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ON THE GEODETIC HULL NUMBER FOR COMPLEMENTARY PRISMS II

Diane Castonguay, Erika M. M. Coelho, Hebert Coelho and
Julliano R. Nascimento∗

Abstract. In the geodetic convexity, a set of vertices S of a graph G is convex if all vertices belonging
to any shortest path between two vertices of S lie in S. The convex hull H(S) of S is the smallest
convex set containing S. If H(S) = V (G), then S is a hull set. The cardinality h(G) of a minimum hull
set of G is the hull number of G. The complementary prism GG of a graph G arises from the disjoint
union of the graph G and G by adding the edges of a perfect matching between the corresponding
vertices of G and G. A graph G is autoconnected if both G and G are connected. Motivated by previous
work, we study the hull number for complementary prisms of autoconnected graphs. When G is a split
graph, we present lower and upper bounds showing that the hull number is unlimited. In the other
case, when G is a non-split graph, it is limited by 3.
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1. Introduction

For a finite and simple graph G with vertex set V (G), a graph convexity on V (G) is a collection C of subsets
of V (G) such that ∅, V (G) ∈ C and C is closed under intersections. The sets in C are called convex sets and the
convex hull HC(S) in C of a set S of vertices of G is the smallest set in C containing S. Some natural convexities
in graphs are defined by a set P of paths in G, in a way that a set S of vertices of G is convex if and only if for
every path P = v0v1 . . . vl in P such that if v0 and vl belong to S, then all vertices of P belong to S.

The definition of convex sets in graphs originally come from Euclidean geometry, in which a set S is convex
if every line segment between two points of S remains in S. The concepts of convexity in graphs can be applied
to model contexts involving some disseminating processes between entities, e.g. marketing strategies [7], spread
of disease and opinion [13], and distributed computing [20].

In this paper we study the convexity related to shortest paths in graphs, the geodetic convexity C. Given
a graph G, the closed interval I[u, v] of a pair u, v ∈ V (G) consists of all vertices lying in any shortest (u, v)-
path in G. For a set S ⊆ V (G), the closed interval I[S] is the union of all sets I[u, v] for u, v ∈ S. If I[S] = S, then
S is a convex set. The convex hull HC(S) of S is the smallest convex set containing S. Since a graph G uniquely
determines its geodetic convexity C, we may write H(S), instead of HC(S). If H(S) = V (G) we say that S is
a hull set of G. The cardinality h(G) of a minimum hull set of G is called the (geodetic) hull number of G.
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Everett and Seidman [15] introduced the concept of hull number in the geodetic convexity. For some later
results see, e.g. [3,10,18]. The computation of hull number is NP-hard for bipartite graphs [3], partial cubes [1],
and P9-free graphs [12], but it can be computed in polynomial time for cographs, split graphs [9], (q, q−4)-graphs
[3], {paw, P5}-free graphs [12], and distance-hereditary graphs [19].

The hull number is also studied in other graph convexities. It can be determined in polynomial time for
general graphs in triangle path convexity [8], related to paths which allow only short chords, and monophonic
convexity [11], related to induced paths. In P3-convexity, that considers paths with three vertices, computing
the hull number for general graphs is NP-complete [5]. However, Duarte et al. [14] showed that the hull number
of complementary prisms can be determined efficiently in P3-convexity, more specifically, it is limited by 5 when
G and G are connected.

In 2007, Haynes et al. [17] introduced the complementary product, an operation that generalizes the Cartesian
product of two graphs. In their same work, they introduce a particular case of complementary product called
complementary prism. The complementary prism GG of a graph G arises from the disjoint union of the graph
G and its complement G by adding the edges of a perfect matching between vertices with the same label in G
and G. Related to geodetic convexity, we mention that some works were conducted for graph operations like
join, composition, and Cartesian product [4], lexicographic product [2], and strong product [21].

Considering the geodetic hull number in complementary prisms GG, in our previous paper [6], we presented
bounds when G is a disconnected graph or G is a tree. Here, we present lower and upper bounds on the hull
number of complementary prisms GG when both G and G are connected. In particular, we show that h(GG) ≤ 3
when G is a non-split graph. Otherwise, we characterize convex sets in split graphs G that allow the hull number
for GG be unlimited.

This paper is divided into three more sections. In Section 2, we define the fundamental concepts. In Section 3,
we present our main results.

2. Preliminaries

Before we discuss our contributions, we present some relevant definitions. All graphs will be finite, simple,
and undirected, and we use standard terminology and notation.

