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Abstract

There are many applications of the enumeration of maps in surfaces to other
areas of mathematics and the physical sciences. In particular, in quantum field
theory and string theory, there are many examples of occasions where it is necessary
to sum over all the Feynman graphs of a certain type. In a recent paper of Constable
et al. on pp-wave string interactions, they must sum over a class of Feynman graphs
which are equivalent to what we call (p, q, n)-dipoles. In this paper we perform a
combinatorial analysis that gives an exact formula for the number of (p, q, n)-dipoles
in the torus (genus 1) and double torus (genus 2).

1 Introduction

A map is an embedding of a graph in an orientable surface such that the deletion of the
edges decomposes the surface into regions homeomorphic to open disks. These regions
are the faces of the map. If a map has i vertices, j faces and k edges, then the genus g of
the underlying surface is determined by the Euler-Poincaré formula, 2 − 2g = i − k + j.
If M is a set containing mg maps of genus g for every g ≥ 0, then

M(u) =
∑

g≥0

mgu
g

is called the genus series for M. A map is rooted by distinguishing a mutually incident
vertex and edge, and the root edge is indicated in diagrams by a directed edge whose
origin is the root vertex. Since our maps are in orientable surfaces, for any vertex v of the
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map, we can specify a cyclic list of the edges incident with v that would be encountered
in traversing the boundary of a small disk, centered at v, in the sense of the orientation
of the surface. We will assume throughout that this sense is anticlockwise. For example,
consider the map in Figure 1 with edges labelled e0, . . . , e6. The edges incident with the
root vertex occur in the cyclic order (e0, e1, e2, e3, e4, e5, e6) about the root vertex. The
edges incident with the nonroot vertex occur in the cyclic order (e0, e6, e4, e5, e2, e3, e1)
about the nonroot vertex.

To define a (p, q, n)-dipole, let m be a rooted map with 2 vertices of degree n (with no
loops) and one other distinguished edge (indicated by a dashed edge in diagrams). Let
E− be the set of edges occurring after the root edge, but before the dashed edge, in the
list of edges ordered about the root vertex (in an anticlockwise sense as described above).
Let E+ be the set of edges occurring after the root edge, but before the dashed edge, in
the list of edges ordered about the nonroot vertex. For example, for the map in Figure 1,
E− = {e1, e2, e3, e4} and E+ = {e6, e4}. If |E−| = p − 1 and |E+| = q − 1, then m is
a (p, q, n)-dipole. Equivalently, we could say that the dashed edge is the pth edge after
the root edge when considering the edges ordered about the root vertex, but is the qth
edge after the root edge when considering the edges ordered about the nonroot vertex.
Figure 1 gives an example of a (5, 3, 7)-dipole. Since this map has 3 faces, its genus is
g = (2 + e − v − f)/2 = (2 + 7 − 2 − 3)/2 = 2.

e0

e1
e2

e3
e4

e5
e6

Figure 1: A (5, 3, 7)-dipole.

Let Dp,q,n(u) be the genus series for (p, q, n)-dipoles. By considering the symmetry
between the two vertices and the symmetry between the two distinguished edges, respec-
tively, we obtain the following relationships:

Dp,q,n(u) = Dq,p,n(u), Dp,q,n(u) = Dn−p,n−q,n(u).

So we need only find Dp,q,n(u) for 1 ≤ p ≤ q ≤ n − p.
Let Dn(u) be the genus series for all rooted dipoles (with no other distinguished edge).

Since there are n − 1 nonroot edges which could be distinguished we observe that

Dn(u) =
1

n − 1

∑

1≤p,q<n

Dp,q,n(u).

Appendix A lists Dp,q,n(u) and Dn(u) for small values of n.
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Our interest in computing Dp,q,n(u) comes out of an application to string theory. In [1],
(p, q, n)-dipoles are equivalent to a set of Feynman graphs used in the computation of a
certain two-point correlation function in free Yang-Mills theory. The purpose of their
calculation is to draw some connections between Yang-Mills theory and string theory in a
pp-wave background. In their paper, the authors obtain asymptotic results for the number
of (p, q, n)-dipoles of small genera. Here we will give an exact enumeration of (p, q, n)-
dipoles of genus 0, 1 and 2. Results for the sphere and torus are given in Section 2, and
for the double torus in Section 3. This section will conclude with a few definitions and
some pertinent background about dipoles.

Let Sn represent the symmetric group on n symbols. The cycle-type of a permutation
π ∈ Sn will be described by a partition θ = [1a12a2 · · ·] to indicate a permutation with ai

cycles of length i for i = 1, 2, . . .. Since the lengths of all the cycles of π sum to n, θ is a
partition of n, and we write θ ⊢ n to denote this. For this reason, the partitions of n index
the conjugacy classes of Sn. If m is a map on n edges, we describe the face-type of m by
a partition of 2n, [1f12f2 · · ·], indicating that m has fi faces of degree i for i = 1, 2, . . ..

