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Abstract

There are many applications of the enumeration of maps in surfaces to other
areas of mathematics and the physical sciences. In particular, in quantum field
theory and string theory, there are many examples of occasions where it is necessary
to sum over all the Feynman graphs of a certain type. In a recent paper of Constable
et al. on pp-wave string interactions, they must sum over a class of Feynman graphs
which are equivalent to what we call (p, ¢, n)-dipoles. In this paper we perform a
combinatorial analysis that gives an exact formula for the number of (p, ¢, n)-dipoles
in the torus (genus 1) and double torus (genus 2).

1 Introduction

A map is an embedding of a graph in an orientable surface such that the deletion of the
edges decomposes the surface into regions homeomorphic to open disks. These regions
are the faces of the map. If a map has ¢ vertices, j faces and k edges, then the genus g of
the underlying surface is determined by the Euler-Poincaré formula, 2 — 2g =i — k + 7.
If M is a set containing m, maps of genus g for every g > 0, then

M(u) = Z mgu?

920

is called the genus series for M. A map is rooted by distinguishing a mutually incident
vertex and edge, and the root edge is indicated in diagrams by a directed edge whose
origin is the root vertex. Since our maps are in orientable surfaces, for any vertex v of the
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map, we can specify a cyclic list of the edges incident with v that would be encountered
in traversing the boundary of a small disk, centered at v, in the sense of the orientation
of the surface. We will assume throughout that this sense is anticlockwise. For example,
consider the map in Figure 1 with edges labelled ey, ..., es. The edges incident with the
root vertex occur in the cyclic order (e, ey, es, €3, €4, €5, €5) about the root vertex. The
edges incident with the nonroot vertex occur in the cyclic order (e, €g, €4, €5, €2, €3, €1)
about the nonroot vertex.

To define a (p, ¢, n)-dipole, let m be a rooted map with 2 vertices of degree n (with no
loops) and one other distinguished edge (indicated by a dashed edge in diagrams). Let
E~ be the set of edges occurring after the root edge, but before the dashed edge, in the
list of edges ordered about the root vertex (in an anticlockwise sense as described above).
Let ET be the set of edges occurring after the root edge, but before the dashed edge, in
the list of edges ordered about the nonroot vertex. For example, for the map in Figure 1,
E~ = {ej,eq,e3,6e4} and Bt = {eg,e4}. If |[E7| =p—1 and |ET| = ¢ — 1, then m is
a (p,q,n)-dipole. Equivalently, we could say that the dashed edge is the pth edge after
the root edge when considering the edges ordered about the root vertex, but is the gth
edge after the root edge when considering the edges ordered about the nonroot vertex.
Figure 1 gives an example of a (5,3, 7)-dipole. Since this map has 3 faces, its genus is
g=2+e—v—f)2=02+7—-2-3)/2=2.

Figure 1: A (5,3, 7)-dipole.

Let D, ,n(u) be the genus series for (p,q,n)-dipoles. By considering the symmetry
between the two vertices and the symmetry between the two distinguished edges, respec-
tively, we obtain the following relationships:

Dygn(w) = Dgpn(u), Dpgn(tt) = Dp_pn_gn(u).

So we need only find D, ,,(u) for 1 <p <qg<n—p.
Let D, (u) be the genus series for all rooted dipoles (with no other distinguished edge).
Since there are n — 1 nonroot edges which could be distinguished we observe that

1
Dy (u) = n—1 Z Dygn(uw).
1<p,q<n

Appendix A lists D, ,,(u) and D,,(u) for small values of n.
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Our interest in computing D, , ,,(u) comes out of an application to string theory. In [1],
(p, q,n)-dipoles are equivalent to a set of Feynman graphs used in the computation of a
certain two-point correlation function in free Yang-Mills theory. The purpose of their
calculation is to draw some connections between Yang-Mills theory and string theory in a
pp-wave background. In their paper, the authors obtain asymptotic results for the number
of (p,q,n)-dipoles of small genera. Here we will give an exact enumeration of (p, q,n)-
dipoles of genus 0, 1 and 2. Results for the sphere and torus are given in Section 2, and
for the double torus in Section 3. This section will conclude with a few definitions and
some pertinent background about dipoles.

Let G, represent the symmetric group on n symbols. The cycle-type of a permutation
m € &, will be described by a partition 6 = [1912%% - - -] to indicate a permutation with a;
cycles of length i for © = 1,2,.... Since the lengths of all the cycles of 7 sum to n, 6 is a
partition of n, and we write 6 - n to denote this. For this reason, the partitions of n index
the conjugacy classes of G,,. If m is a map on n edges, we describe the face-type of m by
a partition of 2n, [1/12/2...], indicating that m has f; faces of degree i for i = 1,2, .. ..

