
mally. This section addresses the generation of both textual
requirements and requirements documents. With regard to textual
requirements, the requirements generated are not specified in nat-
ural language but in formal notations (pre/post-conditions & trig-
gers and SCR). The starting models are scenarios and goal
models, which have convenient graphical diagrams, although they
are processed from their textual representation.

The first work in this section is related to scenarios, which are
widely considered to be an effective means to elicit, validate, and
document requirements. However, scenario models are partial
and may pass over certain properties of the system. Goals,
requirements and assumptions related to scenarios are, in addi-
tion, only implicitly described. The system’s properties must
therefore be explicitly expressed to permit an analysis of consis-
tency and completeness to be carried out. A method was thus
developed in the realm of KAOS to systematically infer formal, ab-
stract declarative specifications of goals, requirements and
assumptions starting from informal, concrete scenarios [60]
(S4). The generated specification uses temporal logic. This pro-
posal is grounded in the experience of the KAOS research group
in numerous projects but, according to this paper [60], the putt-
ing into practice of this proposal in a real industrial case study
is still pending.

After this work, research was then conducted in the realm of
KAOS to project declarative goals models to operational require-
ments in order to achieve the best of both approaches:

� Operations specified by pre- and post-conditions and triggers
[40] (S5). The functional goals assigned to the software agents
must be operationalized in the specifications of the software
services that the agents should provide to meet those goals, by
applying operationalization patterns. The authors recognize their
limited experience with these patterns, mainly based on their
handling of a variety of case studies from literature. Alrajeh
et al. [6] (S6) affirm that this refinement of operational require-
ments from goal models is a tedious manual task only partially
supported by operationalization patterns. These authors address
this problem by proposing a semi-automated approach based on
model checking and inductive learning. This is initial research
which is described through the case of learning preconditions
for KAOS models. Alrajeh et al. believe that this method can be
tailored to generate other operational requirements such as
triggers.

� Tabular event-based specifications for control software, written
in the SCR language [21] (S7). These specifications are a well-
established method with which to specify operational require-
ments for the development of control software, and provide
sophisticated techniques and tools for the late analysis of soft-
ware models. This proposal is again shown through an example
found in literature.

In a keynote at RE’04, van Lamsweerde [59] (S8) reflected on
goal-oriented requirements engineering research and practice.
One of these reflections concerned ‘‘the need for effective tool sup-

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1301
port”, and Objectiver was presented, together with some related
lessons learned and challenges. Objectiver is a commercial toolset
(www.objectiver.com) supporting the KAOS method. This is a ma-
ture and well-documented environment which evolved from the
GRAIL prototype. The Objectiver toolset makes it possible to gener-
ate requirements documents in a closely monitored form. The
structure of these documents stems from the goal refinement
graph and from requirements documents templates which reflect
company-specific standards (IEEE 830 [31] is also included). The
requirements document contains a glossary of terms generated
from the object model, textual annotations retrieved from the
model, and figures selected by the user through drag-and-drop
from the goal, object, agent and operation sub-models. Objectiver
is the only work found in this SLR that we would be sure of catalo-
guing as ‘‘industrial practice”.

4.2.4. Other requirements specification derivations from goal
modelling

The joint proposal of the Yu & Mylopoulos and Du Bois & Dubois
groups [61] (S9) combines two agent-oriented frameworks for
requirements engineering: the specification of (primarily func-
tional) requirements with Albert starting from goal-based business
modelling with i*. Albert is a rigorous language which uses a first-
order temporal logic. This approach assumes that the requirements
process can iterate between the levels of specification and under-
standing towards a requirements specification: the level of specifi-
cation or modelling prescribes what agents should do or know, and
the understanding or analysis level describes why agents relate to
each other in a certain way, and why they might prefer some other
configuration of relationships. The objective of this work is not to
translate semi-formal i* diagrams into Albert formal specifications
but to use i* as a first modelling notation for eliciting high-level
goals before converting them into finer formal requirements. This
is, therefore, an ‘‘integrative” approach (see C.Mode in Table 4),
but is a preliminary, early work which should elaborate on the
method needed to obtain the system requirements. The proposal
is shown through an academic example.

GBRAM (Goal-Based Requirements Analysis Method) is a require-
ments engineering method outlined by Antón and Potts [7] (S10),
and is used to infer goals from espoused requirements and to then
derive more complete operational requirements from those goals.
This study has been included in the SLR since the last activity of
GBRAM related to goal refinement is ‘‘Operationalize”, which con-
sists of translating goals into operational requirements for the final
requirements specification. These requirements are specified by
means of templates containing a refined goal, pre and post-condi-
tions, and associated scenarios. Note that the mode of this study is
‘‘integrative” and not ‘‘generative” (Table 4). GBRAM does not,
therefore, propose algorithms, rules or patterns with which to de-
rive the operational requirements, but provides a set of heuristics
and involves the timely posing of systematic questions, the relax-
ation of initial goals by considering obstacles (anything that can
happen to thwart a goal), and the exploration of scenarios. An
interesting contribution of this paper is that requirements docu-
ments should be ‘‘living documents” in the sense that they keep
track of requirements, open issues that appear and disappear
dynamically, and organizational requirements that encode certain
important information for the requirements engineering process
(for example, the person who has a good knowledge of certain
requirements, or the person who will ultimately be affected by a
decision). The output of the whole process is a requirements doc-
ument whose structure is based on the main functional areas with-
in the system, each containing the following subsections: Goals,
Functional Requirements, Non-functional Requirements, and Orga-
nizational Requirements. One limitation of the study is that the
link between goals and non-functional requirements is not consid-
ered. This work, conducted by means of Action-Research, has been
validated in several real case studies including an e-commerce
application.

4.2.5. Deriving requirements from business modelling
The generation of requirements from business process models

includes an article by Cox et al. [17] (S11) which attempts to (1)
discover the applicability of Michael Jackson’s problem frame prop-
ositions to complex, industrial projects; (2) link business process
models by means of the RAD (Role-Activity Diagram) notation on
these problem frames; and finally (3) derive requirements from
the process models. In our view, this derivation of requirements
is not systematic, but is rather one of the steps to obtain a problem
frame related to the process model and involves the production of
a requirements specification in which the requirements engineer
applies his or her knowledge to the problem. We believe that, in
spite of the title of the paper, the derivation of requirements plays
a secondary role in this work. The research is validated through an
industrial e-business system and the case study is conducted using
Action-Research.