It is well-known that a map can be encoded by a pair of permutations (ν, ǫ) describing
the vertex and edge structure of the map in such a way that the cycle-type of the product
νǫ gives the face-type of the map. This axiomatization for combinatorial maps is described
in great detail in [5]. Jackson [3] used the character theory of the symmetric group to
count the number of ways of representing a fixed cycle of length n in Sn as a product
of permutations from specified conjugacy classes. This immediately gave the genus series
for monopoles [2] (maps with 1 vertex) and the character theoretic tools developed in [3]
led to a new approach to map enumeration that gave results for arbitrary genus [4].

Kwak and Lee [6] (and independently Rieper) used similar methods to obtain the
genus series for rooted dipoles. They accomplish this by giving a combinatorial argument
that the number of rooted dipoles on n edges with k faces is equal to the number of full
cycles π ∈ Sn such that ωπ has k cycles where ω is a fixed n-cycle. They then appeal to
Jackson’s result to obtain

Dn(u) =
∑

g≥0

[

n+1
n−2g

]

(

n+1
2

) ug,

where
[

n

k

]

is the (unsigned) Stirling number of the first kind and is equal to the number
of permutations in Sn with k cycles.

Using Kwak and Lee’s encoding of a dipole and the character theoretic methods of
Jackson, we can give a slightly more detailed formula for rooted dipoles. Let χθ denote
the irreducible character associated with the conjugacy class of permutations with cycle-
type θ and let χθ

φ denote its value at any element with cycle-type φ. Let f θ denote the

degree of χθ and hφ be the number of permutations with cycle-type φ. Then the number
of rooted dipoles with n edges and face-type 2φ = [2a1 4a2 . . .] is

h[n]hφ

n!

∑

θ⊢n

1

f θ

(

χθ
[n]

)2
χθ

φ =
hφ

n

∑

k≥0

χ
[n−k,1k]
φ /

(

n−1
k

)

.
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In [3], Jackson shows that if φ = [1a12a2 · · ·], then χ
[n−k,1k]
φ is the coefficient of xk in

(1 + x)−1
n

∏

i=1

(1 − (−x)i)ai ,

making it very convenient to use the above formula for computation.

2 Results for the sphere and torus

The number of (p, q, n)-dipoles on the sphere is easily seen to be 1 if p + q = n and 0
otherwise. Determining the number of (p, q, n)-dipoles on the torus is more interesting,
and still involves considering these two cases separately. We begin with the case p+q < n
and then look at p + q = n. Of course, p + q > n is determined by symmetry.

Proposition 2.1 If p + q < n, then the number of (p, q, n)-dipoles of genus 1 is

pq(n − p − q) +

p−1
∑

b=1

(p − b)

(

q − b

1

)

.

Proof: Genus 1 dipoles have 2 + e − v − 2g = n − 2 faces. Since for any dipole every
face has an even number of edges, this implies that genus 1 dipoles must have face-type
[2n−3 6] or [2n−4 42].

Figure 2(a) shows a dipole on n edges with face-type [2n−3 6], where the gray region
labelled ‘a’ represents a edges that do not cross each other, the gray region labelled ‘b’
represents b edges that do not cross each other, and so on. That is, if a ≥ 2 then the gray
region labelled ‘a’ represents a−1 digons, etc. Notice that a+ b+ c+d = n−1, and that
a, d ≥ 0 and b, c ≥ 1.

� �

a
b

c

d

b

c

(a)

✁ ✁

a

b1b2

c

d

b2 b1

c

(b)

Figure 2: Rooted dipole, (p, q, n)-dipole with face-type [2n−3 6].

If the distinguished (dashed) edge of a (p, q, n)-dipole is one of the edges that are
represented by the gray region labelled ‘a’ or ‘d’, we have p + q = n. Also, if the distin-
guished edge is one of the edges that are represented by the gray region labelled ‘c’, we
have p+q > n. Hence we need only look at the case where the distinguished edge is one of
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the edges represented by the gray region labelled ‘b’. Figure 2(b) shows a (p, q, n)-dipole
with face-type [2n−3 6] and the property that p + q < n.

Notice that here a + b1 + b2 + c + d = n − 2, and that a, b1, b2, d ≥ 0 and c ≥ 1. Since
a + b1 = p − 1 and d + b2 = q − 1, there are p choices for (a, b1) and q choices for (b2, d)
with c then being determined. So the number of (p, q, n)-dipoles of this form is pq.

Now let us consider dipoles with face-type [2n−4 42], as shown in Figure 3(a). Here
we must have b, c, d ≥ 1. Furthermore, the only locations for the distinguished edge that
produce p + q < n are among the edges represented by the gray regions labelled ‘b’ and
‘c’, and the latter only if b < d.

✂

✂

a

bc

d

e

b c

d

(a)

✄

✄

a

b1
b2c

d

e

b2 b1
c

d

(b)

Figure 3: Rooted dipole, (p, q, n)-dipole with face-type [2n−3 42].

First suppose that the distinguished edge is located as depicted in Figure 3(b). Then
a + b1 + b2 + c + d + e = n − 2 with a, b1, b2, e ≥ 0 and c, d ≥ 1. Since a + b1 = p − 1 and
e + b2 = q − 1, there are p choices for (a, b1), q choices for (b2, e), and c + d = n − p − q.
Hence there are n − p − q − 1 choices for (c, d). So the number of (p, q, n)-dipoles of this
form is pq(n − p − q − 1).

