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On the Generative Power of Multiple Context-Free Grammars 

and Macro Grammars

Hiroyuki SEKI•õa), Member and Yuki KATO•õ•õ, Nonmember

SUMMARY Several grammars of which generative power is be-
tween context-free grammar and context-sensitive grammar were proposed. 
Among them are macro grammar and tree adjoining grammar. Multiple 
context-free grammar is also a natural extension of context-free grammars, 
and is known to be stronger in its generative power than tree adjoining 
grammar and yet to be recognizable in polynomial time. In this paper, the 
generative power of several subclasses of variable-linear macro grammars 
and that of multiple context-free grammars are compared in details.
key words: multiple context free grammar, macro grammar, context-free 
tree grammar, generative power, linearity

1. Introduction

Several grammars of which generative power is between 
context-free grammar (cfg) and context-sensitive grammar 
(csg) were proposed. Among them, multiple context-free 
grammar (mcfg) [10], [24] is a natural extension of cfg. A 
nonterminal symbol of an mcfg derives tuples of strings 
while a nonterminal symbol of a cfg derives strings. Mcfg 
inherits good properties of cfg. The recognition (or mem-
bership) problem for mcfg is solvable in polynomial time of 
the length of an input string. The class of languages gener-
ated by mcfgs is a full AFL. There are a few formalisms of 
which generative power is the same as mcfg. String-based 
linear context-free rewriting system [27] is essentially the 
same formalism as mcfg. Later, Weir [28] showed that the 
generative power of mcfg is equal to that of finite-copying 
tree transducer [5]. Rambow and Satta showed that the gen-
erative powers of mcfg and local unordered scattered con-
text grammar are the same [18], [19]. Tree adjoining gram-
mar (tag) [8],. [9] generates a proper subclass of the class of 
languages generated by mcfgs.

Context-free tree grammar [21], [22] (cftg) is another 
extension of cfg obtained by introducing arguments into 
nonterminal symbols. While derivation of cftg is defined 
overr trees (or terms) rather than strings, the class of yield 
languages generated by cftgs is known to be the same as 
the class of languages generated by macro grammars [6] 
and that of indexed grammars [2]. Whether the membership 
problem for macro grammar is solvable in polynomial time 

of the size of an input string is not known though there exists 

a macro grammar that generates an NP-complete language. 

Also, it is an open problem whether the generative power of 

cftg is properly stronger than that of mcfg (or vice versa).

In this paper, the generative power of several sub-

classes of variable-linear macro grammars and that of multi-

ple context-free grammars are compared in details. A macro 

grammar (mg) is variable-linear if each variable in the left-

hand side of a rule appears at most once in its right-hand 

side. An mg is double-linear if it is variable-linear and the 

number of nonterminal symbols in the right-hand side of a 

rule is at most one. We show that

1-MCFL(m)=L2-ML(m-1)•¼VL-ML(m-1)

•º 2-MCFL(m) (m•†1)

where r-MCFL(m) is the class of languages generated by 

mcfgs with dimension at most m and rank at most r, VL-

ML(m) and L2-ML(m) are the classes of languages gener-

ated by variable-linear mgs and double-linear mgs with arity 

at most m, respectively. It is also shown that the rightmost 

inclusion is proper when m•†2. Inclusion relations are also 

shown in Fig. 2 in Sect. 4, where * indicates the new results 

obtained in this paper. Detailed proofs can be found in [23], 

some of which are also given in appendix of this paper.

The main purpose of this paper is to formally compare 

the generative power of grammars between cfg and csg, but 

these grammars have some real-world applications. Gram-

mars considered in this paper have been mainly applied 

to the description of natural language syntax in computa-

tional linguistics and the syntax-directed translation in com-

piler construction. Recently, these grammars have been paid 

much attention in bioinformatics. For example, secondary 

structure of biological sequences such as RNA and protein is 

modeled by these grammars so that secondary structure pre-

diction can be realized by parsing in stochastic extension of 

these grammars [3], [4]. Early studies applied parsing meth-

ods of stochastic cfg to structure prediction [4]. However, 

it has been pointed out that secondary structure contains 

substructures that cannot be represented by cfg. To solve 

this problem, later studies used grammars of which genera-

tive power is greater than cfg. Among them, a subclass of 

tag was applied to RNA secondary structure prediction [17], 

[26] and to RNA secondary structure alignment [25]. For 

the former problem, Rivas and Eddy used RNA pseudoknot 

grammar [20], and Kato, et al, used a subclass of mcfgs [13]. 

These grammars can be naturally considered as subclasses
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of mcfgs, and Kato, et al. [12] clarified the relation between 

the generative power of these grammars.

Meanwhile, Abe and Mamitsuka used a subclass of 

cftgs for protein secondary structure prediction [1]. They 

defined a ranked node rewriting grammar (rnrg) and a lin-

ear rnrg as a variable-linear cftg and a double-linear cftg, 

respectively, that satisfy nonerasing and nonpermuting con-

ditions in this papert. Let RNRL(m) and L-RNRL(m) be 

the classes of yield languages generated by rnrgs and 1-rnrgs 

with nonterminals of which arity is at most m, respectively. 

They claimed that L-RNRL(m)•¼RNRL(m), and RNRL(m) 

and L-RNRL(m) can be parsed in O(n3(m+1)) and O(n2(m+1)), 

respectively, but formal proofs were not provided. They also 

presented a parsing algorithm for stochastic version of 1-

rnrg(1) and reported the experimental results of applying the 

algorithm to protein structure prediction. By Lemmas 7 and 

8, RNRL(m)=VL-ML(m) and L-RNRL(m)=L2-ML(m). 

Thus, the above claims for RNRL and L-RNRL can be ob-

tained as corollaries of Theorem 20 and Corollaries 11 and 

18. These corollaries are based on the property of an mcfg 

G that for a given w•¸T*, whether w•¸L(G) can be decided 

in O(ne) time where n=|w| and e is a constant depend-

ing only on G (Proposition 2). This property was proved 

in a constructive way in [11], [24] by providing a so-called 

CYK-style recognition algorithm scheme for mcfg. Also, 

the proofs for comparing the generative power of mcfg and 

mg in this paper are constructive; we provide a translation 

from variable-linear mg to 2-mcfg and a bidirectional trans-

formation between double-linear mg and 1-mcfg. Hence, 

once a secondary structure model of specific biological se-

quences is described as an mg (or equivalently, rnrg), we 

only have to translate the mg to an equivalent mcfg, and use 

the CYK algorithm for mcfg; it is not needed to implement 

a recognition algorithm from scratch.

As a final remark, closure properties of the class of tree 

languages generated by vl-mgs were extensively studied in 

[14].

2. Preliminaries

2.1 Multiple Context-Free Grammar

We will use standard notions and notations on strings and 

languages. Let ƒÃ denote the empty string. Let ƒ¡ be a fi-

nite alphabet. For a string ƒ¿•¸ƒ¡* and a symbol ƒ¿•¸ƒ¡, let 

| a| denote the number of symbols appearing in ƒ¿, called the 

length of ƒ¿, and let |ƒ¿|a denote the number of a's appear-

ing in ƒ¿. Let•ºand•¼denote the set inclusion relation and 

the proper set inclusion relation, respectively. A multiple 

context-free grammar (mcfg) is a 5-tuple G=(N,T,F,P,S) 

where N is a finite set of nonterminals, T a finite set of ter-

minals, F a finite set of mcf-functions defined below, P a 

finite set of (production) rules defined below and S•¸N the 

start symbol. For each A•¸N, a positive integer denoted 

as dim(A) is given and A derives dim(A)-tuples of terminal 

strings. For the start symbol S, dim(S)=1. We say that 

f is an mcf-function if a nonnegative integer k and positive 

integers di(0•…i•…k) are given and f is a total function 

from (T*)d1 •~•c•~ (T*)dk to (T*)d0 satisfying the following 

condition (F):

(F) Let xi=(xi1,•c,xidi) denote the ith argument of f for 

1•…i•…k. The hth component of function value for 

1•…h•…d0, denoted by f[h] is defined as

f[h][x1,•c,xk]=ƒÀh0zh1ƒÀh1zh2•czhvhƒÀhvh (*)

where vh is a nonnegative integer, ƒÀhl•¸T* (0•…l•…vh) 

and zhl•¸{xij|1•…i•…k,1•…j•…d}(1•…l•…vh). 

The total number of occurrences of xij in the right-hand 

sides of (*) from h=1 through d0 is at most one. For 

example, f[(x11,x12),(x21,x22)]=(x11x21,x12x22).