It is well-known that a map can be encoded by a pair of permutations (v, €) describing
the vertex and edge structure of the map in such a way that the cycle-type of the product
ve gives the face-type of the map. This axiomatization for combinatorial maps is described
in great detail in [5]. Jackson [3] used the character theory of the symmetric group to
count the number of ways of representing a fixed cycle of length n in &,, as a product
of permutations from specified conjugacy classes. This immediately gave the genus series
for monopoles [2] (maps with 1 vertex) and the character theoretic tools developed in [3]
led to a new approach to map enumeration that gave results for arbitrary genus [4].

Kwak and Lee [6] (and independently Rieper) used similar methods to obtain the
genus series for rooted dipoles. They accomplish this by giving a combinatorial argument
that the number of rooted dipoles on n edges with k faces is equal to the number of full
cycles m € G,, such that wm has k cycles where w is a fixed n-cycle. They then appeal to
Jackson’s result to obtain

Dy (u) = Z M u’,

g>0 (”‘2"1)

where [Z} is the (unsigned) Stirling number of the first kind and is equal to the number
of permutations in &,, with £k cycles.

Using Kwak and Lee’s encoding of a dipole and the character theoretic methods of
Jackson, we can give a slightly more detailed formula for rooted dipoles. Let x? denote
the irreducible character associated with the conjugacy class of permutations with cycle-
type 6 and let XZ denote its value at any element with cycle-type ¢. Let f? denote the
degree of x? and h? be the number of permutations with cycle-type ¢. Then the number
of rooted dipoles with n edges and face-type 2¢ = [2% 4% .. ] is

hlnlpe 1 9 ho ST
S () = S,

n! n
0Fn k>0
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[n—k,1

In [3], Jackson shows that if ¢ = [1%1292-..], then X¢ is the coefficient of z* in

n

(14 x) 1H

=1

making it very convenient to use the above formula for computation.

2 Results for the sphere and torus

The number of (p, g, n)-dipoles on the sphere is easily seen to be 1 if p+ ¢ = n and 0
otherwise. Determining the number of (p, ¢, n)-dipoles on the torus is more interesting,
and still involves considering these two cases separately. We begin with the case p+q <n
and then look at p + ¢ = n. Of course, p + ¢ > n is determined by symmetry.

Proposition 2.1 If p+ q < n, then the number of (p, q,n)-dipoles of genus 1 is

p—1 q—b
paln—p—a) + 3 (p - ( )
b=1

Proof: Genus 1 dipoles have 2 + ¢ — v — 29 = n — 2 faces. Since for any dipole every
face has an even number of edges, this implies that genus 1 dipoles must have face-type
[27736] or [2771 42,

Figure 2(a) shows a dipole on n edges with face-type [2"73 6], where the gray region
labelled ‘a’ represents a edges that do not cross each other, the gray region labelled ‘b’
represents b edges that do not cross each other, and so on. That is, if @ > 2 then the gray
region labelled ‘a’ represents a — 1 digons, etc. Notice that a+b+c+d =n —1, and that
a,d>0and b,c > 1.

_______)_____
(@)
Q
@)
—— e e — — — —
o
~
o

Figure 2: Rooted dipole, (p, ¢, n)-dipole with face-type [2"736].

If the distinguished (dashed) edge of a (p,q,n)-dipole is one of the edges that are
represented by the gray region labelled ‘a’ or ‘d’, we have p + ¢ = n. Also, if the distin-
guished edge is one of the edges that are represented by the gray region labelled ‘¢’, we
have p+q > n. Hence we need only look at the case where the distinguished edge is one of
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the edges represented by the gray region labelled ‘b’. Figure 2(b) shows a (p, ¢, n)-dipole
with face-type [2"73 6] and the property that p + q < n.

Notice that here a + by + by + ¢+ d = n — 2, and that a, by, by, d > 0 and ¢ > 1. Since
a+b; =p—1and d+ by = q— 1, there are p choices for (a,b;) and ¢ choices for (bs, d)
with ¢ then being determined. So the number of (p, ¢, n)-dipoles of this form is pgq.

Now let us consider dipoles with face-type [2"7*4?], as shown in Figure 3(a). Here
we must have b, ¢,d > 1. Furthermore, the only locations for the distinguished edge that
produce p + ¢ < n are among the edges represented by the gray regions labelled ‘b’ and
¢’, and the latter only if b < d.

i e N7 T
e | e bj |
| ' | '
ld a : ld a |
+ & + &
| d | | d |
[ € | [ € |
| | | |
| | | |
| b $ | | bo 73, NS |
L L ———_4 _/_/,.,______l

Figure 3: Rooted dipole, (p, q,n)-dipole with face-type [2773 42].