The research into the derivation of requirements starting from
business process models also includes the contribution of Türetken
et al. [58] (S12), who propose a pattern to specify part of the pro-
cess models written in eEPC notation in natural language. This pat-
tern is automatically applied through a tool and, according to the
authors, provides an important productivity gain, although 40%
of the requirements generated needed modification. The reported
case studies are two large military applications. This work, there-
fore, is in line with those of Maiden et al. (Section 4.2.2), although
only one requirements pattern is used and it does not take into ac-
count the generation of conditional sentences.

4.2.6. Deriving requirements from UML models
Arlow et al.’s proposal for literate modelling (Section 4.2.1) is

related to UML but does not provide specific algorithms, rules or
patterns to derive requirements from UML models. Apart from
use cases and scenarios (discussed in next Section 4.2.7), only
one proposal regarding UML has been found.

Meziane et al. [47] (S13) introduce another interesting line of
work in the SLR: natural language generation systems. They pro-
pose the GeNLangUML (Generating Natural Language from UML)
prototype, which generates English specifications that ‘‘para-
phrase” UML 1.5 class diagrams by making use of a linguistic ontol-
ogy called WordNet. Meziane et al.’s aim is twofold: (1) on the one
hand they wish to provide users with two different views of the
system specification at any time: UML and natural language; (2)
on the other hand they see the motivation for their tool in a reverse
engineering process during the maintenance stage, to enable back-
wards transformation allowing the stakeholders to ‘‘visualize” the
changes in the system’s implementation in natural language.
System evolution is derived from source code, design notation –
UML – and system specification in natural language. Text genera-
tion is exemplified by means of an academic case study on a
University system. The specification generated includes statements
such as ‘‘A person is a professor or a student”, ‘‘A professor has a
name, a home address, parking privileges, a date, a seminar and
seminar overseen”, ‘‘Zero or many professors instruct zero or many
seminars”, ‘‘A person lives at an address”, ‘‘An address has a street,
a city, a state and a zip code”, and so on. GeNLangUML extends the
ModEx (Model Explainer) system, an earlier work by Lavoie et al.
[39].

Meziane et al. identify some weaknesses in their approach,
which is purely academic. Firstly, the proposal relies on naming
conventions extracted from text books. These conventions might
change in industrial practice and the tool would have to be config-
ured accordingly. Secondly, the level of abstraction of the text gen-

http://www.objectiver.com

1302 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
erated is close to the level of abstraction of the initial UML model.
Thirdly, the authors postulate that an ideal system to generate nat-
ural language from object-oriented models would include class
diagrams, interaction diagrams (sequence and collaboration), state
diagrams, activity diagrams and OCL. Regarding interaction dia-
grams, we doubt that it is necessary to include collaboration dia-
grams since in our experience they are not concerned with
requirements, but with design. Sequence diagrams can, on the con-
trary, be used to describe use case scenarios. Finally, the authors of
this work state that it can be complemented by Burke and Johan-
nisson’s [14] research into the translation of OCL specifications into
natural language.

4.2.7. Use cases, scenarios and user stories
Use cases constitute a well-known technique to elicit, analyze,

specify and validate requirements that have a simple, widespread
graphical representation, although use cases are mainly textual
in nature [38]. This section deals with use cases, scenarios, and
user stories in combination with textual requirements and docu-
ments. We have included a heterogeneous set of proposals whose
intent is different but, we believe, complementary in that they can
be applied by following a logical sequence of action. (1) We first
discuss Maiden et al.’s research aimed at improving the complete-
ness of requirements by analysing system scenarios [42,44,46].
This process uses the existing use case model as a starting point
and derives new scenarios, taking into account situations which
have not yet been considered. This derivation of new scenarios
leads, in turn, to new requirements. (2) We then examine the
works of Berenbach [10,11] and Firesmith [28], which address
the generation of natural language requirements from use case
models. Berenbach is concerned with generating the hierarchy of
requirements while Firesmith proposes a pattern with which to de-
rive the requirements’ text. Cabral and Sampaio [15], in contrast,
research the generation of formal language requirements from
use case models. (3) Finally, Daniels et al. [19] and Probasco and
Leffingwell [49] deal with the requirements documents to be
developed from use cases and scenarios, integrating traditional
shall-statement requirements and use cases. These last two papers
do not strictly deal with the generation of textual requirements
from models, but have been included in the SLR in order to exem-
plify the guidelines concerning the contents of the requirements
document to be built when use cases and textual requirements
are combined in requirements engineering.

Maiden et al. have carried out long-term research to study the
development process of scenarios and use cases to identify missing
requirements needed to ensure the requirements specification is
complete. These authors have developed a database containing a
hierarchy of abnormal and error conditions that is used to generate
candidate, alternative event courses to be validated. These alter-
nate courses are raised from what-if questions related to a normal
course of events. The database contains 54 classes of abnormal
behaviors and states, which can be used either manually as a
checklist for each event or automatically through the ART-SCENE
tool in the RESCUE process. This general taxonomy has been ex-
tended with knowledge from several application domains. An early
version of this tool (then called CREWS-SAVRE) is presented in
greater detail in Maiden et al. [42] (S14) through the example of
a retrospective scenario analysis of part of the London Ambulance
Service. Mavin and Maiden [46] (S15) then go on to study what
types of scenario and which walkthrough techniques are most
effective for discovering requirements through two case studies:
(1) a simulator in the naval warfare domain at BAE SYSTEMS;
and (2) Conflict Resolution Assistant (CORA-2) in the air traffic
management system domain at Eurocontrol. Mavin and Maiden
provide guidelines for scenario-based requirements discovery,
and curiously suggest that systematic walkthroughs of simple sce-
narios that do not contain excessive domain knowledge are more
effective for discovering system requirements. Building on this
work, Maiden and Robertson [44] (S16) carry out a retrospective
analysis of a previous experience to investigate how use cases
and scenarios were developed during the application of the sce-
nario-based RESCUE process in DMAN, an air traffic management
system for the UK’s National Air Traffic Services. Maiden and
Robertson also study the connection between scenarios and
requirements in natural language specified through the VOLERE
template.

Maiden et al.’s influential research is still being extended. We
shall now report on additional, subsequent work with the aim of
complementing the analysis of the previously selected studies. This
consists of (1) an extension to ART-SCENE to include rich media
scenarios [62], which serves to study the improvement of require-
ments discovery by using other scenario forms, such as visual sim-
ulations of agents in the domain, and which are presented to the
stakeholders alongside text scenarios in ART-SCENE; and (2) the
Mobile Scenario Presenter (MSP) tool [54], which is an extension
of ART-SCENE and serves to investigate the use of PDAs (Personal
Digital Assistants) to undertake ART-SCENE scenario walkthroughs
on site. Maiden et al. study then [43] whether visual simulations
of scenarios and scenario walkthroughs in the work context can
trigger requirements that might not be discovered with ART-SCENE
scenario walkthroughs.