Let G be a graph. Given a vertex v ∈ V (G), its open neighborhood is denoted by NG(v), and its closed neigh-
borhood, denoted by NG[v], is the set NG[v] = NG(v)∪{v}. For a set U ⊆ V (G), let NG(U) =

⋃
v∈U NG(v) \U ,

and NG[U ] = NG(U) ∪ U . We denote the degree of a vertex v ∈ V (G) by degG(v). If degG(v) = 0, then we say
that v is an isolated vertex.

A Kn (resp. Cn) in a graph G denotes an induced complete subgraph (resp. cycle) on n vertices. A clique
(resp. independent set) is a set of pairwise adjacent (resp. non-adjacent) vertices. A vertex of a graph G is
simplicial in G if its neighborhood is a clique.

The distance dG(u, v) of two vertices u and v in G is the minimum number of edges of a path in G between
u and v. The greatest distance between any two vertices in G is the diameter of G, denoted by diam(G).
We say that H is an isometric subgraph of G if H is a subgraph of G such that dH(u, v) = dG(u, v) for any pair
u, v ∈ V (H).

A graph G is called connected if any two of its vertices are linked by a path in G. Otherwise, G is
called disconnected. A maximal connected subgraph of G is called a connected component or component of G.
A component Gi of a graph G is trivial if |V (Gi)| = 1, and non-trivial otherwise. If a graph G is connected
and its complement G is also connected, we say that G is an autoconnected graph. Let G be a graph and G
its complement. For every vertex v ∈ V (G), we denote v ∈ V (G) as its corresponding vertex, and for a set
X ⊆ V (G), we let X be the corresponding set of vertices in V (G). The set of positive integers {1, . . . , k} is
denoted by [k].

For a graph G with vertex set V (G) = {v1, . . . , vn} and edge set E(G), the complementary prism of G is the
graph denoted by GG with vertex set V (GG) = {v1, . . . , vn}∪{v1, . . . , vn} and edge set E(GG) = E(G)∪{vivj :
1 ≤ i < j ≤ n and vivj /∈ E(G)} ∪ {v1v1, . . . , vnvn}. Let S ⊆ V (GG). Throughout this paper we consider
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the convex hull H(S) most of times on the graph GG. If we need to indicate the convex hull on another graph,
say G, we add a subscript to the notation, e.g. HG(S).

A split graph G is one whose vertex set admits a partition V (G) = C ∪ I into a clique C and an independent
set I. If G is a split graph, we consider the partition of V (G) such that C is a maximum clique.

3. Results

3.1. General and non-split graphs

We begin by showing three fundamental lemmas and a proposition that we use in the sequel.

Lemma 3.1 (Dourado et al. [9]). Let G be a graph and S a proper and non-empty subset of V (G). If V (G)\S
is convex then every hull set of G contains at least one vertex of S.

Lemma 3.2 (Dourado et al. [9]). Let G be a graph and H an isometric subgraph of G. Then for every hull set
S of H it holds that V (H) ⊆ HG(S).

Lemma 3.3 (Coelho et al. [6]). Let G be a graph. If u is a simplicial vertex in G and u is a simplicial vertex
in G, then every hull set S of GG intersects {u, u}.

Proposition 3.4. Let G be a graph, S ⊆ V (GG), and v1 . . . vk be a path in G, for k ≥ 2. If {v1, v2, . . . , vk} ⊆
H(S), then vk ∈ H(S).

Proof. The proof is by induction on k. First, let k = 2. Since v1v2 ∈ E(G) and v1, v2 ∈ H(S), v2 ∈ I[v1, v2].
Now, let k > 2. Let v1 . . . vk−1vk be a path in G and suppose that {v1, v2, . . . , vk−1, vk} ⊆ H(S). By induc-
tion hypothesis vk−1 ∈ H(S), which implies that vk ∈ I[vk−1, vk]. Therefore, it follows that vk ∈ H(S), for
k ≥ 2. �

Next we state our contributions. We first show that for complementary prisms of non-split graphs the geodetic
hull number is limited by three.

Theorem 3.5. Let G be a non-split autoconnected graph. Then h(GG) ≤ 3.

Proof. Suppose that G is a non-split graph. According to Foldes and Hammer [16], G is split if and only if G
does not have an induced subgraph isomorphic to one of the three forbidden graphs, C4, C5, or 2K2. To show
the upper bound h(GG) ≤ 3 we construct hull sets on three cases: (1) C4 or (2) C5 or (3) 2K2 are induced
subgraphs of G.