First suppose that the distinguished edge is located as depicted in Figure 3(b). Then
a+by+by+c+d+e=n—2with a,b;,bs,e >0 and ¢,d > 1. Since a +b; =p — 1 and
e+ by = q — 1, there are p choices for (a, by), ¢ choices for (b, e), and c+d=n—p —q.
Hence there are n — p — ¢ — 1 choices for (¢, d). So the number of (p, ¢, n)-dipoles of this
form is pg(n —p—q—1).

If the distinguished edge is one of the edges that are represented by the gray region
labelled ‘¢’ in Figure 3(a), then suppose that ¢; of the edges in this region precede the
distinguished edge and ¢y edges follow it as we travel in an anticlockwise direction about
the root vertex. (The is in analogy with the definition of b1, by in Figure 3(b).) Then
a+b+ci+et+d+e=n—2witha,ci,ce,e >0and b,d > 1. Since a+b+c; =p—1 and
e+ b+ cy = q— 1, there are p — b choices for (a,c;) and ¢ — b choices for (cs, €), for any
fixed choice of b. Since b must be less than both p and ¢, the number of (p, ¢, n)-dipoles

of this form is
p—1 q— b

Therefore, there are a total of

p—1 S pl q—b
pg+pan—p—qg—1)+» (p— ( )—pqn— —q)+ ( )
b=1 b=1

(p, q,n)-dipoles with the property that p+ ¢ <n. ©

For the p + g = n case, we will make use of the following well-known lemma.
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Lemma 2.2 For positive integers n, k, there are (Z) solutions to the equation
r+yi+ - F Y +z=n—1,
where x, z are nonnegative integers and y; is a positive integer foriv=1,... k.

Proposition 2.3 If p+ q = n, then the number of (p,q,n)-dipoles of genus 1 is

(1) (30 Son ()
4 .

b=1
Proof: Again, we need only consider those dipoles that have face-type [2"736] or
(2771 4%]. Let us begin with face-type [2"726]. As seen in Figure 2(a), if the distin-
guished edge is one of the edges that are represented by the gray regions labelled ‘a’ or
‘d’, we have p+ q¢ = n.

If the distinguished edge is located among the edges represented by the gray region
labelled ‘a’ in Figure 2(a), then suppose that a; of the edges in this region precede the
distinguished edge and as edges follow it as we travel in an anticlockwise direction about
the root vertex. Then a; =p—1and d+b+c+as = q¢—1 with a;,a2,d > 0 and b,c > 1.
So there are (g) choices for (d, b, ¢, as), by Lemma 2.2 and the choice of a; is fixed. Hence
there are (g) (p, q,n)-dipoles of this type. Similarly, there are (é’) (p, q,n)-dipoles such
that the distinguished edge is located among the edges represented by the gray region
labelled ‘d’ in Figure 2(a).

For face-type [2"7*42], we see in Figure 3(a) that there are 3 possible locations for the
distinguished edge that yield p + ¢ = n, namely among the edges represented by the gray
regions labelled ‘a’, ‘€’, or ‘¢’, and the latter only if b = d.

If the distinguished edge is located among the edges represented by the gray region
labelled ‘a’ in Figure 3(a), then we can define aq, as just as we did in the previous case
and find the number of (p, ¢, n)-dipoles of this type is given by the number of solutions to
the equation e4+b+c+d+as = ¢—1 where b,c,d > 1 and e, ay > 0. By Lemma 2.2, this
is (?). Similarly, there are (%) (p, ¢, n)-dipoles such that the distinguished edge is located
among the edges represented by the gray region labelled ‘e’ in Figure 3(a).

Finally, if the distinguished edge is located among the edges represented by the gray
region labelled ‘¢’ in Figure 3(a), then we find that there

("))
b:l
(p, q,n)-dipoles of this type using the exact same reasoning as for the p + ¢ < n case.
Therefore there are a total of

() () () () - Zon()
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-1
p+1 g+1\ < q—0b
b=1
genus 1 (p, g, n)-dipoles such that p+¢=mn. O

By symmetry, we need only consider p < ¢, so we can simplify Zﬁ;ll(p —b) (qzb) and
conclude that for p < ¢, the number of (p, ¢, n)-dipoles on the torus is

plp—1)B3¢—p—1)

pg(n—p—q)+ 5 , if p+q<mn;
+1 +1 ~1DBg—p—1) .
<p4 )+<q4 )+p(p )(6q P~ pig=n

3 Results for the double torus

The method used to count (p, ¢, n)-dipoles of genus 1 can be used, in principle, to obtain
formulae for genus 2, 3, ..., but it soon becomes unfeasible to try to deal with all of
the cases that arise. To convince ourselves that our procedure generalizes in a natural
way, we carried it out to solve the genus 2 case. In this section we present our results for
the double torus followed by a description of the steps taken to obtain them. Since the
method required dealing with over 100 similar cases, we look at only one typical case and
conclude with an interesting observation about some of the other cases.