Each rule in P has the form of A0•¨f[A1,•c,Ak] where 

Ai•¸N(0•…i•…k) and f: (T*)dim(A1)•~•c•~(T*)dim(Ak)•¨

(T*)dim(A0)•¸F. If k•†1, the rule is called a nonterminating 

rule, and if k=0, it is called a terminating rule. A termi-

nating rule A0•¨f[] with f[h][]=ƒÀh(1•…h•…dim(A0)) is 

simply written as A0•¨(ƒÀi,•c,ƒÀdim(A0)).

Example 1. Let m be an arbitrary positive integer.

(1) Let G1=(N1,T1,F1,P1,S) be an mcfg where N1=

{S,A}, T1={a,b} and P1={S•¨J[A], A•¨

fa[A]•bfb[A]|(ƒÃ,ƒÃ)} where dim(S)=1, dim(A)=2, 

J[(x1,x2)]=x1x2 and fa[(x1,x2)]=(ƒ¿x1,ƒ¿x2) with 

ƒ¿ =a,b.

(2) Let G(m)2=(N(m)2,T(m)2,F(m)2,P(m)2,S) be an mcfg 

where N(m)2={S,A(m)},T(m)2={ai|1•…

i•…2m} and P(m)2={S•¨Jm[A(m)], A(m)•¨

gm[A(m)]|(ƒÃ,•c,ƒÃ)} where dim(S)=1, dim(A(m))=

m, Jm[(x1,•c,xm)]=x1•cxm and gm[(x1,•c,xm)]=

(a1x1a2,•c,a2m-1xma2m).

(3) Let G(m)3=(N(m)2,T(m)2,F(m)3,P(m)3,S) be an mcfg 

where P(m)3={S•¨J2m[A(m),A(m)], A(m)•¨

g[A(m)]|(ƒÃ,•c,ƒÃ)} where J2m[(x1,•c,xm),(y1,•c,Ym)]
=x1•cxmY1•cym and gm is defined as in (2).

For a function f defined by (*) in condition (F) and tu-

ples of terminal strings ƒ¿i=(ail,•c,aidi)•¸(T*)di (1•…

i•…k), let f[ƒ¿1,•c,ƒ¿k] denote the tuple of terminal strings 

obtained from the right-hand sides of (*) by substituting 

aij(1•…i•…k, 1•…j•…dim(Ai)) into xij. For example, 

fa[(bba,ab)]=(abba,aab) in Example 1. We recursively 

define the relation *•Ëby the following (L1) and (L2):

(L1) If A•¨ƒ¿•¸P(ƒ¿•¸(T*)dim(A)), we write A*•Ëƒ¿.

(L2) If A•¨f[A1,•c,Ak]•¸P and Ai*•Ëƒ¿i (1•…i•…k), we 

write A*•Ëf[ƒ¿1,•c,ƒ¿k].

Let G=(N,T,F,P,S) be an mcfg. For A•¸N, the set gen-

erated from A in G is defined as LE(A)={w•¸(T*)dim(A)|

A*•Ëw} and the language generated by G is defined as

•õ Unfortunately, the word rank is used for different meaning in 

mcfg and cftg. In this paper, the word arity will be used instead of 

rank for cftg and mg.
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Fig. 1 A derivation tree.

L(G)=LG(S).A language L is a multiple context-free lan-

guage (mcfl) if there exists an mcfg G such that L=L(G). 

The class of all mcfgs and the class of all mcfls are denoted 

by MCFG and MCFL, respectively . The same notational 

convention will be used for other classes of grammats and 

languages. In parallel with the relation *⇒, we define deriva-

tion trees:

(D1) If A→ α ∈P(α ∈(T*)dim(A)), then a derivation tree

of α is the tree with a single node labeled A: α.

(D2) If A→f[A1,…,Ak]∈P, Ai *⇒ αi (1≦i≦k)

and t1,…,tk are derivation trees of α1,…,αk, then a 

derivation tree of f[α1,…,αk] is the tree with the root 

labeled A: f that has t1,…,tk as (immediate) subtrees 

from left to right.

Example 1(continued). (1) By (L1), A*⇒G1 (ε,ε)since

A→(ε,ε)∈P. Since fa[(ε,ε)]=(a,a) and 

fb[(a,a)]=(ba,ba), we have A*⇒G1 (a,a)and

A*⇒G1 (ba,ba) by (L2). Also by S→J[A], S*⇒G1

J[(ba,ba)]=baba. In fact, LG1(A)={(W,w)|w∈

{a,b}*} and L(G1)={ww|w∈{a,b}*}.

(2) Likewise, A(m)*⇒G(m)2 (ε,…,ε) by (L1), A(m)*⇒G(m)
2

f[(ε,…,ε)]=(a1a2,…,a2m-1a2m) by (L2), etc. This 

tells us that L (G(m)2)={an1…an2m|n≧0}. This lan-

guage is called L(m)1 in the rest of the paper.

(3) Since LG(m)3(A(m))=LG(m)2(A(m)),L(G(m)3)={α β|α,β ∈

L(m)1}. This language is called L(m)2.

Figure 1 shows a derivation tree of

a1a1a2a2a3a3a4a4a1a2a3a4 in G(2)3 of Example 1.

To introduce subclasses of MCFG, we define a few no-

tations. For an mcf-function f: (T*)d1× … ×(T*)dk→

(T*)d0, we define dim(f), rank(f) and deg(f) called the di-

mension, rank and degree of f, respectively, as in Table 1. 

For an mcfg G=(N,T,F,P,S), let dim(G), rank(G) and

deg(G) denote the maximum of dim(f), rank(f) and deg(f) 

among all f∈F, respectively. For example, dim(G3)=m, 

rank(G3)=2 and deg(G3)=2m+1. By definition, 

deg(G)≦dim(G) (rank(G)+1).

An r-mcfg(m) is an mcfg G with dim(G)≦m and 

rank(G)≦r. Likewise, an mcfg(m) is an mcfg G with 

diM(G)≦m and an r-mcfg is an mcfg G with rank(G)≦r. 

Thus, G1 is a 1-mcfg(2) and G3 is a 2-mcfg(m).

For grammars G1 and G2, we say that G1 is weakly 

equivalent to G2 if L(G1)=L(G2).

Table 1 Parameters of mcfg.

Lemma 1 (Normal fbrm mcfg [10] , [24]). For a given 

r-mgfg(m) G, we can construct an r-mcfg(m) G'=

(N',T',F',P',S') that is weakly-equivalent to G and sat-

isfies the following conditions:

(N1) (nonerasing) For any f∈F', every variable appears

exactly once in the right-hand side of (*) for some h

(1≦h≦d0) in definition (F).

(N2) For any A∈N' (A≠S'), A*⇒G'(a1,…,adim(A))

implies ai≠ ε(1≦i≦dim(A)).

(N3) If A→ ε, then A=S' and S' does not appear in the

right-hand side of any rule in P'.

Recognition (or membership) problem for mcfg can be 

solved in polynomial time:

Proposition 2 ([11], [24]). Let G be an mcfg with deg(G)=

e. For a given w∈T*, whether w∈L(G) or not can be 

decided in O(ne) time where n=|w|.

2.2 Macro Grammar

Let Σ=Uk≧0Σk be a family of indexed alphabets where 

Σk∩ Σk'=0 for k≠k'. For f∈ Σk, we write a(f)=k, called 

the arity of f. For a countable set X of variables, let TΣ(X)

and T+Σ(X) denote the sets of terms and sequence-terms (or

s-terms) generated by Σ and X reispectively, defined as the 

smallest sets satisfying the following conditions:

(1) Σ0 ∪X⊆TΣ(X).

(2) f(t1,…,tn)∈TΣ(X) if ti∈T+Σ(x)(1≦i≦n) and 

f∈ Σn.

(3) t1…tl∈T+Σ(X) if ti∈TΣ(X)(1≦i≦l) and l≧1.

For n≧0, let Xn={x1,x2,…,xn}⊆X. For an s-term

t, its subterm t1 and an s-term t2, let t[t1←t2] denote the 

s-term obtained from t by replacing one of the occurrences 

of the subterm t1 with t2. A substitution θ: X→T+Σ(X) 

is a mapping that is an identity except for a finite sub-

set of domain X, and θ is uniquely extended to a mapping 

θ:T+Σ(X)→T+Σ(X). We write tθ to denote the result 

of applying a substitution θ to an s-term t. We sometimes 

write an s-term t containing different variables x1,…,xn 

as t[x1,…,xn]. For a substitution θ such that θ(xi)=ti

(1≦i≦n) and θ(x)=x otherwise, we write t[t1,…,tn] to 

denote t[x1,…,Xn]θ.

