ON THE GENERATION OF SEMI-GROUPS OF LINEAR OPERATORS

Dedicated to Professor Gen-ichirô Sunouchi on his 60th birthday

ISAO MIYADERA

(Received Nov. 17, 1971)

1. Introduction. This paper is concerned with the generation of semi-groups of classes (0, A) and (1, A).

Let X be a Banach space and let B(X) be the set of all bounded linear operators from X into itself. A one-parameter family $\{T(t); t \ge 0\}$ is called a *semi-group* (of operators), if it satisfies the following conditions:

- $(1.1) T(t) \in B(X) ext{ for } t \ge 0.$
- (1.2) T(0) = I (the identity), T(t+s) = T(t)T(s) for $t, s \ge 0$.
- (1.3) $\lim_{t\to 0} T(t+h)x = T(t)x \text{ for } t>0 \text{ and } x\in X.$

Let $\{T(t); t \ge 0\}$ be a semi-group. By the *infinitesimal generator* A_0 of $\{T(t); t \ge 0\}$ we mean

(1.4)
$$A_0 x = \lim_{h \to 0+} (T(h)x - x)/h$$

whenever the limit exists. If A_0 is closable, then $A = \bar{A}_0$ (the closure of A_0) is called the *complete infinitesimal generator* of $\{T(t); t \geq 0\}$.

The following basic classes of semi-groups are well known (see [2]). If a semi-group $\{T(t); t \geq 0\}$ satisfies the condition $(C_0) \lim_{t\to 0+} T(t)x = x$ for $x \in X$, then $\{T(t); t \geq 0\}$ is said to be of class (C_0) . In this case A_0 is closed and hence the complete infinitesimal generator coincides with the infinitesimal generator. If a semi-group $\{T(t); t \geq 0\}$ satisfies the condition

$$(1,\,A) \qquad \qquad \int_{_0}^1 \mid\mid T(t)\mid\mid dt < \, \infty \ \ \text{and} \ \ \lim_{\lambda \to \infty} \lambda \! \int_{_0}^{\infty} \! e^{-\lambda t} \, T(t) x \, dt \, = \, x \ \ \text{for} \ \ x \in X \ ,$$

then $\{T(t); t \ge 0\}$ is said to be of class (1, A). If, instead of the condition (1, A), T(t) satisfies the weaker condition

$$(0,\,A) \qquad \qquad \int_0^1 \mid\mid T(t)x\mid\mid dt < \, \infty \ \ \text{and} \ \lim_{\lambda \to \infty} \lambda \! \int_0^\infty \! e^{-\lambda t} \, T(t)x \, dt = \, x \ \ \text{for} \ \ x \in X \ ,$$

then a semi-group $\{T(t); t \geq 0\}$ is said to be of *class* (0, A). Clearly $(C_0) \subset (1, A) \subset (0, A)$ in the set theoretical sense. It is known that in general the infinitesimal generator of a semi-group of class (1, A) need not

be closed, and that every semi-group of class (0, A) has the complete infinitesimal generator (see [2, 5]).

Our main results are as follows.

Theorem 1. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \geq 0\}$ of class (0, A) if and only if

- (i) A is densely defined, closed linear operator with domain and range in X,
- (ii) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$ (the resolvent set of A),
- $||R(\lambda;A)|| = O(1/\lambda)$ as $\lambda \to \infty$, where $R(\lambda;A)$ is the resolvent (iii) of A,

and $R(\lambda; A)$ satisfies either of the following conditions (iv₁), (iv₂);

- (iv₁) for each $x \in X$ there exists a non-negative measurable function f(t, x) on $(0, \infty)$ satisfying
- (a) for each $x \in X$, f(t, x) is bounded on every compact subset of the open interval $(0, \infty)$,
- $\begin{array}{ll} \text{(b)} & \int_0^\infty e^{-\omega t} f(t,x) dt < \infty \ \ for \ \ x \in X, \\ \text{(c)} & ||R(\lambda;A)^n x|| \leq 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} f(t,x) dt \ \ for \ \ x \in X, \ \ \lambda > \omega \ \ \ and \end{array}$ $n \geq 1$,
- (iv₂) (a') for every $\varepsilon > 0$ there exist $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon)$ such that $\|\lambda^n R(\lambda; A)^n\| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon],$
- (b) there exists an M > 0 such that $||R(\lambda; A)^n x|| \leq M(\lambda \omega)^{-n} ||x||_1$ for $x \in D(A)$, $\lambda > \omega$ and $n \ge 1$, where $||x||_1 = ||x|| + ||Ax||$,
 - (c') $\int_{-\infty}^{\infty} e^{-\omega t} \liminf_{n \to \infty} ||T(t; n)x|| dt < \infty$ for $x \in X$, where