Proposition 3.1 If p+ q < n, then the number of (p,q,n)-dipoles of genus 2 is

f—zpq(n—p—Q)((n_g_l) (2 (n_};_q) +(q—2)(q+1))
(T (T re-204)) +§<p—i><q—i>(”;i)

rpoe(" T - D= - - p-a-2)

p q 1 .4 11 .3 1.3 1.2 1.22 , 1.2
—<3)(3n<3)+@p—@p TP dt P P TPy
17,2 o1 1, 3, 43 7 2,33 17 1 4, 3
T 5P — 130P4 — 7P9 t o5 P T30 T 74 — 59— 354 +£)-

Proof: Since genus 2 dipoles on n edges have 2 +e — v — 29 = n — 4 faces, we look
at the five possible face-types for rooted dipoles that have n — 4 faces, namely [102"77],
(842776, [6%2775], [64%22"7] and [4*2"78]. Table 1 lists the number of distinct rooted
dipoles with no digons for each of these face-types.

Since the procedure we used is the same for each face-type, we only look at one. Let us
consider face-type [622"7%]. When we multiply all cycles of length 6 in G4 with (123456),
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Face-type | No. of rooted dipoles
[10] 8
[84] 24
62] 12
6 42] 49
[44] 21

Table 1: Genus 2 dipoles with no digons.

we find that there are 12 that yield a product that consists of two 3-cycles. These 12
permutations represent the only rooted dipoles on 6 edges with 2 faces of degree 6. A
dipole on n edges of face-type [6%2"7%] can now be constructed by replacing the edges
of these dipoles with face-type [6%] with multiple non-crossing edges. Because of the
awkwardness of the polygonal representation of the double torus, we return to the type
of diagram used in Figure 1. Figure 4 shows a rooted dipole on 6 edges with face-type
(6], and Figure 5 shows the same dipole, now on n edges, where the gray edges represent
groupings of edges that do not cross each other. As in Proposition 2.1, we distinguish the
rooted edge from the others by adding an edge on both sides of the rooted edge for the
digons that follow this edge.

Figure 4: Rooted dipole with face-type [62].
y “‘ g
‘ f

Figure 5: Rooted dipole with face-type [62 2"7°].
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Notice that it is possible for the two (light) gray edges adjacent to the rooted edge to
represent no edges at all, as in the case n = 6, but all the other gray edges must represent
at least one edge. Of course, the total number of edges represented by the gray edges
must be n — 1. Now, since this gives us seven possible groupings of digons in which the
second distinguished, or dashed, edge could be found, we must consider these seven cases
separately. Of course, we consider only the cases that yield p+ ¢ < n. As with the rooted
edge, we want to distinguish the dashed edge from the others, so we add a gray edge on
both sides of the dashed edge for the digons that follow this edge. Again, it is possible for
these two gray edges to represent no edges at all. For each of the applicable cases, we use
the same techniques we used in the proof of Proposition 2.1 to calculate the number of
(p, g, n)-dipoles that are equivalent to our underlying case, that is, the number of (p, ¢, n)-
dipoles that, when each grouping of digons is replaced by one edge, are identical to our
given case.

For the dipole in Figure 5, if the distinguished edge is among the group of edges
labelled ‘a’ or ‘b’, we have the case p + ¢ = n, and if it is among the edges labelled ‘¢g’,
we have the case p 4+ ¢ > n. So for (p,q,n)-dipoles with p + g < n, we look at the cases
where the distinguished edge is among the edges labelled ‘¢’,'d’,‘¢’, or ‘ f’. Figure 6 shows
the case where the distinguished edge is among the edges labelled ‘c’.

X

Figure 6: (p, ¢, n)-dipole with face-type [622"79].
Here we have b+c¢; =p—1land a+ f +d+ e+ co = ¢ — 1, and since we know that
a+b+ci+cet+d+e+ f+g=n—2, wealso have g =n—p—gq. Since a,b,c1,co > 0 and

d,e, f,g > 1, Lemma 2.2 gives the number of (p, ¢, n)-dipoles such that the distinguished
edge is among the edges labelled ‘¢’ is
D q
1)

Using a similar analysis, we calculate that there are

EEC )
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(p, q,n)-dipoles such that the distinguished edge is among the edges labelled ‘d’, and

(1)

(p, g, n)-dipoles such that the distinguished edge is among the edges labelled ‘ f’.