A macro grammar (abbreviated as mg) is a 4-tuple G=

(N,T,P,S) where N=∪k≧0 Nk is an indexed, finite alphabet 

of nonterrninals, T is a (nonindexed) finite set of ternlinals, 

and S∈N0 is the start symbol. Let Σ0=N0 ∪ T and Σk=

Nk(k≧1). P is a finite set of (production) rules of which
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shapes are:

S→ ε,or

A(x1,…,Xk)→tA where A∈Nk and tA∈T+Σ(Xk).

If S→ ε ∈P, S does not appear in the right-hand side 

of any rule. For an s-term t, its subterm t' and a rule 

A(x1,…,xk)→tA, if t' =A(t1,…,tk), then we write 

t⇒G t[t'←tAθ] where θ is the substitution defined by

θ(xi)=ti(1≦i≦k) and θ(x)=x otherwise. Let*⇒G and 

+⇒G be the reflexive-transitive closure and the transitive clo-

sure of⇒G, respectively. We will omit the subscript G if G 

is clear from the context.

Let us define L(G)={t∈T*|S*⇒G t}, called the

language generated by G. A language L is a macro language 

(abbreviated as ml) if there exists an mg G such that L=

L(G).

For an mg G=(N,T,P,S), if Nk=0 for every k>m, 

G is called an mg(m). Let A(x1,…,xk)→tA∈P be a 

rule. If each variable appears in tA at most once, the rule is 

called variable-linear (v-linear). If there exists at most one 

nonterminal in tA, the mle is called nonterminal-linear (n-

linear). If the rule is v-linear and n-linear, the rule is double-

linear. For example, A(x)→B(x)C is v-linear and not n-

linear. A(x)→B(xx) is not v-linear but n-linear. A(x)→

B(axb) is double-linear. An mg G is a vl-mg, nl-mg and l2-

mg if every rule of G is v-linear, n-linear and double-linear, 

respectively. We define vl-mg(m), nl-mg(m) and l2-mg(m) 

in a Similar Way.

Example 2. Let m be an arbitrary positive integer.

(1) Let G(m)4=(N(m)4,T(m)4,P(m)4,S) be an mg where N(m)4=

{S,A(m)} with a(S)=0 and a(A(m))=m-1,

T(m)4={ai |1≦i≦2m} and P(m)4={S→

aiA(m)(a2a3,…,a2m-2a2m-1)a2m|ε,A(m)(x1,…,xm-1)

→aiA(m)(a2x1a3,…,a2m-2 xm-1a2m-1)a2m|x1…xm-i}.

G(m)4 is an 12-mg(m-1). S⇒G4 ε and

S⇒G4 a1A(m)(a2a3,…,a2m-2a2m-1)a2m

⇒G4a21A(m)(a22a23,…,a22m-2a22m-1)a22m

*⇒G4ai1ai2…ai2m(i≧0).

Thus L(G(m)4)=L(m)1 (Example 1(2)).

(2) Let G(m)5=(N(m)5,T(m)4,P(m)5,S5) be an mg where N(m)5=

{S5,S,A(m)} with a(S5)=0, and P(m)5={S5→SS}∪

P(m)4. G(m)5 is a vl-mg (m-1) but not n-linear. L(G(m)5)=

L(m)2 (Example 1(3)).

(3) Let G6=(N6,T6,P6,S) be an mg where N5={S,A}

with a(S)=0 and a(A)=1, T6={a} and P6={S→

A(a),A(x)→A(xx)|x}. G6 is an nl-mg(1) but not v-

linear. S⇒G6 A(a)⇒G6 A(a2)⇒G6 A(a4)⇒G6….

L(G6)={a2n|n≧0}, which is not an mcfl[10],

[24].

2.3 Known Results

The following hierarchy theorem on ranks was shown by 

Rambow and Satta [18],[19].

Proposition 3. For m≧2, r≧1 except for m=2 and 

r=2,

r-MCFL(m)⊂(r+1)-MCFL(m).

2-MCFL(2)=3-MCFL(2).

For r≧2,1-MCFL(1)⊂r-MCFL(1)=(r+1)-MCFL(1).

By definition, it is. easy to see-LCFL=1-MCFL(1) and 

CFL=r-MCFL(1)(r≧2) where CFL and LCFL are the 

classes of context-free languages (cfls) and linear cfls, re-

spectively. Another hierarchy theorem on dimension was 

shown in [10],[24].

Proposition 4. For m≧1,

MCFL(m)⊂MCFL(m+1),

L(m+1)1∈1-MCFL(m+1)＼MCFL(m).

A tradeoff between dimension and rank was also inves-

tigated in[18],[19].

Proposition 5. For m≧1, r≧3 and 1≦k≦r-2,

r-MCFL(m)⊆(r-k)-MCFL((k+1)m).

As a corollary, r-MCFL(m)⊆2-MCFL((r-1)m)(m≧

1,r≧3).Thus, MCFL=2-MCFL. Also, we have LCFL=

L2-ML(0)=NL-ML(0) and CFL=VL-ML(0)=ML(0) by 

definition and TAL=VL-ML(1) by [1],[7].

Finally, we present a few closure properties.

Proposition 6.r-MCFL(m)(m≧1, r≧2), MCFL(m)

(m≧1) and r-MCFL(r≧2) are all substitution closed 

full AFLs†. 1-MCFL(m)(m≧1)is not closed under con-

catenation.

The first claim of the above proposition was shown by 

[18],[19], the second by [24], the third by [5] (as a closure 

property of tree transducers), and the last claim by [15] (as 

a closure property of EDTOL systems).

3. Normal Forms for Macro Grammars

In this section, we will discuss simplification of macro 

grammars. First, we will show that an arbitrary mg(m) G 

can be tranformed into a weakly equivalent mg G' such that 

every variable in the left-hand side of a rule also occurs in its

right-hand side (nonerasing) (Lemma 7). Next, it is shown 

that any nonerasing vl-mg(m)G can be transformed into a 

weakly equivalent mg(m) G' such that variables appear in 

ascending order of sufnxes x1,x2,…in the right-hand side 

of each rule (nonpermuting) (Lemma 8). Lastly, it is shown 

•õ A full AFL (abstract family of languages) is a class of lan-

guages closed under homomorphism, inverse homomorphism, in-

tersection with regular languages, union, concatenation and Kleene 

closure.
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that any vl-mg can be transformed into a normal form like 
Chomsky normal form for cfg. These simplifications help 
us establish the weak equivalence between subclasSes of 
MCFL and ML in the following sections.

Lemma 7. Let G be an mg(m) (rsp. vl-mg(m), nl-mg(m),
12-mg(m)). We can constmct an mg(m) (rsp. vl-mg(m), nl-
mg(m),12-mg(m)) G' that is weakly-equivalent to G and sat-
isfies the following condition: 

(Nonerasing) For each rule A(x1,…,xa(A))→tA of G', each 

variable xi (1≦i≦a(A)) appears at least once in tA.

(Proof is given in appendix.)

Lemma 8. Let G be a nonerasing vl-mg(m) (rsp.12-mg(m)). 

We can constmct a nonerasing vl-mg(m) (rsp.12-mg(m)) that 

is weakly-equivalent to G and satisfies the following condi-

tion:

(Nonpermuting) For each rule A(x1,…,xa(A))→tA of G', 

x1,…,xa(A) appear in this order from left to right in tA.

Proof. For example, assume that G has a rule A(x1,x2,x3)

→B(x2,C(x3,x1)), violating the condition. We eliminate 

this rule and add Aπ(xl,x2,x3)→B(x1,C(x2,x3)) instead 

where π is the permutation defined by π(1)=2,π(2)=3 and 

π(3)=1. Also, for each rule containing A in its right-hand 

side, say, D(x1,x2,x3)→E(A(t1,t2,t3)), eliminate the rule 

and add D(xl,x2,x3)→E(Aπ(tz(1),tπ(2),tπ(3))). This may 

require further elimination and addition of rules. In general, 

we systematically eliminate and add rules as follows.

Let G=(N,T,P,S) be a nonerasing vl-mg(m). For 

each rule A(x1,…,xa(A))→tA∈P, eliminate this rule and 

add rules as follows. For each subterm t=B(t1,…,ta(B)) 

of tA, choose an arbitrary permutation πt on{1,2,…,a(B)}. 