(1.5)
$$T(t; n) = \left(I - \frac{t}{n}A\right)^{-n} = \left[\frac{n}{t}R\left(\frac{n}{t}; A\right)\right]^{n} \text{ for } t > 0 \text{ and } n > \omega t$$
$$= I \text{ for } t = 0 \text{ and } n \ge 1.$$

Theorem 2. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \geq 0\}$ of class (1, A) if and only if (i)—(iii) in Theorem 1 are satisfied, and $R(\lambda; A)$ satisfies either of the following con $ditions (v_1), (v_2);$

- (v_1) there exists a non-negative measurable function f(t) on $(0, \infty)$ with the properties

 - $\begin{array}{ll} \text{(a)} & \int_0^\infty e^{-\omega t} f(t) dt < \infty \text{ ,} \\ \text{(b)} & ||R(\lambda;A)^n|| \leq 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} f(t) dt \text{ for } \lambda > \omega \text{ and } n \geq 1 \text{ ,} \end{array}$
- $(\mathtt{v_2})$ (a') for every arepsilon>0 there exist $M_{arepsilon}>0$ and $\lambda_{\scriptscriptstyle 0}=\lambda_{\scriptscriptstyle 0}(arepsilon)$ such that $||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon],$

(b') there exists an M>0 such that $||R(\lambda;A)^nx|| \leq M(\lambda-\omega)^{-n}||x||_1$ for $x \in D(A)$, $\lambda > \omega$ and $n \geq 1$,

$$egin{aligned} & for \ x \in D(A), \ \lambda > \omega \ \ and \ \ n \geqq 1, \ & (c') \int _0^\infty & e^{-\omega t} \liminf _{n o \infty} || \ T(t;n) || \ dt < \infty \,. \end{aligned}$$

Theorem 1 is new. To generate semi-groups of class (0, A) the author assumed in [3] that, instead of (iv_1) -(a), for each $x \in X$, f(t, x) is continuous in t > 0. The condition (v_1) in Theorem 2 was first given by Phillips [2, 5], and the conditions (iv_2) and (v_2) in the above theorems are quite new.

Our proof of Theorem 1 is based on the generation theorem for semi-groups of class $(C_{(k)})$ due to Oharu [4], and Theorem 2 is proved by using Theorem 1. In §2 we shall deal with semi-groups of class $(C_{(k)})$. Proofs of Theorems 1 and 2 are given in §3.

2. Semi-groups of class $(C_{(k)})$. In this section we present the classes $(C_{(k)})$, $k = 0, 1, 2, \dots$, of semi-groups introduced by Oharu [4].

Let $\{T(t); t \geq 0\}$ be a semi-group. It is well known that $\omega_0 \equiv \lim_{t\to\infty} t^{-1} \log ||T(t)||$ is finite or $-\infty$. And ω_0 is called the *type* of $\{T(t); t \geq 0\}$. According to Feller [1] we define the *continuity set* \sum of $\{T(t); t \geq 0\}$ by

$$\Sigma = \left\{x \in X; \lim_{t \to 0+} T(t)x = x\right\}$$
.

We see that $X_0 \equiv \bigcup_{t>0} T(t)[X] \subset \Sigma$ and if $\lambda > \omega_0$ then the Laplace integral $\int_0^\infty e^{-\lambda t} T(t) x dt$ exists for each $x \in \Sigma$.

LEMMA 2.1. If X_0 is dense in X and if there exists an $\omega > \omega_0$ such that for each $\lambda > \omega$ there is an operator $R(\lambda) \in B(X)$ with the properties (a) $R(\lambda)x = \int_0^\infty e^{-\lambda t} T(t)xdt$ for $x \in X_0$ and (b) $R(\lambda)$ is invertible, then $A \equiv \bar{A}_0$ exists and $R(\lambda) = R(\lambda; A)$ for $\lambda > \omega$.

PROOF. It is easy to see that $R(\lambda)x=\int_0^\infty e^{-\lambda t}T(t)xdt$ for $x\in \Sigma$. Hence $A_0R(\lambda)x=\lim_{h\to 0+}A_hR(\lambda)x=\lim_{h\to 0+}R(\lambda)A_hx=\lambda R(\lambda)x-x$ for $x\in \Sigma$, where $A_h=(T(h)-I)/h$. Since $D(A_0)\subset \Sigma$, we have $R(\lambda)A_0x=\lambda R(\lambda)x-x$ for $x\in D(A_0)$. To show the closability of A_0 let $x_n\in D(A_0)$, $x_n\to 0$ and $A_0x_n\to y$ as $n\to\infty$. Since $R(\lambda)A_0x_n=\lambda R(\lambda)x_n-x_n$, we obtain $R(\lambda)y=0$ and hence y=0 by (b). Therefore $A\equiv \overline{A}_0$ exists and $R(\lambda)Ax=\lambda R(\lambda)x-x$, i.e., $R(\lambda)(\lambda-A)x=x$ for $x\in D(A)$. Let $x\in X$. Since X_0 is dense in X, there is a sequence $\{x_n\}$ in X_0 such that $x_n\to x$ as $n\to\infty$. Hence $R(\lambda)x_n\to R(\lambda)x$ and $A_0R(\lambda)x_n=\lambda R(\lambda)x_n-x_n\to\lambda R(\lambda)x-x$ as $n\to\infty$. This means that $R(\lambda)x\in D(A)$ and $AR(\lambda)x=\lambda R(\lambda)x-x$, i.e., $(\lambda-A)R(\lambda)x=x$ for $x\in X$.