The case where the distinguished edge is among the edges labelled ‘e’ is a little different
because here the group of edges labelled ‘d’ contributes to both p and ¢. We account
for this by summing over the possible number of edges labelled d. Labelling ‘e;” and
‘ep” analogous to ‘c;’ and ‘cy’ in Figure 6, we have that b+ c+¢e¢; = p—d—1 and
a+ f4+e =q—d—1and g =n—p—gq. If welet i = d, then since ¢, f > 1 and
a,b, ey, es > 0, we appeal once more to Lemma 2.2 to get that there are

> (7))

(p, g, n)-dipoles such that the distinguished edge is among the edges labelled ‘e’.

A very similar calculation is performed for each of the 114 rooted dipoles referred to
in Table 1. To arrive at our final result, we added the equations obtained for each such
case, and then simplified that sum. O

It is important to note that each case must be handled separately. The relevant
calculations don’t just depend on face-type. For example, consider the two dipoles in
Figure 7. Although both of these dipoles have face-type [6%2" 5] and if we let n = 6, both

Figure 7: Two (p, q,n)-dipoles with face-type [622"79].

have p = 3 and ¢ = 3, they yield different equations. There are
> ("))
, 2 2
i>1

(p, q,n)-dipoles of the first type, and

;(pzi)czi)(n—p—;}—lJri)(i_l)

(p, q,n)-dipoles of the second type. In fact, even when considering different rootings of
the same dipole, we can obtain different expressions for the number of (p, ¢, n)-dipoles
obtained by adding digons in all possible ways.
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Proposition 3.2 If p+ q = n, then the number of (p,q,n)-dipoles of genus 2 is

Ll 5 1552 Lt g2y
336< - )(21p 155p +338p+456)+8( 6 )(3(] q—6)

1
+ 5ggg P4 (P — 1) (84p°¢ — 132p° — 281 p’g + 5p°¢” + 10 p°¢” + 458 p* — 102p

— 210 pg® 4 209 pg + 55 pg® + 214 ¢ + 440 ¢* — 692 — 310¢° + 60 ¢*) .

We obtain this result using the same method as that used for Proposition 3.1, except
that now we look at cases that yield p + ¢ = n.

It should be noted that all of the results in this paper have been carefully checked.
This is especially important for Propositions 3.1 and 3.2, where many detailed calculations
were performed and then summed over a large number of cases. The final simplification
was done using Maple. Appendix A has a list of the genus series for all (p, ¢, n)-dipoles
on up to 10 edges. These were created by generating each (p, ¢, n)-dipole by exhaustive
search using the permutation encoding of [6]. Our results were then checked against each
entry in these tables.
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A Tables

Finally, we list tables giving D, ,,(u) and D,,(u) for small values of n.

2 edges
P q | Dpgn(u)
1 1 1
DQ(U) =1
3 edges
P q| Dpgnl(u)
1 1 U
1 2 1
2 1 1
2 2 U
4 edges
P q| Dpgn(u)
1 1 2u
1 2 2u
1 3 u+1
2 1 2u
2 2 u+1
2 3 2u
3 1 u+1
3 2 2u
3 3 2u
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5 edges

Dp,q,n(u)

3u+3u
2u*+4u
3u?+ 3u
Su—+1
2u? +4u
u? +5u
2u? +3u+1
3u?+ 3u
3u? 4 3u
2u? +3u+1
u? +5u
2u’+4u
du—+1
3u?+3u
2u? +4u
3u+ 3u

B W N WD R R WND B WND KR

S S S R W W W WNoNDNDND R~ -

Ds(u) = 8u? +15u+ 1

12



7 edges

Dp,q,n(u)

6 edges
P 9 Dyp,gn(w)
1 1 20u? +4u
1 2 18u? +6u
1 3 18u?+6u
1 4 20u? +4u
1 5 Su?+15u+1
2 1 18u?+6u
2 2 15u% +9u
2 3 16u? + 8u
2 4| 15u*>+8u+1
2 5 20u® +4u
3 1 18u?+6u
3 2 16w+ 8u
3 3 16u?4+7u+1
3 4 16 u® +8u
3 5 18u®+6u
4 1 20u? +4u
4 2 15u? 4+ 8u+1
4 3 16u® +8u
4 4 15u®+9u
4 5 18u®+6u
5 1 Su?+15u+1
5 2 20u? +4u
5 3 18u? +6u
5 4 18u? +6u
5 5 20u? +4u

Dg(u) = 84u* +35u+1
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YDA DO OO UL UL UL OO I B R R R WWWWWWNoONNDNDNNRFRFRFERFRRFE P