Let t'A be the s-term obtained from tA by replacing each t

with Bπt (tπt(1),…,tπt(a(B))) in the topdown way. Assume that 

the left to right listing of variables in t'A is xπ(1),…,xπ(a(A))・

Then add the rule Aπ(x1,…,xa(A))→t"A where t"A=

t'A[xπ-1(1),…,xπ-1(a(A))]. That is, t"A is obtained from t'A by 

replacing xπ(1),…,xπ(a(A)) with x1,…,xa(A). Add the above 

rules for every combination of permutations πt for subterms 

t of tA. Delete every rule of which right-hand side contains a 

nonterminal that does not appear as the left-hand side of any 

of the rules constructed above, and let P' be the set of the 

remaining rules. Also let N'={Aπ|∃Aπ(x1,…,xa(A))→

t"A∈P'}.

Let G'=(N',T,P',S) be the resulting mg. Obvi-

ously, G' is a vl-mg(m) if G is a vl-mg(m), and G' is an

l2-mg(m) if so is G. L(G)=L(G') can be Shown by prov-

ing that A (x1,…,xa(A))*⇒G t∈(T∪X)* if and only if 

Aπ(xπ(1),…,xπ(a(A)))*⇒G' t where A∈N, π is a permutation 

such that Aπ ∈N'. The latter can be shown by the double 

induction; the induction on the length of the derivations and 

the stmctural induction on subterms in the right-hand side 

of the applied rule for one step derivation.

Lemma 9. Let G be an mg(m). We can construct an mg(m) 

G' such that L(G')=L(G) and every rule of G' has one of 

the following shapes:

A→a(a∈T),

A(x)→x(x∈X),

A(x1,…,xa(A))→B(y1,…,ya(B)),

A(x1,…,xa(A))→B(y1,…,ya(B))・C(z1,…,za(c))
,

A(x1,…,xa(A))→B(y1,…,yi-1,C(zl,…,za(c)),

yi,…,ya(B)-1),

{y1,…,ya(B),z1,…,za(C)}⊆{x1,…,xa(A)}.

This constmction preserves nonerasing, nonpermuting and 

v-linear properties but does not always preserve n-linearity. 

G' is called a normal form mg if G' is nonerasing and non-

permuting. (Proof is given in appendix.)

4. Variable-Linear Macro Gmmmars

In-this section, we first show that VL-ML(m)⊆2-MCFL(m+

1)for every m≧0(Lemma 10). The idea is as follows. Let 

G be a vl-mg(m) that satisfies the nonerasing and nonper-

muting conditions. For a derivation

A(x1,…,xa(A))*⇒G a0 x1a1…xa(A)aa(A), (1)

variables x1,…,xa(A) are regarded as gaps In the derived 

string to be filled in. We would like to constmct a 2-

mcfg(m+1) G' weakly equivalent to G. To do so, we intro-

duce a nonterminal A with dim(A)=a(A)+1 and construct 

rules of G' so that

A*⇒G'(a0,…,aa(A)). (2)

That is, vanables x1,…,xa(A) in(1) correspond to the gaps 

between the components of the tuple derived in(2). In this

correspondence, v-linearity and the nonpermuting condition 

are essential.

Next we prove a pumping lemma for VL-ML(m)

(Lemma 12). By using the lemma, it is shown in Lemma 13 

that the inclusion VL-ML(m)⊆2-MCFL(m+1) is proper 

for every m≧1 (see the right half of Fig. 2). Note that if 

L2-ML(m-1)

1-MCFL(m)VL-ML(m-1)2-MCFL(m)

Fig. 2 Inclusion relations between classes of languages 

(*: new results).
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Fig. 3 A derivation in mg in case (5) of the proof of Lemma 10.

m=0, VL-ML(0)=2-MCFL(1)=CFL.

Finally, we discuss closure properties of VL-ML(m).

Lemma 10. Let m≧0. For a given vl-mg(m) G, we can 

constmct a 2-mcfg(m+1) G' such that L(G')=L(G).

Proof. Let G0 be a given vl-mg(m). We can assume that 

G0 is nonerasing by Lemma 8 and let G=(N,T,P,S) be 

the nonerasing vl-mg(m) obtained from G0 by Lemma 9.

We construct a 2-mefg(m+1) G'=(N,T,F,P',S) where 

dim(A)=a(A)+1(A∈N).F and P' are defined as follows:

(1) If A→a∈P,addA→a to P'.

(2) If A(x)→x∈P, add A→(ε,ε)to P'.

(3) If A(x1,…,xa(A))→B(x1,…,xa(B))∈P, add A→

id [B] to P' and id to F where id is an identity function 

id [(x1,…,xdim(A))]=(x1,…,xdim(A)).Note that since 

G is nonerasing, a(A)=a(B).

(4) If A(x1,…,xa(A))→B(x1,…,xa(B))・C(xa(B)+1,

…,xa(B)+a(c))∈P where a(A)=a(B)+a(C), add A→

f[B,C] to P' and f to F where

f[(y1,…,ydim(B)),(z1,…,zdim(c))]

=(y1,…,ydim(B)z1,…,zdim(C))].

(5) If A(x1,…,xa(A))→B(x1,…,xi, C(xi+1,…,xi+a(C)),

xi+a(C)+1,…,xa(B)+a(C)-1)∈P where a(A)=

a(B)+a(C)-1, add A→g[B,C] to P'

and g to F where g[(y1,…,ydim(B)),(z1,…,zdim(C))]

=(y1,…,yi+1z1,z2,…,zdim(C)-1,zdim(C)yi+2,yi+3,…,

ydim(B)). Exception:If a(C)=0,g[(y1,…,ydim(B)),z1]

=(y1,…,yi+1z1yi+2,…,ydim(B)).

As an example of(5), suppose.A(x1,x2,x3)→B(x1,

C(x2,x3))∈P. We construct an,mcfg rule A→

g[B,C] and a function g where g[(y1,y2,y3),(z1,z2,z3)]=

(y1,Y2z1,z2,z3Y3).Correspondence between the mg rule and 

function g is depicted in Fig.3.

We can show that A(x1,…,xa(A))*⇒G a0x1…xa(A)

αa(A) if and only if A*⇒G'(α0,…,αa(A)) for every A∈N

and αi∈T*(0≦i≦a(A)).

As noted in Sect. 2.1, the degree of an r-mcfg(m) is 

not greater than(r+1)m. Thus, We obtain the following 

corollary from Proposition 2 and Lemma 10.

Corollary 11. Let G be a vl-mg(m). For a given w∈T*, 

whether w∈L(G) or not can be decided in O(n3(m+1))time 

where n=|w|.

To establish the proper inclusion of VL-ML(m) in 2-

MCFL(m+1), we use the following language:

RSP(m)={ai1ai2bj1bj2…ai2
m-1ai2mbj2m-1bj2m|

i,f≧0}.

It is shown in[24]that RSP(2)∈2-MCFL(2)＼TAL.

Since TAL=VL-ML(1), RSP(2)∈2-MCFL(2)＼VL-ML(1).

Here we show that RSP(m)∈2-MCFL(m)＼VL-ML(m-1)

for every m≧2. First, we prove a pumping lemma for VL-

ML(m-1).

Lemma 12 (Pumping lemma for VL-ML(m-1)). Let L be 

a vl-ml(m-1)(m≧2). Assume that, for a given n≧0

there exists α in L such that |α|a≧n for every a∈T. Then, 

there exists a constant M≧0 depending only on L, such 

that for any n≧0 there exists z in L satisfying the following 

conditions (1) and (2):

(1) For each a∈T, |z|a≧n and

(2) z can be written as z=u1v1w1s1u2v2w2s2u3…

umvmwmsmum+1 where Σmj=1|vjSj|≧1 and Σmj=2|uj|≦

M,and for any i≧0,

zi=u1vi1w1si1u2vi2w2si2u3…umvimwmSimum+1∈L.

Proof sketch.(See appendix for detailed proof.)Let G0 be 

an mg(m-1) and let G=(N,T,F,P,S) be a 2-mcfg(m)

constructed from G0 in the proof of Lemma 10 such that 

L(G)=L(G0). Without loss of generality, we assume that G 

satisfies conditions (N1) through (N3) in Lemma 1. Let n be 

a nonnegative integer. By the assumption, there. exists α in L 

satisfying that (1)|α|a≧n for each a∈T and (2) |α|≧2|N|+1.