Thus $\{\lambda; \lambda > \omega\} \subset \rho(A)$ and $R(\lambda) = R(\lambda; A)$ for $\lambda > \omega$. Q.E.D.

DEFINITION 2.1. A semi-group $\{T(t); t \ge 0\}$ is said to be of class $(C_{(k)})$, where k is a nonnegative integer, if it satisfies the following conditions:

- (a_1) X_0 is dense in X.
- (a₂) There exists an $\omega > \omega_0$ such that for each $\lambda > \omega$ there is an operator $R(\lambda) \in B(X)$ with the properties
- operator $R(\lambda) \in B(X)$ with the properties (a) $R(\lambda)x = \int_0^\infty e^{-\lambda t} T(t) x dt$ for $x \in X_0$,
 - (b) $R(\lambda)$ is invertible.
- (a₃) $D(A^k) \subset \Sigma$, where A is the complete infinitesimal generator of $\{T(t); t \geq 0\}$ and $A^0 = I$.

It follows from the definition that $(C_{(k)}) \subset (C_{(k+1)})$ and $(C_{(0)})$ is nothing else but the class (C_0) . If $\{T(t); t \geq 0\}$ is a semi-group of class (0, A), then (a_1) and (a_2) are satisfied, and moreover $\lim_{t\to 0+} T(t)x = x$ for $x \in D(A)$, namely, $D(A) \subset \Sigma$ (see [2]). This means $(0, A) \subset (C_{(1)})$. And an example in [2] shows that $(0, A) \neq (C_{(1)})$ (see [2; p. 371, example 1]).

We now mention the generation theorem for semi-groups of class $(C_{(k)})$ due to Oharu [4].

THEOREM A. An operator A is the complete infinitesimal generator of a semi-group $\{T(t); t \geq 0\}$ of class $(C_{(k)})$ if and only if

- (α_1) A is densely defined, closed linear operator with domain and range in X,
 - (α_2) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,
 - (α_3) there exists an M>0 such that

 $||R(\lambda;A)^nx|| \leq M(\lambda-\omega)^{-n}||x||_k \ for \ x \in D(A^k), \ \lambda > \omega \ and \ n \geq 1$, where $||x||_k = ||x|| + ||Ax|| + \cdots + ||A^kx||$,

(α_4) for every $\varepsilon > 0$ and $x \in D(A^k)$ there are $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon, x)$ such that $||\lambda^n R(\lambda; A)^n x|| \leq M_{\varepsilon}||x||$ for $\lambda > \lambda_0$ and n with $n/\lambda \in [\varepsilon, 1/\varepsilon]$.

Then the semi-group $\{T(t); t \ge 0\}$ generated by A has the following property; for each $x \in D(A^k)$

$$T(t)x = \lim_{n \to \infty} T(t; n)x = \lim_{n \to \infty} \left(I - \frac{t}{n}A\right)^{-n}x$$

uniformly on every compact interval of $[0, \infty)$.

3. Proofs of Theorems 1 and 2. We start from the following

Lemma 3.1. Let A be a closed linear operator with domain and range in X.

 $Suppose\ that$

(i) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,

(ii) for each $x \in X$ there exists a non-negative measurable function f(t, x)on $(0, \infty)$ satisfying the following properties

$$(ii_1) \quad \int_{-\infty}^{\infty} e^{-\omega t} f(t, x) dt < \infty \quad for \quad x \in X,$$

 $\begin{array}{ll} \text{(ii_{1})} & \int_{0}^{\infty}e^{-\omega t}f(t,\,x)dt < \infty \ \ for \ \ x \in X \ , \\ \text{(ii_{2})} & ||R(\lambda;\,A)^{n}x|| \leq 1/(n-1)! \int_{0}^{\infty}e^{-\lambda t}t^{n-1}f(t,\,x)dt \ \ for \ \ x \in X, \ \lambda > \omega \end{array}$ and $n \geq 1$.

Then we have

(i') there exists a constant M > 0 such that

$$||R(\lambda; A)^n x|| \leq M(\lambda - \omega)^{-n} ||x||_1 \text{ for } x \in D(A), \lambda > \omega \text{ and } n \geq 1,$$

(ii') $\int_0^\infty e^{-\omega t} \liminf_{n \to \infty} \mid\mid T(t; n)x \mid\mid dt < \infty$ for $x \in X$, where T(t; n) operators defined by (1.5).