DU WO U WN RO UL W OO WN O LR W O Ok WD PR

40u® +75u? +5u
32u® +80u? + 8u
36u 4+ 75u? +9u
32u 4+ 80u? +8u
40u® +75u? +5u
84u? +35u+ 1
32u® +80u? + 8u
2443 4+ 83u? + 13 u
28ud 4+ 78 u? + 14 u
24u +85u? + 11w
32ud +68u?+19u+1
40u® + 75u? + 5u
36u 4+ 75u? +9u
28ud 4+ 78 u? + 14 u
32ud 4+ T4u? + 14 u
28ud + T7Tu? + 14u+1
24u +85u? + 11w
32u 4+ 80u? +8u
32u 4+ 80u? +8u
24u +85u? + 11w
28ud + T7Tu? + 14u+1
32ud 4+ T4u? + 14u
28 u + 78 u% + 14 u
36u 4+ 75u? +9u
40w 4+ 75 u? +5u
32ud +68u?+19u+1
24u +85u? + 11w
28 u + 78 u® + 14 u
2443 4+ 83u? + 13 u
32u 4+ 80u? +8u
84u? +35u+1
40u® + 75u? +5u
32u® +80u? + 8u
36u 4+ 75u? +9u
32u 4+ 80u? +8u
40u® + 75U +5u

Dr(u) = 180 u? + 469 u> + 70w + 1

13



8 edges

Dp,q,n(u)

Dp#zm(u)

504 u3 4+ 210 u + 6u
460 u® + 250 u? + 10w
468 u? + 240 u? + 12w
468 u? + 240 u? + 12w
460 u® + 250 u? + 10w
504 u3 4+ 210 u + 6u
180 w3 + 469 u? + 70w + 1
460 u® + 250 u? + 10w
408 u® +295u? + 17w
420 u? + 280 u? + 20 u
416 u® 4+ 285 u? + 19 u
416 u® + 290 u? + 14w
42003 + 259 u? + 40u + 1
504 u3 4+ 210 u2 + 6w
468 u? + 240 u? + 12w
420 u3 4+ 280 u? + 20 u
428 u3 + 269 u? + 23 u
428 u 4+ 272 u? + 20 u
42443 + 268 u? +27u + 1
416 u® + 290 u? + 14 u
460 u® + 250 u? + 10w

ENEEN EEN EEN BEN IEN IEN [ o Nl o it o Nl o Nl o i e NI e NI G B G B B B B S T S

N O Tl W N 0 Ok W0 O kWwNh QR

460 u? + 250 u® + 10w
416 u + 290 u? + 14 u

424 u? 4+ 268 u? +27u + 1

428 ud + 272 u? + 20w
428 u? + 269 u? + 23 u
420 u® + 280 u? 4+ 20w
468 u3 + 240 u? + 12w
504 u? +210u? 4+ 6u

420 u® + 259 u? +40u + 1

416 u® + 290 u? + 14 u
416 u® + 285 u? + 19 u
420 u3 + 280 u? + 20w
408 ud +295u? + 17w
460 u® + 250 u® + 10w

180w + 469 u? + 70u + 1

504 w3 4+ 210u® + 6 u
460 u® + 250 u? + 10w
468 u® + 240 u? + 12w
468 u® + 240 u® + 12u
460 u® + 250 u® + 10w
504 u3 4+ 210 u2 + 6w

468 u3 + 240 u? + 12w
416 u® + 285u? + 19w
428 ud + 272 u? + 20w
420 u® + 275 u? + 24 u + 1
428 ud + 272 u? + 20w
416 u® + 285u? + 19w
468 u3 + 240 u? + 12w

N O Ol W N IO U WNFH O U W R0 0 W PR

O R R R R R W W W W W W WNNNNNDDNNDN RS
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Ds(u) = 3044 u3 + 1869 u® + 126 u + 1
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9 edges

Dp#zm(u)