Let t0 be a derivation tree of a. There exists a path p from 

the root r to a leaf in t0 such that the number of the nodes on 

p which has two children is at least log2|α|=|N|+1by the

assumption |α|≧2|N|+1.Therefore, there exist distinct nodes 

v and v' on p with a same label (say, A∈N) which have 

two children. The proof is similar to that of Lemma 4.14 

of [24]. If we repeat the path between v' and v sufficiently 

large number of times, we obtain a derivation tree t of a 

string z that can be divided as claimed in the lemma. The 

crucial point is that when we determine such a path p, for 

each node v on the path, we can select a child of v so that 

Σmj=2|uj| is not greater than some constant depending only 

on L.

Assumption “∀n≧0,∃ α ∈L,∀a∈T:|α|a≧n”

and claim (1) of Lemma 12 are needed for the proof of 

Lemma 13. Lemma 19 contains the same assumption and 

claim for the proof of Theorem 20.

Lemma 13. For m≧2, RSP(m)∈2-MCFL(m)＼VL-

ML(m-1).

Proof. (RSP(m)∈2-MCFL(m))The following 2-mcfg(m) G

generates RSP(m):

・S→g[A,B] where 

g[(x1,…,xm),(y1,…,ym)]=x1y1…xmym.
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・A→fA[A]|(ε,…,ε) where

fA[(x1,…,xm)]=(a1x1a2,…,a2m-1xma2m).

・B→fB[B]|(ε,…,ε) where 

fB[(x1,…,xm)]=(b1x1b2,…,b2m-1xmb2m).

(RSP(m)∈VL-ML(m-1)) Assume that RSP(m)∈VL-

ML(m-1). Then, RSP(m) satisfies the condition of 

Lemma 12. For the constant M in the lemma, let z be 

z=aq1aq2br1hr2…aq2m -1aq2mbr2m-1br2m

(q,r>M/(2m-2)).

Divide z as

z=u1v1w1s1u2v2w2s2m3…umvmwmsmum+1.

The conditionΣmj
=1|vjsj|≧1 and u1vi1w1si1u2vi2w2si2u3…

umvimwmsimum+1∈RSP(m) for all i≧0 holds only if

(1) v1=aj1,s1=aj2,…,vm=aj2m-1, sm=aj2m

(1≦j≦q),or

(2) v1=bj1,s1=bj2,…,Vm=bj2m-1,sm=bj2m

(1≦j≦r).

However, neither (a) nor(b) satisfies Σmj=2|uj|≦M.

Theorem 14. For each m≧0, VL-ML(m)⊆2-MCFL(m+

1).When m≧1, the inclusion is proper. When m=0,

VL-ML(0)=2-MCFL(1)=CFL.

Next, we present closure properties of VL-ML (m).

Theorem 15. For m≧0, VL-ML(m) is a subetitution closed 

full AFL. VL-ML(m) is not closed under intersection.

Proof. For the first claim, it suffices to show that VL-ML(m)

contains all regular languages and is closed under intersec-

tion with regular languages and substitution by Theorem

3.3 of [16]. First, VL-ML(0)=CFL and hence every VL-

ML(m) contains all regular languages.

(intersection with regular languages) Let G=(N,T,P,S) be 

anormal form vl-mg(m) and M=(Q,T,δ,q1,QF)be a de-

terministic finite automaton where Q,T,δ:Q×T→Q,

q1∈Q and QF⊆Q are a finite set of states, a finite 

set of input symbols, a state transition function, an initial 

state and a set of final states, respectively. Let L(M) de-

note the language accepted by M. We constmct a vl-mg(m) 

G'=(N',T,P',S') that generates L(G)∩L(M) as follows:

(1) N'={A[q00, q01;…;9a(A)0,qa(A)1]|

A∈N and qij∈Q (0≦i≦d(A), j=0,1)}.

(2) P' consists of the following rules:

(a) S0→S[qI,qF] for qF∈QF.

(b) A[(q00,q01]→a ifA→a and δ(q00,a)=q01.

(c) A[q00,q01;q10,q11]→a if A(x)→x and qij∈Q

(0≦i,j≦1).

The other rules are bothersome, hence we present 

them by examples. See Fig.4.

Fig. 4 Constmction of vl-mg rules in the proof of Theorem 15.

(d) A[q00,q01;q10,q11;q20,q21;q30,q31](x1,x2,x3)→

B[q00,q01;q10,q11;q20,q](x1,x2).C[q,q21;q30,

q31](x3)if A(x1,x2,x3)→B(x1,x2)・C(x3)∈P

and qij, q∈Q(0≦i≦3, j=0,1).

(e) A[q00,q01;q10,q11;q20,q21;q30,q31](x1,x2,x3)→

B[q00,q01;q10,q;q',q21;q30,q31](x1,C[q, q11;q20,

9'](x2),x3)ifA(x1,x2,x3)→B(x1,C(x2),x3)∈P

and qij,q,q'∈Q(0≦i≦3,j=0,1).

We can show by induction on the length of the derivations 

and transitions that A[q00,q01;…;(qa(A)0, qa(A)1](x1,…,

xa(A))*⇒G' α0x1…xa(A)αa(A) if and only if A (x1,…,xa(A))

⇒G α0x1…xa(A)αa(A) and δ(qi0,αi)=qi1(0≦i≦a(A)).

(substitution) Let G=(N,T,P,S), Ga=(Na,Ta,Pa,Sa)

(a∈T)be vl-mg(m)s where any two of N and N2(a∈T)

share no nonterminal. Let G'=(N∪ ∪a∈TNa, ∪a∈TTa, P'∪

∪a∈TPa,S) where P'={A(x1,…,xa(A))→t'A|

A(x1,…,xa(A))→tA∈P and t'A is obtained from tA by 

replacing a∈T with Sa}. It is easy to see that . G' is a vl-

mg(m) such that L(G')=S(L(G)) where s is the substitution 

defined by s(a)=L(Ga) for a∈T.

(intersection) Let L={an11an22…an22m+3|n1,n2≧0} and 

L'={an11…an12
m+2an22m+3|n1,n2≧0}. We can easily give 

vl-mg(m)s G and G' such that L(G)=L and L(G')=L' by 

observing L={an1|n≧0}.h(L(m+1)1),L'=L(m+1)1・{an2m+3|

n≧0} and L(m+1)1∈VL-ML(m) where h is the homomor-

phism such that h(ai)=ai+1(1≦i≦2m+2). On the

other hand,
, L∩L'={an1…an2m+3|n≧0}∈VL-ML(m)⊆

2-MCFL(m+1)[10], [24].

5. Double-Linear Macro Grammars

In this section, we show that L2-ML(m)=1-MCFL(m+1)

⊂VL-ML(m) for every m≧0(see the left half of Fig.2).

First, we prove L2-ML(m)=1-MCFL(m+1) in Theorem 17.

Unfortunately, the construction in the proof of Lemma 9 

does not preserve n-linearity since new nonterminals may 

be introduced in the right-hand side of a rule during the 

constmction. Hence, we directly translate a given 12-mg(m) 

into a weakly equivalent 1-mcfg(m+1). For the other di-

rection, we will introduce a nonpermuting condition for 1-

mcfg (Lemma 16). Next, we provide a pumping lemma for 

L2-ML(m)(Lemma 19), which implies the proper inclusion
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L2-ML(m)⊂VL-ML(m) (Theorem 20).

Lemma 16. Let G=(N,T,F,P,S)be a nonerasing 1-

mcfg(m). We can constmct a 1-mcfg(m) that is weakly 

equivalent to G and satisfies the following condition:

(Nonpermuting) Let f:(T*)d1→(T*)d0 be an arbitrary 

function in F defined by (see(F) in Sect. 2.1):

f[(x1,…,xd1)]=(α1,α2,…,αd0).

Variables x1,…,xdi appear in this order from left to right in 

α1α2… αd0.

Proof. Similar to the proof of Lemma 8.

Theorem 17. For each m≧0, L2-ML(m)=1-MCFL(m+1).

Proof. (L2-ML(m)⊆1-MCFL(m+1)) Let G=(N,T,P,S)

be an arbitrary 12-mg(m). Without loss of generality, we 

assume that-G is nonerasing and nonpemuting by Lem-

mas 7 and 8. From G, we construct a 1-mcfg(m+1) 

G'=(N,T,F,P',S)as follows. Let A(x1,…,xa(A))→tA

be an arbitrary rule of G. Since G is n-linear, tA can be 

written as tA=αB(β1,…,βa(B))γ where α,βi(1≦i≦

a(B)),γ ∈(T∪X)*. Let Ω1,…,Ωa(B)+1 be new symbols. 