Berenbach [10] (S17) has designed an algorithm for the auto-
matic extraction of requirements from use case diagrams. In our
view, this author conceives use case diagrams in a particular
way, as conceptual diagrams or rather as feature diagrams [35] of
the domain under study. This algorithm is used to create a require-
ments tree: the so-called abstract use cases are mapped onto fea-
tures and sub-features, while the so-called concrete use cases are
transformed into detailed requirements for which project tasks
may be created and test cases can be generated. This approach con-
centrates on the generation of the hierarchy of requirements rather
than on the requirements text itself. This work has been tested in
several complex models from Siemens operating companies. In
[11] (S18), Berenbach builds on these results to report on the syn-
thesis of text-based requirements and the so-called model-driven
requirements engineering. This synthesis results in a requirements
engineering approach that seamlessly integrates use cases, fea-
tures and requirements. In this work Berenbach proposes a set of
best practices and recommendations, including automated use
case and SRS document generation. Berenbach’s industrial experi-
ence has led to the discovery that the approach described in this
paper [11] takes about one third to one half the time of a tradi-
tional approach owing to scalability.

Firesmith’s aim [28] (S19) is to derive a set of complete, unam-
biguous, and verifiable requirements starting from ‘‘incomplete
and vague” stories, scenarios and use cases. To that end, Firesmith
proposes the derivation of textual requirements from use case path
interactions by using the following standard format: ‘‘If a trigger
occurs when certain preconditions hold, then the system shall per-
form a required set of actions and shall be left in a required set of
post-conditions”. This template is manually applied to the use case
specification, producing a requirements specification in natural
language which the stakeholders are able to understand and vali-
date. Firesmith postulates that the extra work needed to build a
requirements specification is therefore soon recovered owing to
the effort saved during the other software development activities.
The textual requirements generated are specified in natural lan-
guage to enable stakeholders to validate them. However, these
requirements are long and complex and their readability may be
difficult. This problem, which Firesmith associates with the
‘‘unavoidable complexity of complete requirements”, can be miti-
gated by breaking the sentences into their constituent parts. The

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1303
author shows the applicability of the proposal through an aca-
demic, classical ATM example.

The research of Cabral and Sampaio [15] (S20) introduces the
generation of formal specifications from use case models. These
authors propose a strategy through which to automatically trans-
late use cases written in a subset of English (CNL, Controlled Natural
Language) into a specification in CSP process algebra. CNL includes
an ontology which describes the specific entities in the application
domain. Use cases are specified by means of two levels of tem-
plates: (1) user view use cases, which design how actors interact
with the system; and (2) component view use cases, which specify
the system behavior based on user interaction with system compo-
nents. This approach can be useful in those domains in which
requirements consistency is especially important, such as telecom-
munications. This work specifically arises from a research project
in collaboration with Motorola. The resulting formal specification
can be used to automatically generate test cases. This formal spec-
ification is not legible to stakeholders, but we do not believe that
this is a problem since they can validate the initial use case model.
The use of a controlled language also helps to avoid ambiguity in
use cases templates. This approach is entirely supported by a tool-
kit consisting of an Ms Word plug-in to edit use case specifications
according to the CNL grammar; a translator of CNL use cases to
CSP; and FDR, a CSP model checker, to check refinement between
use and component views.

Daniels et al. [19] (S21) propose a practical method with which
to integrate use cases and shall-statement requirements. For these
authors use cases are not requirements, but a vehicle to discover
requirements. They propose the use of a Functional Requirements
Segment in the Specific Requirements section in the use case tem-
plate in which to contain the functional shall-statement require-
ments that the requirements engineer extracts manually from
the sentences of the scenario (note that a sentence in a use case
can contain multiple functional requirements). The textual
requirements retain their context since they are traced to the use
case event or sequence of events from which they were derived.
When the requirements are documented as a set of shall-state-
ments without context it is difficult to comprehend them and fully
interpret their intent and dependencies. The Supplementary
Requirements Specification also contains the requirements that do
not fit well within the context of only one use case. If a traditional
requirements specification is to be developed, then the require-
ments engineer manually copies and pastes the requirements doc-
umented in each use case’s Specific Requirements along with the
requirements in the Supplementary Requirements Specification.
The approach is illustrated through an academic example of a
microwave oven software product line.

A short paper by Probasco and Leffingwell [49] (S22) in a similar
vein to that of Daniels et al. shows a Rational Software proposal to
combine use cases and traditional requirements specifications
through a simple construct called the SRS Package. This package
pulls together the complete set of software requirements for a sys-
tem, which may be contained in a single document, multiple doc-
uments, a requirements repository (consisting of the requirements’
text, attributes and traceability), use case specifications, and the
use case diagrams. Probasco and Leffingwell’s document [49] is
only a white paper and no concrete validation is mentioned.

4.2.8. Deriving requirements from user interface modelling
Finally, but of no less importance, a set of papers dealing with

the generation of requirements documentation starting from user
interface models exists. Jungmayr and Stumpe [33] (S23) propose
extended usage models that consist of three sub-models: scenario
model, action model, and user interface model: (1) the scenario mod-
el describes the semantics of the usage model in terms of goals that
can be achieved when using the software, tasks that have to be
accomplished in order to achieve the goals, and solutions, which
are scenarios on how to use the software to solve a particular task;
(2) the action model is a state machine that defines all possible se-
quences of user inputs (actions) and covers the information of a
conventional usage model; and (3) the user interface model de-
scribes the user interface of the software and the interface ele-
ments that are themselves subject to user inputs. In this context,
an HTML document can be automatically generated which struc-
tures the information already introduced in the extended usage
models and can serve as user documentation. Extended usage
models need a considerable effort to be built, but this is also true
of conventional usage models. The structure of the output docu-
ments is shown in detail in [33]. Data in the output documents
are linked by means of predefined string patterns. This work has
been evaluated in a communication application to query commer-
cial databases retrieving bibliographic references. The example is
simple but well evaluated.