SO B R R R R R W W W W W W W WNN0NNDNDNDNDNRF RS

O 1 O Ul W N FHF 00O UL W OO Uik WN HF 0O Uik W R

1260 u® + 3283 u® + 490 u’ + Tu
1080 ut + 3318 u® + 630 u? + 12w
1140 u* + 3255 u® + 630 u? + 15w
1104 u* + 3304 u> + 616 u® + 16 u
1140 u* + 3255 u® + 630 u? + 15w
1080 ut + 3318 u® + 630 u? + 12w
1260 u* + 3283 u + 490 u? + Tu
3044 u3 + 1869 u? + 126 u + 1
1080 u* + 3318 u® + 630 u? + 12w
900 u* + 3309 u® + 810u? + 21 u
960 u* + 3254 u> + 800 u* + 26 u
924 u* + 3303 u® + 786 u? + 27 u
960 u* + 3246 u® + 810 u? + 24 u
900 u* + 3353 u® + 770u? + 17w
1080 u* + 2994 u? + 889 u? + 76 u + 1
1260 u + 3283 u® 4+ 490 u® + Tu
1140 u* + 3255 u® + 630 u? + 15w
960 u* + 3254 u® + 800 u? + 26 u
1020 u* + 3193 u® + 795 u® + 32 u
984 u* + 3238 u® + 786 u? + 32u
1020 u* + 3199 u® + 795 u? + 26 u
960 u' + 3250 u® + 779 u? + 50u + 1
900 u* + 3353 u® + 770u? + 17u
1080 u* + 3318 u® + 630 u? + 12w
1104 u* + 3304 u® + 616 u? + 16 u
924 u* + 3303 u® + 786 u? + 27 u
984 u* + 3238 u® + 786 u% + 32u
948 u* + 329543 + 767 u? + 30u
984 u 4 3220w + 795u? + 40w + 1
1020 u* + 3199 u® + 795 u® + 26 u
960 u* + 3246 u® + 810 u? + 24 u
1140 u* + 3255 u® + 630 u? + 15w
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9 edges (cont’d)

Dygn(1)
1140 u® + 3255 u® + 630 u? + 15w
960 u* + 3246 u® + 810 u? + 24 u
1020 u* + 3199 u® + 795 u® + 26 u
984 u* 4 3220 u® + 795u? + 40w + 1
948 u* + 3295 u® + 767 u? + 30w
984 u* + 3238 u® + 786 u% + 32u
924 u* + 3303 u® + 786 u? + 27 u
1104 u* + 3304 v + 616 u? + 16 u
1080 u* + 3318 u® + 630 u? + 12w
900 u* + 3353 u® + 770u? + 17w
960 u* + 3250 u® + 779 u* 4+ 50 u + 1
1020 ut 4+ 3199 u® + 795 u? + 26 u
984 u* + 3238 u® + 786 u% + 32u
1020 u* + 3193 u® + 795 u® + 32 u
960 u* + 3254 u® + 800 u? + 26 u
1140 u* + 3255 u® 4+ 630 u® + 15u
1260 u* + 3283 u + 490 u? + Tu
1080 u* + 2994 u3 + 889 u? + 76 u + 1
900 u* + 3353 u® + 770u? + 17w
960 u* + 3246 u® + 810 u? + 24 u
924 u* + 3303 u® + 786 u? + 27 u
960 u* + 3254 u® + 800 u? + 26 u
900 u* + 3309 u® + 810u? + 21 u
1080 u* + 3318 u® + 630 u? + 12w
3044 v + 1869 u? + 126 u + 1
1260 u* + 3283 u + 490 u? + Tu
1080 ut + 3318 u® + 630 u? + 12w
1140 u* + 3255 u® + 630 u? + 15w
1104 u* + 3304 u® + 616 u® + 16 u
1140 u* + 3255 u® + 630 u? + 15w
1080 u* + 3318 u® + 630 u? + 12w
1260 u* + 3283 u + 490 u? + Tu

sl slNe slNe JlNe clNe slNe sRNe JIIEN BN BEN BEN BEN BEN BEN BEN o) o) ie) I o) I o) I o) B e) B o) I G2 SN2 S B2 SN2 SN SN SN | ke
CO IO Ui W HFHF OO UL WK OO T WN OO ULk W R

Dg(u) = 8064 u* + 26060 u® + 5985 u? + 210 u + 1
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10 edges

Dp,q,n(u)

24352 u* + 14952 43 4+ 1008 u? + 8 u
22568 u* + 16366 u3 + 137212 + 14 u
22872 u* + 16002 u?® + 1428 u? + 18 u
22800 u* + 16100 w?® + 1400 u? + 20w
22800 u* + 16100 w?® 4+ 1400 u? + 20w
22872 u* + 16002 v + 1428 u? + 18w
22568 u? + 16366 u® + 137242 + 14u
24352 u* + 1495243 4+ 1008 u? + Su
8064 u* + 26060 u> + 5985 u? + 210w + 1
22568 u* + 16366 u3 + 1372 u> + 14 u
20604 u* + 17815 u3 + 1876 u? + 25 u
20968 u? + 17388 u® + 193212 + 32u
20860 u* + 17535 u3 + 1890 u? + 35u
20896 u* + 17486 u® 4+ 1904 u? + 34 u
20908 u* + 17451 v + 1932 u? + 29 u
20784 u* + 17780 u> + 1736 u? + 20 u
21308 u* + 16127 w3 + 2751 u? + 133u + 1
24352 u* + 14952 13 4+ 1008 u? + 8 u
22872 u* + 16002 v + 1428 u? + 18w
20968 u? + 17388 u® 4+ 1932 u? + 32u
21284 u* + 16999 u? + 1996 u? + 41 u
21200 u* 4+ 17116 w3 + 1960 u? + 44 u
21212 u* 4+ 17089 u3 + 1978 u? + 41 u
21272 u* + 17068 u® + 1948 u? + 32w
21088 u* + 17092 u> + 2051 u? + 88u + 1
20784 u* + 17780 u? + 1736 u? + 20w
22568 u? + 16366 u® 4+ 137242 + 14 u
22800 u* + 16100 w?® + 1400 u? + 20w
20860 u? + 17535 u® 4+ 1890 u? + 35u
21200 u* 4+ 17116 w3 + 1960 u? + 44 u
21100 u* + 17239 4> + 1935u? + 46 u
21136 u* + 17230 w? + 191442 + 40w
21100 u* + 17159 u> + 1994 u? + 66 u + 1
21272 u* + 17068 u® + 1948 u? + 32u
20908 u? + 17451 v + 1932 u? + 29 u
22872 u* + 16002 u?® + 1428 u? + 18 u
22800 u* + 16100 u?® + 1400 u? + 20w
20896 u? + 17486 u® 4+ 1904 u? + 34 u
21212 u* + 17089 v + 1978 u? + 41w
21136 u* + 17230 w?® 4+ 1914 u? + 40w
21160 u* + 17090 u? + 2009 u? + 60 u + 1