PROOF. (i') Let $\lambda > \omega$ and $x \in D(A)$. Since $R(\lambda; A)^k (A - \omega) x =$ $(\lambda - \omega)R(\lambda; A)^k x - R(\lambda; A)^{k-1}x$, we obtain from (ii₂) that

$$egin{aligned} ||(\lambda-\omega)^kR(\lambda;A)^kx-(\lambda-\omega)^{k-1}R(\lambda;A)^{k-1}x|| \ &=||(\lambda-\omega)^{k-1}R(\lambda;A)^k(A-\omega)x|| \leq rac{(\lambda-\omega)^{k-1}}{(k-1)!}\int_0^\infty e^{-\lambda t}t^{k-1}f(t,(A-\omega)x)dt \end{aligned}$$

for $k \ge 1$. Hence

$$\begin{split} ||(\lambda - \omega)^n R(\lambda; A)^n x - x|| &\leq \int_0^\infty e^{-\lambda t} \sum_{k=1}^n \frac{(\lambda - \omega)^{k-1} t^{k-1}}{(k-1)!} f(t, (A - \omega) x) dt \\ &\leq \int_0^\infty e^{-\omega t} f(t, (A - \omega) x) dt \text{ for } n \geq 1. \end{split}$$

Since $R(\lambda; A)^n$, $\lambda > \omega$, $n \ge 1$, are bounded linear operators from the Banach space D(A) with the norm $||x||_1 = ||x|| + ||Ax||$ into X, the above inequality implies that there is an M>0 such that

$$||(\lambda - \omega)^n R(\lambda; A)^n x|| \leq M||x||_1$$

for $x \in D(A)$, $\lambda > \omega$ and $n \ge 1$ (the uniform boundedness principle).

(ii') Let T>0 be arbitrary but fixed, and let $x \in X$. Then for each integer n with n > T|w|, T(t;n) is well defined on [0, T] and by (ii_2)

$$||T(t;n)x|| \leq \frac{(n/t)^n}{(n-1)!} \int_0^\infty e^{-ns/t} s^{n-1} f(s,x) ds \text{ for } 0 < t \leq T.$$

For each integer $n \ge 1$ let us define a function E_n by

$$E_n(t) = egin{cases} (1 - \omega t/n)^n & ext{for } 0 \leq t \leq n/|\omega| \ 0 & ext{for } n/|\omega| < t \end{cases} ext{ if } \omega
eq 0$$
 ,

and $E_n(t) \equiv 1$ if $\omega = 0$. Then

$$\begin{split} \int_{0}^{T} E_{n}(t) \, || \, T(t; \, n) x \, || dt & \leq \int_{0}^{\infty} E_{n}(t) \left[\frac{(n/t)^{n}}{(n-1)!} \int_{0}^{\infty} e^{-ns/t} s^{n-1} f(s, \, x) ds \right] dt \\ & = \int_{0}^{\infty} s^{n-1} f(s, \, x) \left[\frac{1}{(n-1)!} \int_{0}^{\infty} E_{n}(t) (n/t)^{n} e^{-ns/t} dt \right] ds \, \, , \end{split}$$

where $n > T|\omega|$. Now,

$$egin{aligned} J &\equiv rac{1}{(n-1)!} \!\!\int_0^\infty \!\! E_n(t) (n/t)^n e^{-ns/t} dt \ &= rac{1}{(n-1)!} \!\!\int_0^{n/|\omega|} \!\! (n/t-\omega)^n e^{-ns/t} dt = rac{ne^{-\omega s}}{(n-1)!} \!\!\int_{|\omega|-\omega}^\infty \!\! rac{t^n}{(t+\omega)^2} e^{-st} dt \; ; \end{aligned}$$

and a simple calculus shows that $J \leq (n/(n-1))e^{-\omega s}s^{1-n}$ if $\omega \geq 0$, and $J \leq 4 \, (n/(n-1))e^{-\omega s}s^{1-n}$ if $\omega < 0$. Therefore

$$\int_{\scriptscriptstyle 0}^{\scriptscriptstyle T} \! E_{\scriptscriptstyle n}(t) || \, T(t;n) x || dt \leq 4 rac{n}{n-1} \! \int_{\scriptscriptstyle 0}^{\scriptscriptstyle \infty} \! e^{-\omega s} f(s,x) ds \, ext{ for } \, n> \, T |\, \omega \,| \, \, .$$

Passing to the limit as $n \to \infty$, we see from the Fatou lemma that

$$\int_0^T e^{-\omega t} \liminf_{n \to \infty} ||T(t;n)x|| dt \le 4 \int_0^\infty e^{-\omega s} f(s,x) ds.$$

Since T is arbitrary, we obtain the desired conclusion. Q.E.D.