Case 1. Suppose that C4 is an induced subgraph of G.

Let V (C4) = {u1, . . . , u4}, E(C4) = {uiui+1 : 1 ≤ i ≤ 3} ∪ {u4u1}, and S = {u1, u3, u4}. We show that
H(S) = V (GG).

First, we show that V (C4) ∪ V (C4) ⊆ H(S). We have that u4 ∈ I[u1, u4] and u1 ∈ I[u1, u3]. Consequently
u3 ∈ I[u4, u3] and u2 ∈ I[u1, u3], then u2 ∈ I[u2, u4]. Hence V (C4) ∪ V (C4) ⊆ H(S).

Let A = (NG(u1) ∩NG(u3)) ∪ (NG(u2) ∩NG(u4)) and v ∈ A. Since u1u3 /∈ E(G) (resp. u2u4 /∈ E(G)), then
v ∈ I[u1, u3] (resp. v ∈ I[u2, u4]), hence A ⊆ H(S).

Let B = V (G) \ (A ∪ V (C4)). For every b ∈ B, there exist i, j ∈ [4], i 6= j, such that uiuj ∈ E(G) and
b /∈ NG({ui, uj}). Then uiuj /∈ E(G), consequently b ∈ I[uiuj ], hence B ⊆ H(S).

Since G is connected, there exists a path in G joining every vertex from B to a vertex in A ∪ V (C4). Since
B ⊆ H(S), then Proposition 3.4 implies that B ⊆ H(S). Hence V (G) ⊆ H(S). Since G is connected, also by
Proposition 3.4, A ⊆ H(S). Therefore S is a hull set of GG.

Case 2. Suppose that C5 is an induced subgraph of G.



S2406 D. CASTONGUAY ET AL.

Figure 1. Graphs satisfying h(GG) ≤ 3. (a) h(GG) = 2. (b) h(GG) = 3.

Let V (C5) = {u1, . . . , u5}, E(C5) = {uiui+1 : 1 ≤ i ≤ 4} ∪ {u5u1}, and S = {u1, u4, u3}. We show that
H(S) = V (GG).

First, we show that V (C5) ∪ V (C5) ⊆ H(S). We have that u5 ∈ I[u1, u4], u1 ∈ I[u1, u3] and u3 ∈ I[u4, u3].
Then u2 ∈ I[u1, u3]. By Proposition 3.4 (dual), we have that u5, u4, u2 ∈ H(S). Hence V (C5) ∪ V (C5) ⊆ H(S).

Let
A =

⋃
i,j∈[5],i6=j: uiuj /∈E(G)

(NG(ui) ∩NG(uj)).

By the definition of A, for every v ∈ A, there exists i, j ∈ [5], i 6= j, such that uiuj /∈ E(G), which implies that
v ∈ I[ui, uj ]. Hence A ⊆ H(S).

Now, let B = V (G) \ (A ∪ V (C5)). By the definition of A is b a neighbor of at most two vertices from C5

in G. Therefore is b a neighbor of at least three vertices from C5. Moreover, at least two of the mentioned
three vertices are not adjacent. Clearly, b is a common neighbor of both of them and we have b ∈ H(S). Hence
B ⊆ H(S).

Since G is connected, there exists a path in G joining every vertex from B to a vertex in A ∪ V (C5). Since
B ⊆ H(S), then Proposition 3.4 implies that B ⊆ H(S). Hence V (G) ⊆ H(S). Since G is connected, also by
Proposition 3.4, A ⊆ H(S). Therefore S is a hull set of GG.

Case 3. Suppose that 2K2 is an induced subgraph of G.

Since 2K2 (resp. GG) is isomorphic to C4 (resp. GG), we consider GG and the proof follows by Case 1.

Since there exists a hull set of order three in all cases the upper bound h(GG) ≤ 3 holds for a non-split
graph G. �

For an illustration of the bound of Theorem 3.5 see Figure 1b. The black vertices represent a hull set of
each complementary prism GG. For convenience, the edges joining corresponding vertices from G to G are not
depicted in the figure.

We show a lower bound by restricting the diameter of the graphs G and G. That result follows in Theorem 3.6.

Theorem 3.6. Let G be an autoconnected graph. If diam(G) = diam(G) = 2, then h(GG) ≥ 3.

Proof. For contradiction, suppose that h(GG) < 3. We show that every set S ⊆ V (GG) of order 2 is not a hull
set of GG. First, let u, v ∈ V (G). Consider S1 = {u, v}, and S2 = {u, v}.