If the distinguished edge is one of the edges that are represented by the gray region
labelled ‘c’ in Figure 3(a), then suppose that c1 of the edges in this region precede the
distinguished edge and c2 edges follow it as we travel in an anticlockwise direction about
the root vertex. (The is in analogy with the definition of b1, b2 in Figure 3(b).) Then
a+ b+ c1 + c2 +d+ e = n−2 with a, c1, c2, e ≥ 0 and b, d ≥ 1. Since a+ b+ c1 = p−1 and
e + b + c2 = q − 1, there are p − b choices for (a, c1) and q − b choices for (c2, e), for any
fixed choice of b. Since b must be less than both p and q, the number of (p, q, n)-dipoles
of this form is

p−1
∑

b=1

(p − b)

(

q − b

1

)

.

Therefore, there are a total of

pq + pq(n − p − q − 1) +

p−1
∑

b=1

(p − b)

(

q − b

1

)

= pq(n − p − q) +

p−1
∑

b=1

(p − b)

(

q − b

1

)

(p, q, n)-dipoles with the property that p + q < n.

For the p + q = n case, we will make use of the following well-known lemma.
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Lemma 2.2 For positive integers n, k, there are
(

n

k

)

solutions to the equation

x + y1 + · · · + yk−1 + z = n − 1,

where x, z are nonnegative integers and yi is a positive integer for i = 1, . . . , k.

Proposition 2.3 If p + q = n, then the number of (p, q, n)-dipoles of genus 1 is

(

p + 1

4

)

+

(

q + 1

4

)

+

p−1
∑

b=1

(p − b)

(

q − b

1

)

.

Proof: Again, we need only consider those dipoles that have face-type [2n−3 6] or
[2n−4 42]. Let us begin with face-type [2n−3 6]. As seen in Figure 2(a), if the distin-
guished edge is one of the edges that are represented by the gray regions labelled ‘a’ or
‘d’, we have p + q = n.

If the distinguished edge is located among the edges represented by the gray region
labelled ‘a’ in Figure 2(a), then suppose that a1 of the edges in this region precede the
distinguished edge and a2 edges follow it as we travel in an anticlockwise direction about
the root vertex. Then a1 = p− 1 and d+ b+ c+ a2 = q− 1 with a1, a2, d ≥ 0 and b, c ≥ 1.
So there are

(

q

3

)

choices for (d, b, c, a2), by Lemma 2.2 and the choice of a1 is fixed. Hence
there are

(

q

3

)

(p, q, n)-dipoles of this type. Similarly, there are
(

p

3

)

(p, q, n)-dipoles such
that the distinguished edge is located among the edges represented by the gray region
labelled ‘d’ in Figure 2(a).

For face-type [2n−4 42], we see in Figure 3(a) that there are 3 possible locations for the
distinguished edge that yield p + q = n, namely among the edges represented by the gray
regions labelled ‘a’, ‘e’, or ‘c’, and the latter only if b = d.

If the distinguished edge is located among the edges represented by the gray region
labelled ‘a’ in Figure 3(a), then we can define a1, a2 just as we did in the previous case
and find the number of (p, q, n)-dipoles of this type is given by the number of solutions to
the equation e+ b+ c+d+a2 = q−1 where b, c, d ≥ 1 and e, a2 ≥ 0. By Lemma 2.2, this
is

(

q

4

)

. Similarly, there are
(

p

4

)

(p, q, n)-dipoles such that the distinguished edge is located
among the edges represented by the gray region labelled ‘e’ in Figure 3(a).

Finally, if the distinguished edge is located among the edges represented by the gray
region labelled ‘c’ in Figure 3(a), then we find that there

p−1
∑

b=1

(p − b)

(

q − b

1

)

(p, q, n)-dipoles of this type using the exact same reasoning as for the p + q < n case.
Therefore there are a total of

(

q

3

)

+

(

p

3

)

+

(

q

4

)

+

(

p

4

)

+

p−1
∑

b=1

(p − b)

(

q − b

1

)
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=

(

p + 1

4

)

+

(

q + 1

4

)

+

p−1
∑

b=1

(p − b)

(

q − b

1

)

genus 1 (p, q, n)-dipoles such that p + q = n.

By symmetry, we need only consider p ≤ q, so we can simplify
∑p−1

b=1(p − b)
(

q−b

1

)

and
conclude that for p ≤ q, the number of (p, q, n)-dipoles on the torus is















pq(n − p − q) +
p(p − 1)(3q − p − 1)

6
, if p + q < n;

(

p + 1

4

)

+

(

q + 1

4

)

+
p(p − 1)(3q − p − 1)

6
, if p + q = n.

3 Results for the double torus

The method used to count (p, q, n)-dipoles of genus 1 can be used, in principle, to obtain
formulae for genus 2, 3, . . . , but it soon becomes unfeasible to try to deal with all of
the cases that arise. To convince ourselves that our procedure generalizes in a natural
way, we carried it out to solve the genus 2 case. In this section we present our results for
the double torus followed by a description of the steps taken to obtain them. Since the
method required dealing with over 100 similar cases, we look at only one typical case and
conclude with an interesting observation about some of the other cases.