LEMMA 3.2. Let A be a closed linear operator with domain and range in X. If we assume (i), (ii) in Lemma 3.1 and (ii_s) for each $x \in X$, f(t, x) is bounded on every compact subset of $(0, \infty)$, then for each $\varepsilon > 0$ there exist $M_{\varepsilon} > 0$ and $\lambda_0 = \lambda_0(\varepsilon)$ such that

$$(3.1) ||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon} \text{ for } \lambda > \lambda_0 \text{ and } n \text{ with } n/\lambda \in [\varepsilon, 1/\varepsilon].$$

PROOF. Let $x \in X$ and $\lambda > 2|\omega|$. Clearly

$$||\lambda^n R(\lambda;A)^n x|| \leq rac{\lambda^n}{(n-1)!} \int_0^\infty e^{-(\lambda-\omega)t} t^{n-1} e^{-\omega t} f(t,x) dt \equiv I$$
.

Note that the function $e^{-(\lambda-\omega)t}t^{n-1}(n\geq 1)$ is increasing on $[0,\alpha]$ and decreasing on $[\alpha,\infty)$, where $\alpha=(n-1)/(\lambda-\omega)$. Let δ and η be arbitrary numbers with $0<\delta<1<\eta$, and divide the integral domain as follows:

$$I=rac{\lambda^n}{(n-1)!}iggl[\int_0^{\deltalpha}+\int_{\deltalpha}^{\etalpha}+\int_{\etalpha}^\inftyiggr]\equiv I_{\scriptscriptstyle 1}+I_{\scriptscriptstyle 2}+I_{\scriptscriptstyle 3}$$
 .

Then

$$I_1 \leq rac{\lambda^n}{(n-1)!} e^{-(\lambda-\omega)\deltalpha} (\deltalpha)^{n-1} K(x) = rac{e^{-(n-1)\delta}}{(n-1)!} \lambda(\lambdalpha)^{n-1} \delta^{n-1} K(x)$$
 ,

$$I_3 \leq rac{e^{-(n-1)\,\eta}}{(n-1)!} \lambda(\lambdalpha)^{n-1} \eta^{n-1} K(x), ext{ where } K(x) = \int_0^\infty e^{-\omega t} f(t,x) dt$$
 .

Since $\alpha\lambda = (n-1)(1+\omega/(\lambda-\omega)) \le 2(n-1)$, we have

By virtue of the Stirling formula, we obtain

$$(3.2) I_1 \leq \frac{e}{\sqrt{2\pi}} \frac{\lambda}{\sqrt{n}} (2\delta e^{1-\delta})^{n-1} K(x) .$$

Similarly as in the above, we have

(3.3)
$$I_3 \le \frac{e}{\sqrt{2\pi}} \frac{\lambda}{\sqrt{n}} (2\eta e^{1-\eta})^{n-1} K(x) .$$

Let $0 < \varepsilon < 1$ and let $n/\lambda \in [\varepsilon, 1/\varepsilon]$. Since $\lambda \le n/\varepsilon$, it follows from (3.2) and (3.3) that

$$I_1 \leqq rac{e}{\sqrt{2\pi} \ arepsilon} \sqrt{\ n} \ (2\delta e^{1-\delta})^{n-1} K(x), \ I_3 \leqq rac{e}{\sqrt{2\pi} \ arepsilon} \sqrt{\ n} \ (2\eta e^{1-\eta})^{n-1} K(x) \ .$$

Choose $\delta \in (0, 1)$ and $\eta \in (1, \infty)$ such that $2\delta e^{1-\delta} < 1$ and $2\eta e^{1-\eta} < 1$. Since $\sqrt{n} (2\delta e^{1-\delta})^{n-1}$ and $\sqrt{n} (2\eta e^{1-\eta})^{n-1}$ are bounded with respect to n, there is a $K_{\varepsilon} > 0$ such that

$$(3.4) I_1 + I_3 = \frac{\lambda^n}{(n-1)!} \left[\int_0^{\delta\alpha} + \int_{\eta\alpha}^{\infty} \right] \leq K_{\varepsilon} K(x) .$$

Finally we estimate

$$I_{z}=rac{\lambda^{n}}{(n-1)!}\!\int_{\deltalpha}^{\gammalpha}\!e^{-\lambda t}t^{n-1}\!f(t,\,x)dt$$
 .