An old study by Smith [55] (S24) at MITRE Corporation pre-
sents a method to generate functional requirements concerning
the user interface by starting from interface checklists. In these
checklists the analyst indicates whether a concrete feature of
the interface is required, useful, or not needed. The so-called pat-
terned prose is used in order to generate the requirements in nat-
ural language by paraphrasing the questionnaires. In essence,
patterned prose consists of a hierarchically related set of sen-
tences, phrases and words, and their logical connectors, which
are organized (and numbered) in correspondence with the struc-
ture of the checklists which are used to extract them. In our view,
Smith’s approach is very close to the design of the user interface:
it seems closer to a real level of specification (physical) than to an
essential (logical) level. Today applications have a GUI which is far
more complex than those illustrated in the examples of this work,
and we therefore believe that an extensive domain analysis
would be needed to redefine the checklists. However, we found
the idea of patterned prose interesting. An implementation in
UNIX was available, but no validation procedures were reported
in this paper.

4.2.9. Limitations of this SLR
As was previously mentioned, the searches in this SLR were de-

fined by using certain overloaded software engineering terms, such
as model, requirement, and specification as a starting point. It was
necessary to use these general-use terms to seek studies in a het-
erogeneous field such as that defined in Section 2.1. The terms used
to build the query (Section 2.2) have more synonyms, and some of
these terms are homonyms. We cannot therefore guarantee that all
the work related to the scope of this SLR has been found by means
of the queries. For example, one important paper in this SLR (that
of Meziane et al. [47] (S13)) was directly included in the review as
a result of our previous knowledge of the papers of the field, and
did not appear in the results of the searches. However, after check-
ing the references to the papers included in the SLR, some of which
have been published in top journals and conferences, we believe
that we have analyzed the contents of an illustrative sample of
the field.

As explained in Section 3.1, we have introduced two deviations
from protocol in order to improve the completeness of the set of
selected papers. We therefore believe that the discussion is more
comprehensive, although the repeatability of the SLR is challenged.

We consider Tool and Validation to be part of the quality assess-
ment criteria (Section 2.5), but these items are difficult to quantify
with precision. Most of the automated support involved in the se-
lected studies is not accessible and it is therefore difficult to pre-
cisely assess the tools’ maturity level. What is more, the
correctness of the validation procedures cannot be precisely evalu-
ated from the reading of the papers.

1304 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
5. Product requirements derivation in software product lines

While analyzing the selected papers we concluded that one
weakness of this SLR was that no paper specifically addressed soft-
ware product lines (SPLs). We knew of one commercial SPL tool,
GEARS [3], which automatically derives a software requirements
specification that describes in natural language the decisions made
in the instantiation of the SPL variation points and the mandatory
features of SPL products. We intuitively believed that SPLs consti-
tute a domain in which the derivation of requirements from mod-
els can play an interesting role: product derivation in SPL implies
navigation through a decision space (for example, a feature model
[35] or an independent variability model [48]), solving a set of var-
iation points to produce the specification of a product in the prod-
uct line. We believed that the specification of this product in
natural language in a requirements document could help clients
to understand the configuration of the product they purchase.
These reflections led us to extend the previous general SLR by per-
forming a further SLR on product requirements derivation in SPLs.
This new SLR is reported in full in this section.

Detailed processes for requirements modelling and guidance for
requirements derivation are not sufficiently studied by the re-
search community and are not handled by SPL tools [24]. In the
SPL paradigm there is a consensus on the current need to pay
greater attention to the product derivation process (see, for exam-
ple, Käkölä and Dueñas’ preface in [34]). In this vein Bühne et al.
[13] present an overview of the research on the derivation of appli-
cation specifications in SPLs. From a general point of view, they
examine the development of an application requirements specifi-
cation, paying particular attention to the treatment of stakehold-
ers’ new requirements which are not included in the SPL (called
deltas), but without addressing the specific subject of this paper.
This Section 5, in contrast, is devoted to the approaches that explic-
itly consider requirements derivation from the SPL variability mod-
els in application requirements engineering. Thus, a new research
question arises:

RQ3. Which approaches take into account requirements deriva-
tion from SPL models?

The search strings shown in Table 5 were used to answer this
question. The searches were performed in the Google Scholar
search engine since it had delivered the most complete results in
the general SLR. The inclusion and exclusion criteria were the same
as those of the general SLR, but were obviously constrained to the
domain of SPLs. The data collection and data analysis procedures
were also the same. In this way 5 papers were selected (see Table
6). By following S25 in Table 6 we have considered interesting to
include S26 in the selection (a deviation from protocol), and thus
6 studies were finally selected which are discussed in the remain-
der of this section. The combination mode of the 6 studies is gen-
erative and their scope is requirement. There is no study that
addresses requirements documents generation. The initial models
are feature and variability models (4 and 2 studies, respectively),
while the target models are natural language (4 of the approaches)
and formal notations (3 studies). Note that S27 addresses both for-
mal notation and natural language.

Regarding product requirements derivation in SPLs, an early
work by Hein et al. [30] (S25 in Table 6) claims that domain knowl-
edge must be formalized to enable a partly automated require-
ments derivation process starting from a feature model. Hein
et al. focus on a feature model (which extends that of FODA [35]),
and a so-called requirements model (which encompasses the
requirements texts and parameter definitions of the product or
the domain). A requirement addresses variability through parame-
ters, and each requirement that contains parameters can be seen as
a requirement template. Features are modelled as the nodes of a
tree. Basically, each node corresponds to a parameter. The feature
tree therefore describes the possible values that can be assigned to
a parameter. Traditional RMDB tools were designed to support sin-
gle products, not product families, and these tools are thus out of
the range of applicability to SPLs. Hein et al. report on several prob-
lems based on their experience in managing domain analysis work
products with RMBD tools, especially with QSS DOORS. Further-
more, Hein et al. impose 9 requirements on a RMDB tool for SPLs,
including ‘‘automatic generation of specific requirements texts”.
Generation of requirements specifications can be partially auto-
mated by the use of templates instantiated with different variants.
This is regarded as very useful in the product line context, where
different products and product variants have to be derived from
abstract domain descriptions. A textual representation is more
suitable for discussion with domain experts than more formal
models in which the information is dispersed. These authors state
that the application derivation problem can be handled by knowl-
edge based systems, and especially configuration systems, such as
that of Konwerk [53] (S26). These results are consolidated and val-
idated in a real-scale industrial experiment at Bosch, in the Car
Periphery Supervision (CPS) domain.