Proposition 3.1 If p + q < n, then the number of (p, q, n)-dipoles of genus 2 is

1

12
pq (n − p − q)

((

n − p − 1

2

) (

2

(

n − p − q

2

)

+ (q − 2) (q + 1)

)

+

(

n − q − 1

2

) (

2

(

n − p − q

2

)

+ (p − 2) (p + 1)

))

+

p−1
∑

i=1

(p − i)(q − i)

(

n − i

4

)

+
1

4
pq

(

n − p − q + 1

3

)

(2 (p − 1) (q − 1) − (n − p − q) (n − p − q − 2))

−

(

p

3

) (

3 n

(

q

3

)

+ 1
280

p4 − 11
280

p3 + 1
120

p3q + 1
40

p2 − 1
20

p2q2 + 1
10

p2q

+ 17
20

pq2 − 91
120

pq − 1
4
pq3 + 43

280
p + 7

30
q2 + 3

4
q3 − 17

20
q − 1

3
q4 + 3

35

)

.

Proof: Since genus 2 dipoles on n edges have 2 + e − v − 2g = n − 4 faces, we look
at the five possible face-types for rooted dipoles that have n − 4 faces, namely [10 2n−5],
[8 4 2n−6], [62 2n−6], [6 42 2n−7] and [44 2n−8]. Table 1 lists the number of distinct rooted
dipoles with no digons for each of these face-types.

Since the procedure we used is the same for each face-type, we only look at one. Let us
consider face-type [62 2n−6]. When we multiply all cycles of length 6 in S6 with (123456),
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Face-type No. of rooted dipoles

[10] 8
[8 4] 24
[62] 12
[6 42] 49
[44] 21

Table 1: Genus 2 dipoles with no digons.

we find that there are 12 that yield a product that consists of two 3-cycles. These 12
permutations represent the only rooted dipoles on 6 edges with 2 faces of degree 6. A
dipole on n edges of face-type [62 2n−6] can now be constructed by replacing the edges
of these dipoles with face-type [62] with multiple non-crossing edges. Because of the
awkwardness of the polygonal representation of the double torus, we return to the type
of diagram used in Figure 1. Figure 4 shows a rooted dipole on 6 edges with face-type
[62], and Figure 5 shows the same dipole, now on n edges, where the gray edges represent
groupings of edges that do not cross each other. As in Proposition 2.1, we distinguish the
rooted edge from the others by adding an edge on both sides of the rooted edge for the
digons that follow this edge.

☎

☎

Figure 4: Rooted dipole with face-type [62].

✆

✆

a

b
c

d

e f

g

Figure 5: Rooted dipole with face-type [62 2n−6].
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Notice that it is possible for the two (light) gray edges adjacent to the rooted edge to
represent no edges at all, as in the case n = 6, but all the other gray edges must represent
at least one edge. Of course, the total number of edges represented by the gray edges
must be n − 1. Now, since this gives us seven possible groupings of digons in which the
second distinguished, or dashed, edge could be found, we must consider these seven cases
separately. Of course, we consider only the cases that yield p+ q < n. As with the rooted
edge, we want to distinguish the dashed edge from the others, so we add a gray edge on
both sides of the dashed edge for the digons that follow this edge. Again, it is possible for
these two gray edges to represent no edges at all. For each of the applicable cases, we use
the same techniques we used in the proof of Proposition 2.1 to calculate the number of
(p, q, n)-dipoles that are equivalent to our underlying case, that is, the number of (p, q, n)-
dipoles that, when each grouping of digons is replaced by one edge, are identical to our
given case.

For the dipole in Figure 5, if the distinguished edge is among the group of edges
labelled ‘a’ or ‘b’, we have the case p + q = n, and if it is among the edges labelled ‘g’,
we have the case p + q > n. So for (p, q, n)-dipoles with p + q < n, we look at the cases
where the distinguished edge is among the edges labelled ‘c’,‘d’,‘e’, or ‘f ’. Figure 6 shows
the case where the distinguished edge is among the edges labelled ‘c’.

✝

✝

a

b
c1

c2

d

e f

g

Figure 6: (p, q, n)-dipole with face-type [62 2n−6].

Here we have b + c1 = p − 1 and a + f + d + e + c2 = q − 1, and since we know that
a+ b+ c1 + c2 +d+ e+ f + g = n−2, we also have g = n−p− q. Since a, b, c1, c2 ≥ 0 and
d, e, f, g ≥ 1, Lemma 2.2 gives the number of (p, q, n)-dipoles such that the distinguished
edge is among the edges labelled ‘c’ is

p

(

q

4

)

.

Using a similar analysis, we calculate that there are

(

p

2

)(

q

2

)(

n − p − q − 1

1

)
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(p, q, n)-dipoles such that the distinguished edge is among the edges labelled ‘d’, and
(

p

4

)

q

(p, q, n)-dipoles such that the distinguished edge is among the edges labelled ‘f ’.
The case where the distinguished edge is among the edges labelled ‘e’ is a little different

because here the group of edges labelled ‘d’ contributes to both p and q. We account
for this by summing over the possible number of edges labelled d. Labelling ‘e1’ and
‘e2’ analogous to ‘c1’ and ‘c2’ in Figure 6, we have that b + c + e1 = p − d − 1 and
a + f + e2 = q − d − 1 and g = n − p − q. If we let i = d, then since c, f ≥ 1 and
a, b, e1, e2 ≥ 0, we appeal once more to Lemma 2.2 to get that there are

∑

i≥1

(

p − i

2

)(

q − i

2

)

(p, q, n)-dipoles such that the distinguished edge is among the edges labelled ‘e’.
A very similar calculation is performed for each of the 114 rooted dipoles referred to

in Table 1. To arrive at our final result, we added the equations obtained for each such
case, and then simplified that sum.