It is easy to see that $\delta \varepsilon/4 \le \delta \alpha \le \eta \alpha \le 2\eta/\varepsilon$ for $n \ge 2$. Set $\lambda_0 = \lambda_0(\varepsilon) = \max(2/\varepsilon, 2|\omega|)$. Then for $\lambda > \lambda_0$ and n with $n/\lambda \in [\varepsilon, 1/\varepsilon]$,

$$egin{aligned} I_{\scriptscriptstyle 2} & \leq rac{\lambda^n}{(n-1)!} \int_{\scriptscriptstyle \delta_{arepsilon/4}}^{\scriptscriptstyle 2\gamma/arepsilon} e^{-\lambda t} t^{n-1} f(t,\,x) dt \leq K(arepsilon,\,x) rac{\lambda^n}{(n-1)!} \int_{\scriptscriptstyle 0}^{\infty} e^{-\lambda t} t^{n-1} dt \ & = K(arepsilon,\,x), \; ext{where} \; K(arepsilon,\,x) = \sup \left\{ f(t,\,x); \, \delta arepsilon/4 \leq t \leq 2\eta/arepsilon
ight\} \; . \end{aligned}$$

Combining this with (3.4), for every $x \in X$ we have

$$||\lambda^n R(\lambda; A)^n x|| \leq K_{\varepsilon} \int_{0}^{\infty} e^{-\omega t} f(t, x) dt + K(\varepsilon, x)$$

for $\lambda > \lambda_0$ and n with $n/\lambda \in [\varepsilon, 1/\varepsilon]$. By the uniform boundedness principle, there exists an $M_{\varepsilon} > 0$ such that $||\lambda^n R(\lambda; A)^n|| \leq M_{\varepsilon}$ for $\lambda > \lambda_0$ and n with

 $n/\lambda \in [\varepsilon, 1/\varepsilon].$ Q.E.D.

We now prove Theorem 1.

PROOF OF THEOREM 1. Suppose first that $\{T(t); t \geq 0\}$ is of class (0, A). Then the complete infinitesimal generator A satisfies the condition (i). Since $R(\lambda; A)x = \int_0^\infty e^{-\lambda t} T(t)xdt$ for $x \in X$ and $\lambda > \omega_0$ (= the type of $\{T(t); t \geq 0\}$), (iii) follows from the condition (0, A) together with the uniform boundedness theorem. Choose an $\omega > \omega_0$ and set f(t, x) = ||T(t)x|| for $x \in X$ and t > 0. Then (ii) and (iv₁) are valid. (Note that $R(\lambda; A)^n x = 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} T(t)xdt$ for $x \in X$ and $\lambda > \omega$.)

Suppose next that (i)-(iii) and (iv₁) are satisfied. It follows from Lemmas 3.1 and 3.2 that the condition (iv₂) holds true. Hence, by virtue of Theorem A, A is the complete infinitesimal generator of a semi-group $\{T(t); t \geq 0\}$ of class $(C_{(1)})$ and

(3.5)
$$T(t)x = \lim_{n \to \infty} T(t; n)x \text{ for } x \in D(A) \text{ and } t \ge 0.$$

Let $0 < \varepsilon < 1$. It follows from (iv_2) -(a') that if $n > \lambda_0/\varepsilon$, then

$$(3.6) ||T(t;n)|| = \left\| \left[\frac{n}{t} R\left(\frac{n}{t};A\right) \right]^n \right\| \leq M_{\varepsilon} \text{ for } t \in [\varepsilon, 1/\varepsilon].$$

Since D(A) is dense in X, (3.5) and (3.6) imply that

$$T(t)x = \lim_{n \to \infty} T(t; n)x$$
 for $x \in X$ and $t > 0$.

Hence we see from (iv₂)-(c') that

(3.7)
$$\int_0^\infty e^{-\omega t} ||T(t)x|| dt < \infty \text{ for } x \in X.$$

We next want to show

(3.8)
$$\lim_{\lambda \to \infty} \lambda \int_{0}^{\infty} e^{-\lambda t} T(t) x dt = x \text{ for } x \in X.$$

Since $\{T(t); t \geq 0\}$ is of class $(C_{(1)}), R(\lambda; A)[X](=D(A)) \subset \Sigma$ and $R(\lambda; A)x = \int_0^\infty e^{-\lambda t} T(t) x dt$ for $x \in X_0 = \bigcup_{t>0} T(t)[X]$ and sufficiently large λ (see Lemma 2.1). Therefore

$$T(h)R(\lambda;A)x = \int_0^\infty e^{-\lambda t} T(t+h)xdt = e^{\lambda h} \int_h^\infty e^{-\lambda t} T(t)xdt$$

for h>0 and $x\in X$. Letting $h\to 0+$, it follows from $R(\lambda;A)[X]\subset \mathcal{\Sigma}$ that

$$R(\lambda;A)x = \int_0^\infty e^{-\lambda t} T(t)xdt$$

for $x \in X$ and sufficiently large λ . Further, by (iii), $||\lambda R(\lambda; A)x - x|| =$ $||R(\lambda;A)Ax|| \leq O(1/\lambda)||Ax|| \to 0$ for $x \in D(A)$ and hence $||\lambda R(\lambda;A)x - x|| \to 0$ for $x \in X$ as $\lambda \to \infty$. Thus we obtain (3.8), and hence $\{T(t); t \ge 0\}$ is of class (0, A).