The previous work by Hein et al. imposes that the representa-
tion of domain knowledge must be formalized to enable a partly
automated derivation process starting from the feature model.
The authors also discovered that RMDB tools do not provide any
customer guidance for product configuration in the SPL derivation
process. We believe that a short paper by Rabiser et al. [50] (S27)
can also be placed in this group. These authors present a tool suite,
called DOPLER (Decision-Oriented Product Line Engineering for effec-
tive Reuse), which supports variability modelling and product con-
figuration in SPLs. DOPLER includes a ConfigurationWizard to make
decisions during product derivation, allowing product customiza-
tion, requirements capture, and configuration generation. In a sim-
ilar vein to that of Hein et al., Rabiser et al. claim that to fully
exploit the benefits of SPLs it is essential to make product line
models accessible to non-technicians such as sales people or even
customers who make important decisions during product deriva-
tion. Decisions under the responsibility of a customer are listed
as questions written in natural language, which are answered by
yes/no. A graph and a tree-based view depict dependencies be-
tween decisions to support navigation in the decision space pro-
vided by the variability model. Newly captured requirements
which are not yet covered by the SPL are also considered, and are
described using the VOLERE template. Thus the product configura-
tion generated from the variability model consists of a formalized
tabular representation of the selected features together with the
templates of the new textual requirements. The configurationWiz-
ard can also be used to launch simulator applications based on the
selected assets. The references in this paper allow us to determine
that this development research is taking place to support a typical
scenario in product derivation and sales processes, regarding an
SPL whose goal is the automation of continuous casting in SIE-
MENS VAI’s steel plants.

Tavakoli and Reiser [57] (S28) propose a requirements library
based on a new variability model to manage variability and com-
monality of product families at the requirements level. This study
stems from a process improvement initiative at DaimlerChrysler in
the automotive domain, where variability is complex due to the
involvement of hierarchical product lines: model ranges of vehicles
contain electronic control units which are, in turn, product lines.
Requirements play a vital role in this industry, since the other soft-
ware artefacts such as software architecture or code are developed
by suppliers. Efficiency when creating specifications in short devel-
opment cycles is of increasing importance. In this approach, deriv-
ing product specifications from the requirements library means a

Table 5
Search of SPL-related approaches (research question RQ3) in Google Scholar.

Search strings Studies found Candidate studies Selected studies

+‘‘requirements derivation” +‘‘software product lines” 14 3 3

+‘‘deriving requirements” +‘‘software product lines” 6 2 2

+‘‘requirements integration” +‘‘software product lines” 4 0 0

+‘‘integrating requirements” +‘‘software product lines” 14 0 0

Table 6
Systematic review studies regarding RQ3.

ID Author/s [ref.]
(source)

Date C. Mode Scope Initial model Gen.
Statem.

Method Tool Validation

Gen. Int. Req. Doc. FL NL

Section 5. Product’s requirements derivation in software product lines
S25 Hein et al. [30] (gs) 2000 j h j h Feature model h j Not

specific
QSS DOORS (ICS) Car Periphery Supervision at

Bosch
S26 Schlick and Hein

[53] (cited by S25)
2000 j h j h Feature model h j Not

specific
Konwerk configuration
system

(ICS) Car Periphery Supervision at
Bosch

S27 Rabiser et al. [50]
(gs)

2007 j h j h Variability model j j (V) Not
specific

DOPLER (ICS) CL2 SPL for continuous casting
in steel plants at SIEMENS VAI

S28 Tavakoli and Reiser
[57] (gs)

2007 j h j h Variability model and
requirements library

h j Not
specific

Based on DOORS
through a dxl plug-in

(ICS) Electronic control units at
DaimlerChrysler

S29 Djebbi and Salinesi
[22] (gs)

2007 j h j h Feature model (applicable to
other SPL modelling lang.)

j h RED-PL Ms Excel and Ms Excel
Solver

(ICS) Blood analyzers at Stago
Instruments

S30 Djebbi et al. [23]
(gs)

2007 j h j h Feature model (applicable to
other SPL modelling lang.)

j h RED-PL On-going GNU-Prolog
Solver-based prototype

(ICS) Blood analyzers at Stago
Instruments

Source: gs (Google Scholar); C. Mode (Combination Mode): Gen.: Generative/Int.: Integrative; Scope: Req.: Requirement/Doc.: Document Gen. Statem. (Generated Statements):
FL: Formal Language/NL: Natural Language; (V) Volere; Validation: (ACS) Academic Case Study/(ICS) Industrial Case Study/(IP) Industrial Practice; A-R: Action-Research.

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1305
stepwise decrease in variability. Requirements reuse within the
requirements library is driven by selecting features, which in turn
pre-select requirements in the database. Therefore the require-
ments engineers’ main task shifts from developing requirements
specifications to deriving requirements specifications (including
the derivation of a variability definition). Tool support has been
developed through the commercial RMDB tool DOORS [2] by using
its script language dxl (DOORS eXtension Language). The authors
state that the applicability of the approach in a tool is an important
step toward the practical implementation of the approach.
Although well-grounded in the automotive domain, it would ap-
pear that this work has not yet been applied in practice.

Djebbi and Salinesi’s ongoing research into RED-PL (Require-
ments Elicitation & Derivation for Product Lines) [22] (S29) is aimed
at defining a method for product requirements derivation in SPLs.
Unlike previous approaches, RED-PL does not consist of selecting a
product configuration from a SPL variability model in order to re-
trieve the requirements specifying the product to be built. In con-
trast, the RED-PL approach consists of (1) eliciting customers’
requirements (customers are free to choose the way in which they
specify requirements); (2) matching customers’ requirements with
SPL requirements, generating a set of wanted/unwanted require-
ments; and (3) deriving a consistent requirements collection that
is optimal for a set of customers and company constraints (e.g. rev-
enue, cost, resources, time). A constraint solver is proposed to
match customers’ needs, which are expressed textually, with the
SPL requirements using similarity analysis techniques. SPL require-
ments are currently specified as feature diagrams although this ap-
proach is applicable to different SPL modelling languages (e.g. use
cases, goals, UML, aspects). In [22], Djebbi and Salinesi use Integer
Linear Programming (ILP) for similarity analysis. Ms Excel was
used to apply ILP to a case study on blood analyzers developed
in the STAGO Instruments Company. Some difficulties were ob-
served while applying the method: (1) the experiment showed that
ILP could not be used properly where complex requirements had to
be expressed. Matching was difficult due to a lack of precision in
the formulation of customer requirements. Difficulties were found
not only with regard to terminology, but also conceptual mis-
matches between customers’ requirements and SPL requirements
(different levels of abstraction, different views). (2) ILP also has
scalability problems. Furthermore, Djebbi et al. [23] (S30) is essen-
tially a summary of [22] in which another constraint solver tech-
nique (Constraint Programming) is used, which shows better
results in the case study. The authors report the ongoing develop-
ment of a tool prototype via GNU-Prolog Solver. Although the
authors do not explicitly define the term ‘‘requirement”, it seems
that a requirement in this context can be assimilated to a state-
ment on the configuration of the SPL products. This work does
not specifically address the generation of textual requirements.
However, this approach has been analyzed because it introduces
a different modus operandi and its output, an instantiated feature
model, which we consider a kind of formal notation, can be easily
presented in textual form.
6. Conclusions and further work