Since G is nonerasing and nonpemuting, there exist strings

δj∈(T∪{Ω1…,Ωa(B)+1})* for 0≦j≦a(A)such that

αΩ1β1Ω2… βa(B)Ωa(B)+1γ=δ0x1δ1x2…xa(A)δa(A).

We add the following function and rule to F and P', respec-

tively:

A→f[B]

f[(x1,…,xa(B)+1)]=(δ'0…,δ'a(A))

where for 0≦j≦a(A),δ'j is obtained from δi by replacing 

Ωi with xi (1≦i≦a(B)+1). For example, if there exlsts 

a rule A(x1,x2,x3,x4)→aB(bx1c,x2x3d)x4e in P, add the 

following f to F and add A→f[B]to P' 

f [(x1,x2,x3)]=(ax1b, cx2,ε,dx3,e).

By induction on the length of thederivations, we can show 

that A (x1,…,xa(A))*⇒G α0x1…xa(A)αa(A) if and only if 

A*⇒G'(α0,…,αa(A))where αi∈T* (0≦i≦a(A)).

(1-MCFL(m+1)⊆L2-ML(m))Let G=(N,T,F,P,S) be a 

nonerasing and nonpermuting 1-mcfg(m+1) due to Lem-

mas 1 and 16, We construct an 12-mg(m) G'=(N,T,P',S)

in a similar way to the above proof. Let A→f[B]∈P be 

an arbitrary rule where 

f[(x1,…,xdim(B))]=(α1,…,αdim(A)).

Let Δ1,…,Δdim(A)-1 be new symbols. Since G is nonerasing 

and rionpermuting, there exist ξj∈(T∪{Δ1,…,Δdim(A)-1})*

for O≦j≦dim(B) such that 

α1Δ1α2…Δdim(A)-iαdim(A)

=ξ0x1ξ1…xdim(B)ξdim(B).

Add the following rule to P':

A(x1,…,xdim(A)-1)

=ξ'0B(ξ'1,…,ξ'dim(B)-1)ξ'dim(B)

where for 0≦j≦dim(B), ξ'j is obtained from ξj by replac-

ing Δi with xi(1≦i≦dim(A)-1), The formal proof is 

similar to that of L2-ML(m)⊆1-MCFL(m+1).

Similar to the case of vl-mg(m), we obtain the follow-

ing corollary from Proposition 2 and Theorem 17.

Corollary 18. Let G be an 12-mg(m). For a given w∈T*,

whether w∈L(G) or not can be decided in O(n2(m+1)) time 

where n=|w|.

Next, We present a pumping lemma for 1-MCFL(m)=

L2-ML(m-1).

Lemma 19 (Pumping lemma for 1-MCFL(m)). Let L be a 

1-mcfl(m). Assume that, for a given n≧0 there exists α 

in L such that|α|a≧n for every a∈T. Then, there exists 

a constant M≧0 depending only on L, such that for any 

n≧0 there exists z in L satisfying the following conditions 

(1) and (2):

(1) For each a∈T, |z|a≧n and

(2) z can be written as z=u1v1w1s1u2v2w2s2u3…

umvmwmsmum+1 whereΣmj=1『vjsj|≧1andΣmj=1|ujvjsj|

+|um+1|≦M, and for any i≧0,

zi=u1Vi1mSi1u2vi2w2Si2u3・umvimwmsi,um+1∈L.

(Proof is given in appendix.) Choose a path for pumping as 

close as possible to the root as is in a proof of the pumping 

lemma for LCFL.

Theorem 20. For m≧1,L(m)2∈VL-ML(m-1)＼L2-ML

(m-1).

Proof. Remember that G5 in Example 2(2) is a vl-

mg(m-1) such that L(G5)=L(m)2.Next, we show 

that L(m)2∈L2-ML(m-1). Suppose L(m)2∈L2-ML(m-

1)=1-MCFL(m). Then L(m)2 satisfies the condition of 

Lemma 19. Let M be the constant of the lemma and 

let z be z=aq1…aq2mbr1…br2m(q,r>M/2m).Di-

vide z as z=u1v1w1s1u2v2w2s2u3…umvmwmsmum+1. The 

condition Σmj=1|vjsj|≧1 and zi=u1vi1w1si2u2vi2w2si2u3

…umvimwmsimum+1∈L for all i≧0 holds only if 

(1) v1=aj1,s1=aj2,…,vm=aj2m-i, sm=aj2m

(1≦j≦q),or

(2) v1=bj1, s1=bj2,…,vm=bj2m-1, sm=bj2m

(1≦j≦r).

However, neither(a) nor (b) satisfies Σmj=1|ujvjsj|+|um+1|≦

M.



SEKI and KATO: ON THE GENERATIVE POWER OF MULTIPLE CONTEXT FREE GRAMMARS AND MACRO GRAMMARS 

217

6. Conclusion

In this paper, we compared the generative power of multi-

ple context-free grammars with that of variable-linear macro 

grammars. Equivalent transformations between mcfg and 

vl-mg were established by taking the eorrespondence be-

tween arguments of nonterminals in vl-mg and gaps be-

tween components of tuples derived in mcfg . In Theorem 

6.3 of [5], a different transformation was used so that we can 

take the correspondence between arguments of, nonterminals 

in vl-mg and components of tuples derived in mcfg. For ex-

ample, an mg S→A(qb,cd),A(x1,x2)→A(ax1b, cx2d)|

x1x2 is transformed. into an mcfg S→c[A], A→g[A]|

(ab,cd), c[(x1,x2)]=x1x2, g[(x1,x2)]=(axib, cx2d) and 

vice versa. A derivation in an mg G corresponds to the re-

verse of a derivation in mcfg G' constructed from G by this 

transformation. From this reason, the transformation in [5] 

can Work only for nl-mg or 1-mcfg .
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ApPendix: Supplementary Proofs

A.1 Proof of Lemma 7

Let A(x1,…,xa(A))→tA be a rule that does not satisfy the 

condition. Let Ψ ⊆{1,2,…,a(A)} be such that i∈ Ψ if and 

only if xi does not appear in tA. Let i1,…,ia(A)-|Ψ| be the 

listing in the ascending order of variable suffixes of the set 

{1,2,…,a(A)}＼ Ψ. Add a new nonterminal AΨ with a(AΨ)=

a(A)-|Ψ| and add a rule

AΨ(x1,…,xa(A)-|Ψ|)→t'A

Where t'A is obtained from tA by replacing xi1,…,xia(A)-|Ψ|
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with x1,…,xa(A)-|Ψ|. For each rule B(x1,…,xa(B))→tB

where tB contains A, add a rule 

B(ｘ1,…,Xa(B))→t'B

where t'B is obtained from tB by replacing each subterm 

A(ti,…,ta(B))with AΨ(ti1,…,ti
α(A)-|Ψ|). Remove the rule 

A(x1,…,xa(A))→tA.

Repeat the above procedure Until every rule satisfies 

the noneraSing condition. The procedure always halts since 

the cardinality of Ψ is bounded by a(A). Also, we only add 

nonterminals AΨ with arity less than that of A. Hence, if G 

is an mg(m) (rsp. vl-mg(m), nl-mg(m)), so is G'.

A.2 Proof of Lemma 9

A.2.1 Preliminaries

Before proceeding with the proof, we need a technical defi-

nition on the shape of s-terms.

・S-terms t1,…,tl are balanced if either

-tj∈X for 1≦j≦l
, or

-tj=Bj1(tj11
,…,tj1a(Bj1))…Bjsj(tjsj1,…,

tjsja(Bjsj))where Bjk∈N and tjk1,…,tjka(Bjk)are

balanced for 1≦j≦1 and 1≦k≦sj.

・An s-term t is in weak normal form if either

-t∈X∪T
,

-t=t1…tl where l≧2 and t1,…,tl are balanced 

and not variables, or 

-t=A(ti,…,ta(A))(A∈N) where tl,… …,ta(A)are

balanced.

For example, a(∈T)and A(x,y)and B(C(z,x),D(A(x))

E(y))are all in weak normal form. Neither xy nor A(B(x),y)

nor A(x,a,y)is in weak normal form.

A.2.2 Transformation

For a given mg G, construct an mg G' from G by the fbllow-

ing Procedure.