It is important to note that each case must be handled separately. The relevant
calculations don’t just depend on face-type. For example, consider the two dipoles in
Figure 7. Although both of these dipoles have face-type [62 2n−6] and if we let n = 6, both

✞

✞

✟

✟

Figure 7: Two (p, q, n)-dipoles with face-type [62 2n−6].

have p = 3 and q = 3, they yield different equations. There are

∑

i≥1

(

p − i

2

)(

q − i

2

)

(p, q, n)-dipoles of the first type, and

∑

i≥2

(

p − i

1

)(

q − i

1

)(

n − p − q − 1 + i

1

)

(i − 1)

(p, q, n)-dipoles of the second type. In fact, even when considering different rootings of
the same dipole, we can obtain different expressions for the number of (p, q, n)-dipoles
obtained by adding digons in all possible ways.
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Proposition 3.2 If p + q = n, then the number of (p, q, n)-dipoles of genus 2 is

1

336

(

p + 1

5

)

(

21 p3 − 155 p2 + 338 p + 456
)

+
1

8

(

q + 1

6

)

(

3 q2 − q − 6
)

+
1

2880
pq (p − 1)

(

84 p3q − 132 p3 − 281 p2q + 5 p2q3 + 10 p2q2 + 458 p2 − 102 p

− 210 pq2 + 209 pq + 55 pq3 + 214 q + 440 q2 − 692 − 310 q3 + 60 q4
)

.

We obtain this result using the same method as that used for Proposition 3.1, except
that now we look at cases that yield p + q = n.

It should be noted that all of the results in this paper have been carefully checked.
This is especially important for Propositions 3.1 and 3.2, where many detailed calculations
were performed and then summed over a large number of cases. The final simplification
was done using Maple. Appendix A has a list of the genus series for all (p, q, n)-dipoles
on up to 10 edges. These were created by generating each (p, q, n)-dipole by exhaustive
search using the permutation encoding of [6]. Our results were then checked against each
entry in these tables.
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A Tables

Finally, we list tables giving Dp,q,n(u) and Dn(u) for small values of n.

2 edges

p q Dp,q,n(u)
1 1 1

D2(u) = 1

3 edges

p q Dp,q,n(u)
1 1 u
1 2 1
2 1 1
2 2 u

D3(u) = u + 1

4 edges

p q Dp,q,n(u)
1 1 2 u
1 2 2 u
1 3 u + 1
2 1 2 u
2 2 u + 1
2 3 2 u
3 1 u + 1
3 2 2 u
3 3 2 u

D4(u) = 5 u + 1

5 edges

p q Dp,q,n(u)
1 1 3 u2 + 3 u
1 2 2 u2 + 4 u
1 3 3 u2 + 3 u
1 4 5 u + 1
2 1 2 u2 + 4 u
2 2 u2 + 5 u
2 3 2 u2 + 3 u + 1
2 4 3 u2 + 3 u
3 1 3 u2 + 3 u
3 2 2 u2 + 3 u + 1
3 3 u2 + 5 u
3 4 2 u2 + 4 u
4 1 5 u + 1
4 2 3 u2 + 3 u
4 3 2 u2 + 4 u
4 4 3 u2 + 3 u

D5(u) = 8 u2 + 15 u + 1
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6 edges

p q Dp,q,n(u)
1 1 20 u2 + 4 u
1 2 18 u2 + 6 u
1 3 18 u2 + 6 u
1 4 20 u2 + 4 u
1 5 8 u2 + 15 u + 1
2 1 18 u2 + 6 u
2 2 15 u2 + 9 u
2 3 16 u2 + 8 u
2 4 15 u2 + 8 u + 1
2 5 20 u2 + 4 u
3 1 18 u2 + 6 u
3 2 16 u2 + 8 u
3 3 16 u2 + 7 u + 1
3 4 16 u2 + 8 u
3 5 18 u2 + 6 u
4 1 20 u2 + 4 u
4 2 15 u2 + 8 u + 1
4 3 16 u2 + 8 u
4 4 15 u2 + 9 u
4 5 18 u2 + 6 u
5 1 8 u2 + 15 u + 1
5 2 20 u2 + 4 u
5 3 18 u2 + 6 u
5 4 18 u2 + 6 u
5 5 20 u2 + 4 u