The literature on the generation of textual requirements and
requirements documents starting from (business or software)
models has been comprehensively reviewed and synthesized in
this paper. It could be argued that this is a narrow topic within
the mainstream research in requirements engineering. However,
although the generation of requirements and documents from
models has received relatively little attention in research (30
papers selected in the SLR), sound studies in literature have been
found to corroborate a justification of interest in this line.

1306 J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307
Moreover, as 17 of the 30 selected papers have been published in
the last five years, we believe that it is reasonable to say that the
interest in this topic, although narrow, is moderately increasing,
especially in the SPL domain.

In our view, literate modelling – which we believe could
broadly encompass all the work selected in this SLR – is an
excellent idea which seems to have had little relevance in prac-
tice. What is more, the essence of this idea can be also found in a
closely-related area: knowledge management. For instance, Eriks-
son [25] claims that ‘‘unfortunately, there is a surprisingly large
gap between knowledge modelled in ontologies and the text doc-
umenting the same knowledge” and he proposes an approach to
combine documents and ontologies, ‘‘allowing users to access the
knowledge in multiple ways”. We believe that there is value in
making a stronger effort in the generation of textual require-
ments and documentation starting from models, in particular in
literate modelling and SPLs, so that: (1) these approaches can
be empirically evaluated in more industrial settings; (2) the set
of techniques from which requirements and documents can be
automatically generated are broadened (particularly covering
the entire set of UML techniques related to requirements
specification); (3) requirements engineering process models are
refined to take into account the use of literate modelling; and
(4) commercial RMDB tool support is developed. We believe
that without proper tool support these approaches are not truly
applicable in practice, especially in the context of agile
developments.

We believe that both researchers and practitioners can benefit
from an improvement in the readability of software engineering
models, making these models available to a wider spectrum of
stakeholders and thus improving their usability and facilitating
their validation. Furthermore, regarding practitioners, one of the
challenges that the technology roadmap of the industrial consor-
tium ITEA has identified in relation to requirements-driven process
management is precisely that special views are required that can
give each stakeholder an appropriate vision of the requirements
and how they are realised [32]. Moreover, the quality of the docu-
mentation generated by means of the literate modelling approach
can serve practitioners in improving the vision of requirements
documents as a contract between customers and developers. In
addition, we believe that CASE developers can add value to their
tools by including a literate modelling approach. When examining
the evolution of software engineering in the last two decades, Som-
merville [56] concludes that when looking beyond technology to
the fundamental processes, much has stayed the same in software
engineering. One of the reasons mentioned is precisely that CASE
tools are still essentially diagram editors with some checking and
code-generation functionality.

The results of the SLR have led us to propose five key issues that
should be supported by a general-purpose RMDB tool which seam-
lessly integrates graphical and textual models of the system. In
terms of the taxonomy defined in Section 3.2, the tool should be
generative for both requirements and documents. In addition:

1. The tool should enable the automatic or closely monitored gen-
eration of requirements documents integrating (business and
software) models and natural language requirements, ideally
ensuring appropriate bidirectional traceability links between
models and textual requirements.

2. The requirements documentation structure should follow the
structure of the models in order to improve the requirements
engineer’s understanding: the section-subsection structure of
the requirements documentation should emulate the models’
structure in some way. Redundancy can be used to facilitate
the understanding and/or modification of the documentation,
but must be tracked by the tool.
3. Requirements documentation should be produced in a format
that enables its modification. Requirements documents are liv-
ing documents which should reflect open issues that may
appear, change, and disappear. Therefore, formats that do not
enable change, such as PDF, should not be exclusively used to
browse textual requirements documents. These formats can
obviously be used to create snapshots of the requirements spec-
ification under development, but we believe that the tool
should manage the textual requirements in a manner which
promotes change.

4. Once generated, the requirements documentation should be
maintained in synchronization with the models, so that if an ele-
ment changes in any of the two views of the system (the models’
view or the text view), the tool will propagate the necessary
changes to the related elements of the other view. Moreover,
the requirements generation should be linked to an iterative
and incremental development in such a way that the require-
ments generation will not necessarily affect the whole model,
nor will further generations overwrite the changes directly
effected in that documentation. A version control mechanism
is therefore needed. If a change in the textual view does not cor-
respond to any element in the models a delta must be registered
and controlled.

5. In addition to key issue 2, the tool should enable the tailoring of
the documentation according to its target readership or its
intended use. The textual view, in particular, is not necessarily
unique: there could be a client contract view, an analyst view, a
developer view, etc.

There are a number of commercial tools that have links with the
field reviewed in this paper. For instance, well-known commercial
RMDB tools such as Requisite Pro [5], DOORS [2], and Caliber-RM
[1] are integrated with the related UML-based tools of the suite
to allow the synchronization of use case models and diagrams. Fur-
ther work could therefore be carried out to review the tool market
in order to analyze the combination between models and require-
ments in commercial RMDB tools.

Acknowledgements

Partially financed by the CICYT (Science and Technology Joint
Committee), Spanish Ministry of Science and Technology (DEDALO
Project, TIN2006-15175-C05-03), and the Science and Technology
regional ministry of the Junta de Comunidades de Castilla-La Man-
cha (MELISA Project, PAC08-0142-335).

References

[1] Caliber-RM, Borland, 2009, <http://www.borland.com/caliber/index.html>.
[2] Doors, Telelogic (IBM Company), 2009, <http://www.telelogic.com/doors>.
[3] GEARS, BigLever Software, 2009, <www.biglever.com/overview.html>.
[4] OMG’s MetaObject Facility (MOF), Object Management Group, 2009, <http://

www.omg.org/mof/>.
[5] RequisitePro, IBM Rational Software, 2009, <http://www-306.ibm.com/

software/rational/>.
[6] D. Alrajeh, A. Russo, S. Uchitel, Inferring operational requirements from

scenarios and goal models using inductive learning, in: Intl. Workshop on
Scenarios and State Machines: Models, Algorithms, and Tools, ACM, Shanghai,
China, 2006.