To prove Theorem 2 we prepare the following

LEMMA 3.3. Let A be a closed linear operator with domain and range in X.

Suppose that

- (i) there is a real ω such that $\{\lambda; \lambda > \omega\} \subset \rho(A)$,
- (ii) $||R(\lambda; A)|| = O(1/\lambda)$ as $\lambda \to \infty$,
- (iii) there exists a non-negative measurable function f(t) on $(0, \infty)$ satisfying the following properties

$$(ext{iii}_1)$$
 $\int_0^\infty e^{-\omega t} f(t) dt < \infty$,

$$egin{array}{ll} (\mathrm{iii}_1) & \int_0^\infty e^{-\omega t} f(t) dt < \infty \;\;, \ (\mathrm{iii}_2) & ||R(\lambda;A)^n|| \leq 1/(n-1)! \int_0^\infty e^{-\lambda t} t^{n-1} f(t) dt \;\; for \;\; \lambda > \omega \;\; and \;\; n \geq 1. \end{array}$$

If we define $T_{\lambda}(t)$ by $T_{\lambda}(t) = \{\lambda R(\lambda; A)\}^{[\lambda t]}$ for $\lambda > \max(0, \omega)$ and $t \geq 0$, where $[\lambda t]$ denotes the integral part of λt , then

(i') there is a $\lambda_1 > 0$ such that

$$\int_0^\infty\!e^{-\mu t}||\,T_{\lambda}(t)\,||dt\leqq 1+\int_0^\infty\!e^{-\omega t}f(t)dt\,\,for\,\,\,\lambda>\lambda_{\scriptscriptstyle 1}$$
 ,

(ii') there exist M > 0 and $\lambda_0 > 0$ such that

$$||T_{\lambda}(t)|| \leq M \Big(1+\int_0^\infty e^{-\omega s}f(s)ds\Big)^2 e^{\mu t}/t^2 \ for \ t>0 \ and \ \lambda>\lambda_0$$
 ,

where $\mu = |\omega| + 1$.

PROOF. Let $\lambda > \max(0, \omega)$. Since

$$||T_{\lambda}(t)|| \leq rac{\lambda^{\lfloor \lambda t
floor}}{(\lfloor \lambda t
floor - 1)!} \int_0^\infty e^{-\lambda s} s^{\lfloor \lambda t
floor - 1} f(s) ds = rac{\lambda^k}{(k-1)!} \int_0^\infty e^{-\lambda s} s^{k-1} f(s) ds$$

for $k/\lambda \le t < (k+1)/\lambda$, $k = 1, 2, \dots$, we obtain

$$\begin{split} &\int_{_{0}}^{\infty} e^{-\mu t}||\ T_{\lambda}(t)\,||dt = \int_{_{0}}^{^{1/\lambda}} e^{-\mu t}dt + \sum_{k=1}^{\infty} \int_{_{k/\lambda}}^{^{(k+1)/\lambda}} e^{-\mu t}||\ T_{\lambda}(t)\,||dt \\ & \leq 1/\lambda + \sum_{k=1}^{\infty} \int_{_{k/\lambda}}^{^{(k+1)/\lambda}} e^{-\mu t} \bigg[\frac{\lambda^{k}}{(k-1)!} \int_{_{0}}^{\infty} e^{-\lambda s} s^{k-1} f(s) ds \bigg] dt \\ & \leq 1/\lambda + \sum_{k=1}^{\infty} e^{-\mu k/\lambda} \frac{\lambda^{k-1}}{(k-1)!} \int_{_{0}}^{\infty} e^{-\lambda s} s^{k-1} f(s) ds \end{split}$$

$$\leq 1/\lambda + \int_0^\infty \!\! \exp\! \left[-\mu s rac{1-e^{-\mu/\lambda}}{\mu/\lambda}
ight] \!\! f(s) ds$$
 .

Choose a $\lambda_1 \ge \max(1, \omega)$ such that $(1 - e^{-\mu/\lambda})/(\mu/\lambda) > |\omega|/\mu$ for $\lambda > \lambda_1$. Then we have

$$\int_0^\infty e^{-\mu t} ||T_\lambda(t)|| dt \leq 1 + \int_0^\infty e^{-|\omega|s} f(s) ds \leq 1 + \int_0^\infty e^{-\omega t} f(t) dt$$

for $\lambda > \lambda_1$.