D6(u) = 84 u2 + 35 u + 1

7 edges

p q Dp,q,n(u)
1 1 40 u3 + 75 u2 + 5 u
1 2 32 u3 + 80 u2 + 8 u
1 3 36 u3 + 75 u2 + 9 u
1 4 32 u3 + 80 u2 + 8 u
1 5 40 u3 + 75 u2 + 5 u
1 6 84 u2 + 35 u + 1
2 1 32 u3 + 80 u2 + 8 u
2 2 24 u3 + 83 u2 + 13 u
2 3 28 u3 + 78 u2 + 14 u
2 4 24 u3 + 85 u2 + 11 u
2 5 32 u3 + 68 u2 + 19 u + 1
2 6 40 u3 + 75 u2 + 5 u
3 1 36 u3 + 75 u2 + 9 u
3 2 28 u3 + 78 u2 + 14 u
3 3 32 u3 + 74 u2 + 14 u
3 4 28 u3 + 77 u2 + 14 u + 1
3 5 24 u3 + 85 u2 + 11 u
3 6 32 u3 + 80 u2 + 8 u
4 1 32 u3 + 80 u2 + 8 u
4 2 24 u3 + 85 u2 + 11 u
4 3 28 u3 + 77 u2 + 14 u + 1
4 4 32 u3 + 74 u2 + 14 u
4 5 28 u3 + 78 u2 + 14 u
4 6 36 u3 + 75 u2 + 9 u
5 1 40 u3 + 75 u2 + 5 u
5 2 32 u3 + 68 u2 + 19 u + 1
5 3 24 u3 + 85 u2 + 11 u
5 4 28 u3 + 78 u2 + 14 u
5 5 24 u3 + 83 u2 + 13 u
5 6 32 u3 + 80 u2 + 8 u
6 1 84 u2 + 35 u + 1
6 2 40 u3 + 75 u2 + 5 u
6 3 32 u3 + 80 u2 + 8 u
6 4 36 u3 + 75 u2 + 9 u
6 5 32 u3 + 80 u2 + 8 u
6 6 40 u3 + 75 u2 + 5 u

D7(u) = 180 u3 + 469 u2 + 70 u + 1
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8 edges

p q Dp,q,n(u)
1 1 504 u3 + 210 u2 + 6 u
1 2 460 u3 + 250 u2 + 10 u
1 3 468 u3 + 240 u2 + 12 u
1 4 468 u3 + 240 u2 + 12 u
1 5 460 u3 + 250 u2 + 10 u
1 6 504 u3 + 210 u2 + 6 u
1 7 180 u3 + 469 u2 + 70 u + 1
2 1 460 u3 + 250 u2 + 10 u
2 2 408 u3 + 295 u2 + 17 u
2 3 420 u3 + 280 u2 + 20 u
2 4 416 u3 + 285 u2 + 19 u
2 5 416 u3 + 290 u2 + 14 u
2 6 420 u3 + 259 u2 + 40 u + 1
2 7 504 u3 + 210 u2 + 6 u
3 1 468 u3 + 240 u2 + 12 u
3 2 420 u3 + 280 u2 + 20 u
3 3 428 u3 + 269 u2 + 23 u
3 4 428 u3 + 272 u2 + 20 u
3 5 424 u3 + 268 u2 + 27 u + 1
3 6 416 u3 + 290 u2 + 14 u
3 7 460 u3 + 250 u2 + 10 u
4 1 468 u3 + 240 u2 + 12 u
4 2 416 u3 + 285 u2 + 19 u
4 3 428 u3 + 272 u2 + 20 u
4 4 420 u3 + 275 u2 + 24 u + 1
4 5 428 u3 + 272 u2 + 20 u
4 6 416 u3 + 285 u2 + 19 u
4 7 468 u3 + 240 u2 + 12 u

p q Dp,q,n(u)
5 1 460 u3 + 250 u2 + 10 u
5 2 416 u3 + 290 u2 + 14 u
5 3 424 u3 + 268 u2 + 27 u + 1
5 4 428 u3 + 272 u2 + 20 u
5 5 428 u3 + 269 u2 + 23 u
5 6 420 u3 + 280 u2 + 20 u
5 7 468 u3 + 240 u2 + 12 u
6 1 504 u3 + 210 u2 + 6 u
6 2 420 u3 + 259 u2 + 40 u + 1
6 3 416 u3 + 290 u2 + 14 u
6 4 416 u3 + 285 u2 + 19 u
6 5 420 u3 + 280 u2 + 20 u
6 6 408 u3 + 295 u2 + 17 u
6 7 460 u3 + 250 u2 + 10 u
7 1 180 u3 + 469 u2 + 70 u + 1
7 2 504 u3 + 210 u2 + 6 u
7 3 460 u3 + 250 u2 + 10 u
7 4 468 u3 + 240 u2 + 12 u
7 5 468 u3 + 240 u2 + 12 u
7 6 460 u3 + 250 u2 + 10 u
7 7 504 u3 + 210 u2 + 6 u