[7] A.I. Antón, C. Potts, The use of goals to surface requirements for evolving
systems, in: 20th Intl. Conf. on Software Eng. (ICSE’98), IEEE Computer Society,
Kyoto, Japan, 1998.

[8] J. Arlow, W. Emmerich, J. Quinn, Literate modelling – capturing business
knowledge with the UML, in: «UML»’98: Beyond the Notation, First Intl.
Workshop, Springer LNCS 1618, Mulhouse, France, 1998.

[9] J. Arlow, I. Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML, The Addison-Wesley Object Technology
Series, Addison-Wesley, Boston, 2004.

[10] B. Berenbach, The automated extraction of requirements from UML models, in:
11th Intl. Conf. on Requirements Eng. (RE’03), IEEE Computer Society,
Monterey, CA, USA, 2003.

http://www.borland.com/caliber/index.html
http://www.telelogic.com/doors
http://www.biglever.com/overview.html
http://www.omg.org/mof/
http://www.omg.org/mof/
http://www-306.ibm.com/software/rational/
http://www-306.ibm.com/software/rational/

J. Nicolás, A. Toval / Information and Software Technology 51 (2009) 1291–1307 1307
[11] B. Berenbach, Comparison of UML and text based requirements engineering,
in: Companion to the 19th Conf. on OO Programming, Sys., Lang., and App.
(OOPSLA’04), ACM Press, Vancouver, BC, Canada, 2004.

[12] J. Biolchini, P. Gomes Mian, A.C. Cruz Natali, G. Horta Travassos, Systematic
Review in Software Engineering, TR-ES 679/05, Sys. Eng. and Computer Sci. Rio
de Janeiro, Dep. COPPE/UFRJ, 2005.

[13] S. Bühne, G. Halmans, K. Lauenroth, K. Pohl, Scenario-based application
requirements engineering, in: Software Product Lines: Research Issues in
Engineering and Management, Springer, Berlin, 2006, pp. 161–194.

[14] D. Burke, K. Johannisson, Translating formal software specifications to natural
language: a grammar-based approach, in: Logical Aspects of Computational
Linguistics Conf., Bordeaux, France, 2005.

[15] G. Cabral, A. Sampaio, Formal specification generation from requirement
documents, Electron. Notes Theor. Comput. Sci. 195 (2008) 171–188.

[16] CMMI, CMMI, Capability Maturity Model Integration, v.1.2, 2006, <http://
www.sei.cmu.edu/cmmi/general/index.html>.

[17] K. Cox, K.T. Phalp, S.J. Bleistein, J.M. Verner, Deriving requirements from
process models via the problem frames approach, Inform Software Technol. 47
(5) (2005) 319–337.

[18] B.H.C. Cheng, J.M. Atlee, Research directions in requirements engineering, in:
Future of Software Eng. (FOSE’07), Minneapolis, USA, 2007.

[19] J. Daniels, R. Botta, T. Bahill, A hybrid requirements capture process, in: INCOSE
15th Annual Intl. Symposium on Sys. Eng., Rochester, NY, 2005.

[20] A.M. Davis, in: Just Enough Requirements Management: Where Software
Development Meets Marketing, Dorset House, New York, NY, 2005.

[21] R. De Landtsheer, E. Letier, A. van Lamsweerde, Deriving tabular event-based
specifications from goal-oriented requirements models, Requirements Eng. 9
(2) (2004) 104–120.

[22] O. Djebbi, C. Salinesi. RED-PL, a method for deriving product requirements
from a product line requirements model, in: 19th Intl. Conf. on Advanced Inf.
Sys. Eng. (CAiSE’07), Trondheim, Norway, 2007.

[23] O. Djebbi, C. Salinesi, D. Diaz, Deriving product line requirements: the RED-PL
guidance approach, in: Asia–Pacific Software Eng. Conf. (APSEC 2007), Nagoya,
Japan, 2007.

[24] O. Djebbi, C. Salinesi, G. Fanmuy, Industry survey of product lines management
tools: requirements, qualities and open issues, in: 15th IEEE Intl. Requirements
Eng. Conf. (RE ‘07), Delhi, India, 2007.

[25] H. Eriksson, The semantic-document approach to combining documents and
ontologies, Int. J. Human–Comput. Stud. 65 (7) (2007) 624–639.

[26] A. Finkelstein, W. Emmerich, The future of requirements management tools,
in: Inf. Sys. in Public Administration and Law, 2000.

[27] D. Firesmith, Modern requirements specifications, J. Object Tech. 2 (1) (2003)
53–64.

[28] D. Firesmith, Generating complete, unambigous, and verifiable requirements
from stories, scenarios, and use cases, J. Object Tech. 3 (10) (2004) 27–39.

[29] R.F. Goldsmith, Discovering Real Business Requirements for Software Project
Success, Artech House Publishers, Boston, London, 2004.

[30] A. Hein, J. MacGregor, M. Schlick, Requirements and feature management for
software product lines. in: Deutscher Software-Produktlinien Workshop
(DSPL-1), Kaiserslautern, Germany, 2000.

[31] IEEE, Std 830-1998, Guide to Software Requirements Specifications, Resource
and Technique Standards, vol. 4, The Institute of Electrical and Electronics
Engineers, Inc., IEEE Software Eng. Stds. Collection, 1999.

[32] ITEA-Office, ITEA Technology Roadmap for Software Intensive Systems, second
ed., May 2004, <http://www.itea-office.org>.

[33] S. Jungmayr, J. Stumpe, Another motivation for usage models: generation of
user documentation, in: CONQUEST’98, Nüremberg, Germany, 1998.

[34] T. Käkölä, J.C. Dueñas (Eds.), Software Product Lines. Research Issues in
Engineering and Management, Springer, Berlin Heidelberg, 2006.

[35] K. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, SEI (Software Eng. Inst.), Carnegie Mellon
Univ., Pittsburgh, PA, 1990.

[36] B.A. Kitchenham, Guidelines for performing Systematic Literature Reviews in
Software Engineering, EBSE Tech. Report, EBSE-2007-01, Software Eng. Group,
School of Computer Sci. and Math., Keele Univ. (UK), Dep. of Computer Sci.,
Univ. of Durham (UK), 2007.