(Step 1) Each subterm t of the right-hand side of a rule in 

G is transformed into an s-term in weak normal form as fol-

lows: Each rule A(x1,…,xa(A))→tA with tA∈X∪T is

replaced with the rule A(x1,…,xa(A))→Trans(tA)and the

auxiliary rules generated by Trans(tA).

Trans(t):

・t=x∈X:Trans(x)=I(x)where I is a new nontermi-

nal. Add I(x)→x as an auxiliary rule.

・t=a∈T:Trans(α)=[a]where[a]is a new nontermi-

nal. Add[a]→a as an auxiliary rule.

・t=t1…tl(1≧2):Trans(t)=Trans(t1)…Trans(tl).

・t=A(xi1,…,Xia(A)):Trans(t)=t.

・t=A(t1,…,ta(A))with at least one ti not a variable:

Tran s(t)=A(Trans(t1),…,Trans(ta(A))).

(Step 2) Since the right-hand side of each rule is 

in weak normal form by (Step 1), if a rule has a 

shape that is not permitted by a normal form mg, 

then the rule can be written as A(x1,…,xa(A))→

B1(t11,…,t1a(B1))…Bs(ts1,…,tsa(B
s))(s≧2), This rule is 

replaced with the following rule:

A(x1,…,xa(A))→ α1… αs (A・1)

where for 1≦i≦s,

(a)αi=Bi(ti1,…,tia(Bi))if all tij(1≦j≦a(Bi))are vari-

ables,

(b)αi=B'i(xi1,…,xili)othetwise, where xi1,…,xili∈

{x1,…,xα(A)}, are the variables appearing in ti1,…,

tia(Bi), arranged without duplication in the order of their 

(first) occurrences from left to right, and B'i is a new 

nonterminal with a(B'i)=li.

In case (b) above, the following rules are also added. Since 

each tij(1≦j≦a(Bi))is in weak normal form by(Step 1),

tij has the shape of Cj1(sj11,…,sj1a(Cj1))…Cjnj(sjnj1,…,

sjnja(Cjnj))where sjkl is an s-term for 1≦k≦nj and 1≦

1≦a(Cjk).Let yj1,…,Yimj∈{x1,…,xa(A)}be the variables 

appearing in tij, arranged without duplication from left to 

right. Let θ be the sub stitution that renames xij by xj(1≦

j≦ α(B'i)).

B'i(x1,…,xa(B'i))

→Bi(C'1(yii,…,y1m1)…C'a(Bi)(ya(Bi)1,…,

ya(Bi)mα(Bi)))θ, (A・2)

C'j(x1,…,xα(C'j))

→Cj1(Sj11,…,Sj1α(Cj1))…Cjnj(Sjnj1,…,

sjnja(cjn
j))θj(1≦j≦a(Bi)) (A・3)

where C'j is a new nonterminal with α(C'j)=mj and θj is 

the sub stitution that renames yjk by xk(1≦k≦a(C'j))for 

1≦j≦a(B'i). Apply(Step 2)to the rule(A・3)repeatedly 

until all the rules have the shape of(A・1)or(A・2).

(Step 3)This step is similar to the construction of Chom-

sky 
.normal form for cfg. Each rule A(x1,…,xa(A))→

B1(x11,…x1a(B1))…Bs(xs1,…,xsa(Bs))(s≧3)obtained 

as(A・1)in(Step 2)is replaced with the following rules:

A(x1,…,xa(A))-

→B1(x11,…,x1a(B
1))・D1(y11,…,y1n1),

D1(y11,…,Y1n1)

→B2(x21,…,x2a(B
2))・D2(y21,…,y2n2),

Ds-2(y(s-2)1,…,y(s-2)ns -2)

→Bs-1(x(s-1)1,…,x(s -1)a(B(s -1)))・Bs(xs1,…,xsa(Bs))

where yj1,…,yjnj are the variables appearing in Bj+1(x(j+1)1,

…,x(j+1)a(B
j+1)),…,Bs(xs1,…xsa(Bs))arranged without
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duplication from left to right, and Dj is a new nonterminal 

with a(Dj)=nj for-1≦j≦s-2.

(Step 4). Each rule A(x1,…,xa(A))→B(C1(x11,f,x1a(c1)),

…,Ca(B)(xa(B)1,…,xa(B)a(Ca(B)))) obtained as (A・2) in

(Step 2)is replaced with the fbllowing rules:

A(x1,…,xa(A))

→E1(C1(x11,…,x1a(C1)),y11,…,y1m
1),

E1(x'1,y11,…,y1m1)

→E2(x'1,C2(x21,…,x2a(C2)),y21,…,y2m2),

…

Ea(B)-1(x'1…,x'a(B) -1,y(a(B)-1)1,…,

y(a(B)-1)Ma(B)-1)

→B(x'1,…,x'
a(B)-1,Ca(B)(xa(B)1,…,xa(B)α(Ca(B))))

where yj1,…,yjmj are the variables appearing in Cj+1(x(j+1)1,

…,x(j+1)a(cj+1)),…,Ca(B)(xa(B)1,…,xa(B)a(Ca(B))) arranged 

without duplication from left to right,x'j is a new vari-

able not in{x1,…,xa(A)}, and Ej is a new nonterminal with 

a(Ej)=j+mj for 1≦j≦a(B)-1.

In(Step 3) and (Step 4), rename variables so that the 

variables in the left-hand side of the constructed rules are 

x1,x2,…,xa(H) where H is the nonterminal in the left-hand 

side.

A.2.3 Example

We will transform the following rule to a normal form:

A(x1,x2,x3)→B(C(x3,F(x1))aH(x3),C(x1,d)・x2.

(Step 1)

Trans(B(C(x3,F(x1))aH(x3),C(x1,d))・x2)

=Trans(B(C(x3,F(x1))aH(x3),C(x1,d)))・Trans(x2)

=B(Trans(C(x3,F(x1))aH(x3)),Trans(C(x1,d)))・I(x2)

=B(C(I(x3),F(x1))[a]H(x3),C(I(x1),[d]))・I(x2).

Thus, we obtain:

A(x1,x2,x3)→B(C(I(x3),F(x1))[a]H(x3),

C(I(x1),[d]))・ Ｉ(x2), (A・4)

I(x)→x, (A・5)

[a]→a, (A・6)

[d]→d. (A・7)

(Step 2)Rule(A・4)is transformed into the following rules:

A(x1,x2,x3)→B'(x3,x1)I(x2), (A・8)

   B,(x1,x2)→B(C'1(x1,x2), C'2(x2)), (A・9)

C'1(x1,x2)→C(I(x1),F(x2))[a]H3(x1), (A・10)

C'2(x1)→C(I(x1),[d]). (A・11)

Rule(A・10)is further tran sformed as:

C'1(x1,x2)→C'(x1,x2)[a]H3(x1), (A・12)

C'(x1,x2)→C(C"1(x1),C"2(x2)), (A・13)

C"1,(x1)→I(x1), (A・14)

C"2(x1)→F(x1). (A・15)

(Step 3)Since the right-hand side of rule(A・12)is an s-term 

consisting of three terms, this rule is transfbrmed as:

C'1(x1,x2)→C'(x1,x2)D1(x1),

D1(x1)→[a]H3(x1).

(Step,4)Rules(A・9),(A・11)and(A・13)are transformed as 

follows. The constructed rules are the ones befbre renaming.

B'(x1,x2)→E1(C'1(x1,x2),x2),

E1(x'1,x2)→B(x'1,C'2(x2)),

C'2(x1)→Ei(I(x1)),

E'1(x'1)→C(x'1,[d]),

C'(x1,x2)→E"1(C"1(x1),x2),

E"1(x1,x2)→C(x1,C"2(x2)).

The obtained nlles are(A・5)-(A・8),(A・14),(A・15), and all 

the rules constructed in(Step 3)and(Step 4).

A.3 Proof of Lemma 12

Let t be a derivation tree of G. Let v and v' be intemal nodes 

in t labeled with A and A', respectively, where v' is an ances-

tor of v or v itself. A function gv
, v':(T*)dim(A)→(T*)dim(A')

is defined as follows. Let y=(y1,y2,…,ydim(A))be a vari-

able over(T*)dim(A):

(1) gv, v(y)=y

(2) Assume that v≠v'. Let v1, v2,…,vw(labeled with 

A1,A2,…,Aw,respectively)be the children of v', and 

 vi(1≦i≦w)be the child of v' on the path from v' to 

 v in t. Let. A'→f[A1,A2,…,Aw]be the rule applied 

 at v' in t, and sj be the constant string derived from 

 vj(j≠i)in t. Then

gv,v'(y)=(S1,…,Si-1,gv,vi(y),Si+1,…,Sw).