D8(u) = 3044 u3 + 1869 u2 + 126 u + 1
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9 edges

p q Dp,q,n(u)
1 1 1260 u4 + 3283 u3 + 490 u2 + 7 u
1 2 1080 u4 + 3318 u3 + 630 u2 + 12 u
1 3 1140 u4 + 3255 u3 + 630 u2 + 15 u
1 4 1104 u4 + 3304 u3 + 616 u2 + 16 u
1 5 1140 u4 + 3255 u3 + 630 u2 + 15 u
1 6 1080 u4 + 3318 u3 + 630 u2 + 12 u
1 7 1260 u4 + 3283 u3 + 490 u2 + 7 u
1 8 3044 u3 + 1869 u2 + 126 u + 1
2 1 1080 u4 + 3318 u3 + 630 u2 + 12 u
2 2 900 u4 + 3309 u3 + 810 u2 + 21 u
2 3 960 u4 + 3254 u3 + 800 u2 + 26 u
2 4 924 u4 + 3303 u3 + 786 u2 + 27 u
2 5 960 u4 + 3246 u3 + 810 u2 + 24 u
2 6 900 u4 + 3353 u3 + 770 u2 + 17 u
2 7 1080 u4 + 2994 u3 + 889 u2 + 76 u + 1
2 8 1260 u4 + 3283 u3 + 490 u2 + 7 u
3 1 1140 u4 + 3255 u3 + 630 u2 + 15 u
3 2 960 u4 + 3254 u3 + 800 u2 + 26 u
3 3 1020 u4 + 3193 u3 + 795 u2 + 32 u
3 4 984 u4 + 3238 u3 + 786 u2 + 32 u
3 5 1020 u4 + 3199 u3 + 795 u2 + 26 u
3 6 960 u4 + 3250 u3 + 779 u2 + 50 u + 1
3 7 900 u4 + 3353 u3 + 770 u2 + 17 u
3 8 1080 u4 + 3318 u3 + 630 u2 + 12 u
4 1 1104 u4 + 3304 u3 + 616 u2 + 16 u
4 2 924 u4 + 3303 u3 + 786 u2 + 27 u
4 3 984 u4 + 3238 u3 + 786 u2 + 32 u
4 4 948 u4 + 3295 u3 + 767 u2 + 30 u
4 5 984 u4 + 3220 u3 + 795 u2 + 40 u + 1
4 6 1020 u4 + 3199 u3 + 795 u2 + 26 u
4 7 960 u4 + 3246 u3 + 810 u2 + 24 u
4 8 1140 u4 + 3255 u3 + 630 u2 + 15 u
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9 edges (cont’d)

p q Dp,q,n(u)
5 1 1140 u4 + 3255 u3 + 630 u2 + 15 u
5 2 960 u4 + 3246 u3 + 810 u2 + 24 u
5 3 1020 u4 + 3199 u3 + 795 u2 + 26 u
5 4 984 u4 + 3220 u3 + 795 u2 + 40 u + 1
5 5 948 u4 + 3295 u3 + 767 u2 + 30 u
5 6 984 u4 + 3238 u3 + 786 u2 + 32 u
5 7 924 u4 + 3303 u3 + 786 u2 + 27 u
5 8 1104 u4 + 3304 u3 + 616 u2 + 16 u
6 1 1080 u4 + 3318 u3 + 630 u2 + 12 u
6 2 900 u4 + 3353 u3 + 770 u2 + 17 u
6 3 960 u4 + 3250 u3 + 779 u2 + 50 u + 1
6 4 1020 u4 + 3199 u3 + 795 u2 + 26 u
6 5 984 u4 + 3238 u3 + 786 u2 + 32 u
6 6 1020 u4 + 3193 u3 + 795 u2 + 32 u
6 7 960 u4 + 3254 u3 + 800 u2 + 26 u
6 8 1140 u4 + 3255 u3 + 630 u2 + 15 u
7 1 1260 u4 + 3283 u3 + 490 u2 + 7 u
7 2 1080 u4 + 2994 u3 + 889 u2 + 76 u + 1
7 3 900 u4 + 3353 u3 + 770 u2 + 17 u
7 4 960 u4 + 3246 u3 + 810 u2 + 24 u
7 5 924 u4 + 3303 u3 + 786 u2 + 27 u
7 6 960 u4 + 3254 u3 + 800 u2 + 26 u
7 7 900 u4 + 3309 u3 + 810 u2 + 21 u
7 8 1080 u4 + 3318 u3 + 630 u2 + 12 u
8 1 3044 u3 + 1869 u2 + 126 u + 1
8 2 1260 u4 + 3283 u3 + 490 u2 + 7 u
8 3 1080 u4 + 3318 u3 + 630 u2 + 12 u
8 4 1140 u4 + 3255 u3 + 630 u2 + 15 u
8 5 1104 u4 + 3304 u3 + 616 u2 + 16 u
8 6 1140 u4 + 3255 u3 + 630 u2 + 15 u
8 7 1080 u4 + 3318 u3 + 630 u2 + 12 u
8 8 1260 u4 + 3283 u3 + 490 u2 + 7 u

D9(u) = 8064 u4 + 26060 u3 + 5985 u2 + 210 u + 1
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10 edges

p q Dp,q,n(u)