We next prove (ii'). By the assumption (ii) there exist $M \ge 1$ and $\lambda_2 > \max(0, \omega)$ such that $||\lambda R(\lambda; A)|| \le M$ for $\lambda \ge \lambda_2$. Since $[\lambda(t+s)] - ([\lambda t] + [\lambda s]) = 0$ or 1 for every $t, s \ge 0$ and $\lambda > 0$, we obtain

(3.9)
$$||T_{\lambda}(t+s)|| = ||\{\lambda R(\lambda;A)\}^{[\lambda(t+s)]}||$$

$$\leq M ||\{\lambda R(\lambda;A)\}^{[\lambda t]}\{\lambda R(\lambda;A)\}^{[\lambda s]}|| \leq M ||T_{\lambda}(t)|| ||T_{\lambda}(s)||$$

for $\lambda \ge \lambda_2$ and $t, s \ge 0$.

Let $\lambda > \lambda_0 \equiv \max(\lambda_1, \lambda_2)$ and set $g(t) = e^{-\mu t} ||T_{\lambda}(t)||$. Then (3.9) implies that $2g(t) \leq 2Mg(t-s)g(s) \leq M([g(t-s)]^2 + [g(s)]^2)$ and hence

$$2g(t)^{1/2} \le M^{1/2} \{g(t-s) + g(s)\}$$
 for $0 \le s \le t$.

Now

$$egin{align} t[g(t)]^{{}_{1/2}} &= 2{\int_0^{t/2}}g(t)^{{}_{1/2}}ds \leqq M^{{}_{1/2}}{\int_0^{t/2}}\{g(t-s)+g(s)\}ds \ &= M^{{}_{1/2}}{\int_0^t}g(s)ds \leqq M^{{}_{1/2}}igg(1+{\int_0^\infty}e^{-\omega s}f(s)dsigg) \end{aligned}$$

by (i'). Therefore we have the conclusion.

Q.E.D.

PROOF OF THEOREM 2. If A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$ of class (1, A), then (i)-(iii) and (v_1) are valid with f(t) = ||T(t)|| and $\omega > \omega_0$.

Suppose next that (i)-(iii) and (v_1) are satisfied. Then (v_2) holds true. In fact, similarly as in the proof of Lemma 3.1, (v_2)-(b'), (c') follow from (i), (ii) and (v_1). By virtue of Lemma 3.3,

$$||\{\lambda R(\lambda;A)\}^{\lceil\lambda t
ceil}|| \le K e^{\mu t}/t^2 \ ext{for} \ t>0 \ ext{and} \ \lambda>\lambda_{\scriptscriptstyle 0}$$
 ,

where $K = M \Big(1 + \int_0^\infty e^{-\omega s} f(s) ds \Big)^2$ and M, λ_0 , μ are constants in Lemma 3.3 (ii'). If we set $M_{\varepsilon} = K e^{\mu/\varepsilon} / \varepsilon^2$ for $\varepsilon > 0$, then

$$||\{\lambda R(\lambda;A)\}^{[\lambda t]}|| \leq M_{\varepsilon} \text{ for } \varepsilon \leq t \leq 1/\varepsilon \text{ and } \lambda > \lambda_0$$

and hence (v_2) -(a') is obtained. Consequently it follows from Theorem 1 that A is the complete infinitesimal generator of a semi-group $\{T(t); t \ge 0\}$

of class (0, A). Since $T(t)x = \lim_{n\to\infty} T(t; n)x$ for $x \in X$ and t > 0 (see the proof of Theorem 1), (v_2) -(c') implies that $\int_0^\infty e^{-\omega t} ||T(t)|| dt < \infty$. Thus $\{T(t); t \ge 0\}$ is of class (1, A).

REMARK. The class (A) of semi-groups was introduced by Phillips, and he showed that if $\{T(t); t \geq 0\}$ is of class (A) then $\lim_{t\to 0+} T(t)x = x$ for $x\in D(A^2)$, where A is the complete infinitesimal generator of $\{T(t); t\geq 0\}$ (see [2, 6]). This implies that $(A)\subset (C_{(2)})$. And a generation theorem for semi-groups of class (A) is also obtained from Theorem A (see [4]).

REFERENCES

- [1] W. Feller, On the generation of unbounded semi-group of bounded linear operators, Ann. of Math., 58 (1953), 166-174.
- [2] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., (1957).
- [3] I. Miyadera, On the generation of strongly ergodic semi-groups of operators, II, Tôhoku Math. J., 6 (1954), 231-242.
- [4] S. Oharu, Semi-groups of linear operators in a Banach space, Publ. R.I.M.S. Kyoto Univ., 7 (1971), 205-260.
- [5] R. S. Phillips, An inversion formula for Laplace Transforms and semi-groups of linear operators, Ann. of Math., 59 (1954), 325-356.
- [6] R. S. Phillips, Semi-groups of operators, Bull. Amer. Math. Soc., 61 (1955), 16-33.

DEPARTMENT OF MATHEMATICS WASEDA UNIVERSITY TOKYO, JAPAN