[37] B.A. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,
Systematic literature reviews in software engineering – a systematic literature
review, Inform Software Technol. 51 (1) (2009) 7–15.

[38] C. Larman, Applying UML and Patterns, third ed., Prentice Hall, Upper Saddle
River, NJ, 2005.
[39] B. Lavoie, O. Rambow, E. Reiter, The ModelExplainer, in: 8th Intl. Workshop on
Natural Lang. Generation (INLG’96), Herstmonceux Castle, England, 1996.

[40] E. Letier, A. van Lamsweerde, Deriving operational software specifications
from system goals, in: 10th Symposium on Foundations of Software Eng. 2002
(FSE’02), ACM Press, Charleston, South Carolina, USA, 2002.

[41] N. Maiden, S. Jones, C. Ncube, J. Lockerbie, Using i* in requirements projects:
some experiences and lessons, in: E. Yu (Ed.), Social Modeling for
Requirements Engineering, MIT Press, 2007.

[42] N. Maiden, S. Minocha, K. Manning, M. Ryan, CREWS-SAVRE: systematic
scenario generation and use, in: 3rd Intl. Conf. on Requirements Eng. (ICRE’98),
IEEE Computer Society, Colorado Springs, CO, USA, 1998.

[43] N. Maiden, C. Ncube, S. Kamali, N. Seyff, P. Grünbacher, Exploring scenario
forms and ways of use to discover requirements on airports that minimize
environmental impact, in: 15th Intl. Req. Eng. Conf. (RE’07), New Delhi, India,
2007.

[44] N. Maiden, S. Robertson, Developing use cases and scenarios in the
requirements process, in: 27th Intl. Conf. on Software Eng. (ICSE ‘05), ACM
Press, St. Louis, MO, USA, 2005.

[45] N.A.M. Maiden, S. Manning, S. Jones, J. Greenwood, Generating requirements
from systems models using patterns: a case study, Requirements Eng. 10 (4)
(2005) 276–288.

[46] A. Mavin, N. Maiden, Determining socio-technical systems requirements:
experiences with generating and walking through scenarios, in: 11th Intl.
Conf. on Requirements Eng. (RE’03), IEEE Computer Society, Monterey, CA,
USA, 2003.

[47] F. Meziane, N. Athanasakis, S. Ananiadou, Generating natural language
specifications from UML class diagrams, Requirements Eng. 13 (1) (2008) 1–
18.

[48] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering,
Foundations, Principles and Techniques, Springer, Berlin Heidelberg, 2005.

[49] L. Probasco, D. Leffingwell, Combining software requirements specifications
with use case modeling, in: Rational White Paper, 1999.

[50] R. Rabiser, D. Dhungana, P. Grunbacher, K. Lehner, C. Federspiel, involving non-
technicians in product derivation and requirements engineering: a tool suite
for product line engineering, in: 15th IEEE Intl. Requirements Eng. Conf. (RE
‘07), Delhi, India, 2007.

[51] B. Regnell, E. Kamsties, V. Gervasi, Summary of the 10th anniversary workshop
on requirements engineering: foundation for software quality, in:
Requirements Eng.: Foundation for Software Quality 2004 (REFSQ’04), Riga,
Latvia, 2004.

[52] S. Robertson, J. Robertson, Mastering the Requirements Process, second ed.,
Addison-Wesley, New York, NY, 2006.

[53] M. Schlick, A. Hein, Knowledge engineering in software product lines, in:
European Conf. on Artificial Intelligence (ECAI 2000), Workshop on
Knowledge-Based Sys. for Model-Based Eng., Berlin, Germany, 2000.

[54] N. Seyff, F. Graf, P. Grünbacher, N. Maiden, The mobile scenario presenter: a
tool for in situ requirements discovery with scenarios, in: 15th Intl.
Requirements Eng. Conf. (RE’07), New Delhi, India, 2007.

[55] S.L. Smith, Patterned prose for automatic specification generation, in: Conf. on
Human Factors in Computing Sys., ACM Press, Gaithersburg, Maryland, USA,
1982.

[56] I. Sommerville, Software Engineering, seventh ed., Pearson Education Limited,
Boston, 2004.

[57] R. Tavakoli, M.O. Reiser, Reusing requirements: the need for extended
variability models, in: Intl. Symposium on Fundamentals of Software Eng.
(FSEN 2007), Tehran, Iran, 2007.

[58] O. Türetken, O. Su, O. Demirörs, Automating software requirements generation
from business process models, in: 1st Conf. on the Principles of Software Eng.
(PRISE’04), Buenos Aires, Argentina, 2004.

[59] A. van Lamsweerde, Goal-oriented requirements engineering: a roundtrip
from research to practice, in: 12th Requirements Eng. Conf. 2004 (RE’04), IEEE
Publishers, Kyoto, Japan.

[60] A. van Lamsweerde, L. Willemet, Inferring declarative requirements
specifications from operational scenarios, IEEE Trans. Software Eng. 24 (12)
(1998) 1089–1114.

[61] E. Yu, P. Du Bois, E. Dubois, J. Mylopoulos, From organization models to system
requirements. A cooperating agents approach, in: 3rd Intl. Conf. on
Cooperative Inf. Sys. (CoopIS-95), Vienna, Austria, 1995.

[62] K. Zachos, N. Maiden, A. Tosar, Rich Media Scenarios for Discovering
Requirements, IEEE Software 22 (5) (2005) 89–97.

http://www.sei.cmu.edu/cmmi/general/index.html
http://www.sei.cmu.edu/cmmi/general/index.html
http://www.itea-office.org

	On the generation of requirements specifications from software engineering models: A systematic literature review
	Introduction
	Planning the systematic literature review
	Scope
	Research questions
	Search process
	Inclusion and exclusion criteria
	Quality assessment
	Data collection
	Data analysis

	Results
	Search results and deviations from protocol
	Synthesis of the proposals

	Discussion
	RQ1. What value can be drawn from the literature with regard to the generation of requirements specifications from software engineering models?
	RQ2. What techniques have been addressed in this field?
	Literate modelling
	RESCUE and REDEPEND: generation of candidate nat
	Goal-oriented requirements engineering with KAOS and Objectiver
	Other requirements specification derivations from goal modelling
	Deriving requirements from business modelling
	Deriving requirements from UML models
	Use cases, scenarios and user stories
	Deriving requirements from user interface modelling
	Limitations of this SLR

	Product requirements derivation in software product lines
	Conclusions and further work
	Acknowledgements
	References