1 1 24352u4 + 14952u3 + 1008u2 + 8u

1 2 22568u4 + 16366u3 + 1372u2 + 14u

1 3 22872u4 + 16002u3 + 1428u2 + 18u

1 4 22800u4 + 16100u3 + 1400u2 + 20u

1 5 22800u4 + 16100u3 + 1400u2 + 20u

1 6 22872u4 + 16002u3 + 1428u2 + 18u

1 7 22568u4 + 16366u3 + 1372u2 + 14u

1 8 24352u4 + 14952u3 + 1008u2 + 8u

1 9 8064u4 + 26060u3 + 5985u2 + 210u + 1
2 1 22568u4 + 16366u3 + 1372u2 + 14u

2 2 20604u4 + 17815u3 + 1876u2 + 25u

2 3 20968u4 + 17388u3 + 1932u2 + 32u

2 4 20860u4 + 17535u3 + 1890u2 + 35u

2 5 20896u4 + 17486u3 + 1904u2 + 34u

2 6 20908u4 + 17451u3 + 1932u2 + 29u

2 7 20784u4 + 17780u3 + 1736u2 + 20u

2 8 21308u4 + 16127u3 + 2751u2 + 133u + 1
2 9 24352u4 + 14952u3 + 1008u2 + 8u

3 1 22872u4 + 16002u3 + 1428u2 + 18u

3 2 20968u4 + 17388u3 + 1932u2 + 32u

3 3 21284u4 + 16999u3 + 1996u2 + 41u

3 4 21200u4 + 17116u3 + 1960u2 + 44u

3 5 21212u4 + 17089u3 + 1978u2 + 41u

3 6 21272u4 + 17068u3 + 1948u2 + 32u

3 7 21088u4 + 17092u3 + 2051u2 + 88u + 1
3 8 20784u4 + 17780u3 + 1736u2 + 20u

3 9 22568u4 + 16366u3 + 1372u2 + 14u

4 1 22800u4 + 16100u3 + 1400u2 + 20u

4 2 20860u4 + 17535u3 + 1890u2 + 35u

4 3 21200u4 + 17116u3 + 1960u2 + 44u

4 4 21100u4 + 17239u3 + 1935u2 + 46u

4 5 21136u4 + 17230u3 + 1914u2 + 40u

4 6 21100u4 + 17159u3 + 1994u2 + 66u + 1
4 7 21272u4 + 17068u3 + 1948u2 + 32u

4 8 20908u4 + 17451u3 + 1932u2 + 29u

4 9 22872u4 + 16002u3 + 1428u2 + 18u

5 1 22800u4 + 16100u3 + 1400u2 + 20u

5 2 20896u4 + 17486u3 + 1904u2 + 34u

5 3 21212u4 + 17089u3 + 1978u2 + 41u

5 4 21136u4 + 17230u3 + 1914u2 + 40u

5 5 21160u4 + 17090u3 + 2009u2 + 60u + 1
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10 edges (cont’d)

p q Dp,q,n(u)

5 6 21136u4 + 17230u3 + 1914u2 + 40u

5 7 21212u4 + 17089u3 + 1978u2 + 41u

5 8 20896u4 + 17486u3 + 1904u2 + 34u

5 9 22800u4 + 16100u3 + 1400u2 + 20u

6 1 22872u4 + 16002u3 + 1428u2 + 18u

6 2 20908u4 + 17451u3 + 1932u2 + 29u

6 3 21272u4 + 17068u3 + 1948u2 + 32u

6 4 21100u4 + 17159u3 + 1994u2 + 66u + 1
6 5 21136u4 + 17230u3 + 1914u2 + 40u

6 6 21100u4 + 17239u3 + 1935u2 + 46u

6 7 21200u4 + 17116u3 + 1960u2 + 44u

6 8 20860u4 + 17535u3 + 1890u2 + 35u

6 9 22800u4 + 16100u3 + 1400u2 + 20u

7 1 22568u4 + 16366u3 + 1372u2 + 14u

7 2 20784u4 + 17780u3 + 1736u2 + 20u

7 3 21088u4 + 17092u3 + 2051u2 + 88u + 1
7 4 21272u4 + 17068u3 + 1948u2 + 32u

7 5 21212u4 + 17089u3 + 1978u2 + 41u

7 6 21200u4 + 17116u3 + 1960u2 + 44u

7 7 21284u4 + 16999u3 + 1996u2 + 41u

7 8 20968u4 + 17388u3 + 1932u2 + 32u

7 9 22872u4 + 16002u3 + 1428u2 + 18u

8 1 24352u4 + 14952u3 + 1008u2 + 8u

8 2 21308u4 + 16127u3 + 2751u2 + 133u + 1
8 3 20784u4 + 17780u3 + 1736u2 + 20u

8 4 20908u4 + 17451u3 + 1932u2 + 29u

8 5 20896u4 + 17486u3 + 1904u2 + 34u

8 6 20860u4 + 17535u3 + 1890u2 + 35u

8 7 20968u4 + 17388u3 + 1932u2 + 32u

8 8 20604u4 + 17815u3 + 1876u2 + 25u

8 9 22568u4 + 16366u3 + 1372u2 + 14u

9 1 8064u4 + 26060u3 + 5985u2 + 210u + 1
9 2 24352u4 + 14952u3 + 1008u2 + 8u

9 3 22568u4 + 16366u3 + 1372u2 + 14u

9 4 22872u4 + 16002u3 + 1428u2 + 18u

9 5 22800u4 + 16100u3 + 1400u2 + 20u

9 6 22800u4 + 16100u3 + 1400u2 + 20u

9 7 22872u4 + 16002u3 + 1428u2 + 18u

9 8 22568u4 + 16366u3 + 1372u2 + 14u

9 9 24352u4 + 14952u3 + 1008u2 + 8u

D10(u) = 193248u4 + 152900u3 + 16401u2 + 330u + 1
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