From the definition, for any a∈LG(A),

gv,v'(a)∈LG(A') (A・16)

Since G satisfies the nonerasing condition (N1) of 

Lemma 1, each variable yi is contained in one and only 

one component of gv,v'(y). Let us denote the sum of string 

lengths of components of gv,v' (y)by |gv,v'(y)|. Since G satis-

fies the conditions(N1),(N2)and(N3)of Lemma 1,if there 

exists a node which is not v and has two or more children on 

the path from v' to v in t, the following inequality holds:

|gv,v')|>dim(A). (A・17)

Let n be a nonnegative integer. Choose a string α ∈L 

and its derivation tree to as described in the proof sketch of
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Lemma 12 in Sect. 4. Assume that v is a descendant of v'. 

Let k=dim(A). Let us denote gv ,v' by g for simplicity, and 
the function obtained by compositing g i times by gi. Note 

that gi is not a value obtained by concatenating the value of 

g i times. For a function g, let us denote the jth component 

of g by gj.

Let K={1,2,•c,k}. We define a function ƒÊ from K to 

K such that if a variable yn (n•¸K) is contained in gj, then 

ƒÊ(n)=j. Let J be the maximal nonempty subset K' of K 

which satisfies the condition: if we regard ƒÊ as a function 

from K' to K (by restricting the domain), ƒÊ is a permutation 

over K'. This subset J (called the kernel) can always be 

found.

From the definition of J and the fact that the num-

ber of components of g is k, for each variable yn (n•¸J), 

yn is moved to one of the components in the kernel by 

compositing g at most (k-1) times. Therefore, if we let 

Ji={j|the jth component of gi is a constant string}, then 

Ji=Jk-1 holds for each i (i•†k). Let v=ƒÊk-1. Since v is 

also a permutation over the kernel J, there exists some in-

teger p such that the permutation obtained by compositing 

v p times is the identity permutation. Let us denote gp(k-1) 

by g for simplicity. gj(y) is a constant string of the form 

ƒÁj•¸T+if j•¸J and ƒÁj1ƒÁjƒÁj2 if j•¸J, where ƒÁj1 and ƒÁj2 

are strings over T•¾{yj|j•¸J}. Hence, for any j•¸J, 

g2j(y)=ƒÁ'j1gj(y)ƒÁ'j2, where ƒÁ'j1 and ƒÁj2 are the strings over 

T obtained from ƒÁj1 and ƒÁj2, respectively, by substituting ƒÁi 

for yi (i•¸J). For any positive integer i,

(1) if j•¸J, then

gij(y)=(ƒÁ'j1)i-1-gj(y)(ƒÁ'j2)i-1; (A•E18)

(2) otherwise,

gij(y)=ƒÁj (A•E19)

Since|g(y)|>k from (A•E17) and 

On the other hand, from the condition (N1), 

gv',r(y)=u1yh1u2yh2•cukyhkuk+1, (A•E21)

where ƒÁ is the root of t0, uh•¸T* (1•…h•…k+1) 

and (h1,h2,•c,hk) is a permutation of (1,2,•c,k). Let 

ƒÀ•¸ LG(A) be the string derived from v in t0. Then, from 

(A•E16), gi(ƒÀ)•¸LG(A), i•†0. Again from (A•E16),

gv',r(gi(ƒÀ))•¸LG(A),i•†0. (A•E22)

The iteration property of the lemma holds by (A•E18) through 

(A•E22) letting zi=gv',r(gi(ƒÀ)) for i•†0. Note that k=

dim(A)•…m.

In what follows, we evaluate the length of ƒ°kj=2|uj|. Let 

v1v2•cvs be the path from r to v'(v1=r and vs=v'). Note 

that by the translation from a given mcfg to a normal form 

mcfg given in the proof of Lemma 1 (Lemma 2.2 of [24]), 

every function f in F is either

•Ea constant function f[]=a•¸T, or

•Ea function obtained from a function defined in (3), (4) or 

(5) in the proof of Lemma 10 by deleting some (possi-

bly zero, but not all) variables in the definition of f and 

deleting the resulting components that are the empty 

strings.

For gvh+1,vh(y)=(ƒÀ1,•c,ƒÀw), let •« gvh+1 ,vh(y)=ƒÀ1•cƒÀw. By 

the above property, for each h (1•…h•…s), •« gvh+1 ,vh(y) has 
either of the the following forms:

or

Therefore, the length of u2u3•cuk is the sum of |ƒÁ0| in 

(A•E23) for each h (1•…h•…s). On the other hand, |ƒÁ0| is 

positive only if

•Ethe function appearing in the right-hand side of the 

applied rule at vh is (obtained by the translation in 

Lemma 1 from) a function constructed in (5) in the 

proof of Lemma 10, and

•E vh+1 is the first (left) child of vh.

Let such vh's be vi1,vi2,•c,vid in the order from r to v', and 

let l(v) denote the sum of the lengths of the components of 

the strings derived from the second (right) child of v; then 

ƒ°kj=2|uj|=ƒ°dj=1 l(vij).

In order to make ƒ°kj=2|uj| not greater than some constant 

depending only on L, we choose a path v1,v2,•cfrom the 

root r to v' in such a way that if the function appearing in 

the right-hand side of the applied rule at vh is constructed in 

(5) of Lemma 10, we let the next node be the second child 

of vh (if possible) in the following way. Let k denote |N|.

Let p be a path from the root r to a leaf in t0 such that 

the number of the nodes on p which have two children is at 

least k+1 and p satisfies the following conditions (such a 

path always exists in t0):

Let vh be a node on p which has two children, and 

u1 and u2 be the first and the second children of 

vh, respectively. Let j denote the number of the 

nodes which are in the sequence of nodes from r 

to vh and have two children. If there exists a path 

from u2 to a leaf such that the number of the nodes 

on the path which have two children is k+1-j or 

more, then the next node vh+1 to vh on p is u2, and 

u1 otherwise.

By the definition of p mentioned above, l(vij)•…2k-j. If we 

choose a pair v, v' of nodes having identical labels which 

have two children in such a way that v' is nearest to the root 

r among such pairs, then d•…k holds. Therefore,
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By the definition of ƒ¿ and z, va(z)•†va(ƒ¿)•†n for each n. 

Let M be 2k-2. This completes the proof.

A.4 Proof of Lemma 19

Let G=(N, T, F, P, S) be a 1-mcfg(m) that satisfies con-

ditions (N1), (N2) and (N3) in Lemma 1. Let nt(f) be 

the number of terminals appearing in the right-hand side 

of the definition of f•¸F. For example, if f[(x1,x2)]=

(ax1b,cx2d), nt(f)=4. Let nt(G)=max{nt(f)|f•¸F}. 

By the assumption, there exists ƒ¿•¸L such that (1)|ƒ¿|a•†n 

and (2) |ƒ¿|•†2nt(G)|N|+1 Let t0 be a derivation tree of ƒ¿. 

Since G is a 1-mcfg(m), t0 is just a path. We call a node 

v productive if nt(f)•†1 for the rule A•¨f[A1] applied 

at v. Thus, there exist two distinct productive nodes v and 

v' with the same label (say A) in t0. The proof proceeds 

in a similar way to that of Lemma 12. Let t be the deriva-

tion tree for z1=gv' ,r(g(ƒÀ)) in the proof of Lemma 12. If 

we let v be the node as close as possible to the root r, the 

number of nodes above v' (not including v) in t is at most 

| N|. Thus |u1u2...udim(A)+1|•…nt(G)|N|. Since the number 

of nodes between v' and v (including v' and not including v) 

in t0 is also at most |N| and t is obtained from t0 by repeat-

ing p(dim(A)-1) times the path between v' and v (see the 

proof of Lemma 12), the number of nodes between v' and 

v in t is at most |N|p(dim(A)-1). Hence, ƒ°dim(a)j=1|vjSj|=

ƒ°j• J̧EJ|ƒÁ'j1ƒÁ'j2|+ƒ°j•¸J|ƒÁj|•…nt(G)|N|p(dim(A)-1). Sum-

marizing, if we let M=nt(G)|N|(p(dim(A)-1)+1), 

ƒ°dim(A)j=1|ujvjsj|+|udim(A)+1|•… Mas desired.
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