U O O O O i i i s b B R R R W W W W W WwWwWwWNhNoNMNNRDNDDNDNDN e
QU W N HE O©W-ID Uk WNDEFE O -IO Ul WN OO0 UL W HEO©OW-=IO Uk W R

THE ELECTRONIC JOURNAL OF COMBINATORICS 14 (2007), #R12



10 edges (cont’d)

Dp,q,n(u)

q

6 21136 u®* + 17230 w?® 4+ 1914 u? + 40 u

7 21212 u* + 17089 v + 1978 u? + 41w

8 20896 u* + 17486 u® 4+ 1904 u? + 34 u

9 22800 u* + 16100 u® + 1400 u? + 20w

1 22872 u* + 16002 u?® 4 1428 u? + 18 u

2 20908 u* + 17451 v + 1932 u? + 29 u

3 21272 u* + 17068 u® + 1948 u? + 32u

4 21100 u* + 17159 u> + 1994 u? + 66 u + 1

5 21136 u* + 17230 w?® 4+ 1914 w2 + 40w

6 21100 u* + 17239 u® + 193512 + 46

7 21200 u* 4+ 17116 w3 + 1960 u? + 44 u

8 20860 u* + 17535 u® 4+ 1890 u? + 35u

9 22800 u* + 16100 u® + 1400 u? + 20w

1 22568 u? + 16366 u® 4+ 137242 + 14u

2 20784 u* + 17780 u? + 1736 u? + 20w

3 21088 ut + 17092 u> + 2051 u? + 88u + 1

4 21272 u* + 17068 u® + 1948 u? + 32w

5 21212 u* + 17089 u? 4+ 1978 u? + 41u

6 21200 u* 4+ 17116 w3 + 1960 u? + 44 u

7 21284 u* + 16999 v + 1996 u? + 41 u

8 20968 u* + 17388 u3 + 1932 u? + 32u

9 22872 u* + 16002 v + 1428 u? + 18w

1 24352 u* + 14952 13 4+ 1008 u? + 8 u

2 21308 u* + 16127 w3 + 2751 u? + 133u + 1

3 20784 u? + 17780 w® 4+ 1736 u? + 20w

4 20908 u* + 17451 u? + 1932 u? + 29 u

5 20896 u? + 17486 u® 4+ 1904 u? + 34 u

6 20860 u* + 17535 u3 + 1890 u? + 35u

7 20968 u? + 17388 u® 4+ 193242 + 32u

8 20604 u* + 17815 u® + 1876 u? + 25u

9 22568 u? + 16366 u® + 137242 + 14u

1 8064 ut + 26060 u® + 5985 u® + 210w + 1

2 24352 u* + 1495243 4+ 1008 u? + Su

3 22568 u? + 16366 u® + 137242 + 14u

4 22872 u* + 16002 u?® + 1428 u? + 18w

5 22800 u* + 16100 w?® 4+ 1400 u? + 20w

6 22800 u* + 16100 u® + 1400 u? + 20w

7 22872 u* + 16002 u?® + 1428 u? + 18 u
22568 u* + 16366 u3 + 137212 + 14 u

O O © O© O© O© © W WOWwOowOow 0O wOoMWwOoOI~IT~JITJIJJTJJJTOHDDHDDHDOHOHOD»OH O Utut ot g3

8
9 24352 u* + 14952 u? + 1008 u? + 8u
Dio(u) = 193248 u* + 152900 u® + 16401 u? + 330 u + 1
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