Since diam(G) = diam(G) = 2, H(S1)∩V (G) = ∅ (resp. H(S2)∩V (G) = ∅), then S1 (resp. S2) is not a hull
set of GG.

Now, let u ∈ V (G), v ∈ V (G), and S3 = {u, v}. If uv ∈ E(G) (resp. uv /∈ E(G)), then H(S3) = {u, v, v}
(resp. H(S3) = {u, u, v}). Since u /∈ H(S3) (resp. v /∈ H(S3)), then S3 is not a hull set of GG. �

The two previous results imply in Corollary 3.7.
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Figure 2. Non-split graph G with diam(G) = diam(G) = 2.

Corollary 3.7. Let G be a non-split autoconnected graph. If diam(G) = diam(G) = 2, then h(GG) = 3.

Proof. It follows directly from Theorems 3.5 and 3.6. �

For an illustration of Corollary 3.7 see in Figure 2 an example of non-split autoconnected graph G with
diam(G) = diam(G) = 2 and h(GG) = 3. The black vertices represent a hull set of GG.

We consider in Theorem 3.8 graphs G with diameter greater than three. Notice that the condition diam(G) > 3
implies that G is not a split graph.

Theorem 3.8. Let G be an autoconnected graph. If diam(G) > 3, then h(GG) = 2.

Proof. Since diam(G) > 3, there exist at least two vertices x, y ∈ V (G) such that dG(x, y) > 3. Thus, we can
define an induced path P = u1u2u3u4u5 in G such that dG(u1, u5) = 4. Let S = {u1, u4}. We show that S is
a hull set of GG.

Let U = {u1, u2, u3, u4}. Since u1u2u3u4, and u1u1u4u4 are shortest (u1, u4)-paths, we have that U ∪
{u1, u4} ⊆ I[S]. Consequently u2 ∈ I[u2, u4], and u3 ∈ I[u3, u1], which implies that U ∪ U ⊆ H(S).

To complete the proof, we show that for every vertex z ∈ V (G) \ U , its corresponding vertex z belongs
to H(S). In view of the number of neighbors that z has in U , we deal with three cases. Notice that, since
dGG(u1, u4) = 3, z is not adjacent to both u1 and u4.

Case 1. |NG(z) ∩ U | ≤ 1.

In this case, z is neighbor of two non-adjacent vertices in {u1, u2, u3, u4}, say ui and uj , for i, j ∈ [4], i 6= j.
Then z ∈ I[ui, uj ]. Notice that by this case we obtain that u5 ∈ I[u1, u2] and also u5 ∈ I[u4, u5].

Case 2. |NG(z) ∩ U | = 2.

Suppose that z has two neighbors ui, uj ∈ U , for i, j ∈ [4], i 6= j. If i, j ∈ {1, 2} (resp. i, j ∈ {3, 4}), i 6= j,
we fall back on Case 1. If i, j ∈ {2, 3}, i 6= j, then z ∈ I[u4, u5]. If i, j ∈ {1, 3}, (resp. i, j ∈ {2, 4}) i 6= j,
we obtain that z ∈ I[u1, u4]. Since z ∈ H(S), then z ∈ I[z, uk], for k = 2 (resp. k = 3).

Case 3. |NG(z) ∩ U | = 3.

Suppose that z has three neighbors ui, uj , uk ∈ U , for i, j, k ∈ [4], i 6= j 6= k. Since dGG(u1, u4) = 3,
{i, j, k} = {1, 2, 3} or {2, 3, 4}. Then, we have that z ∈ I[u1, u4]. Since z ∈ H(S), then z ∈ I[z, uk], for k = 4 or
k = 1.

By all cases, we conclude that z ∈ V (G) \ U , z ∈ H(S). This way, we have that V (G) ⊆ H(S). Since G is
connected, and U ∪ V (G) ⊆ H(S), Proposition 3.4 implies that V (G) ⊆ H(S). Therefore S is a hull set of GG,
and h(GG) = 2, which completes the proof. �
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Figure 3. Sets L(Gi) of G′ on the graph GG, for i ∈ [3].

3.2. Split graphs

The following definitions and lemma characterize some convex sets in split graphs.
Let G = (C ∪ I, E) be a split graph. Let the graph G′ arise from G by removing the edges of the graph

induced by C. We call the graph G′ as the component graph of G. We denote by c(G′) the number of connected
components of G′. We denote by Gi, 1 ≤ i ≤ c(G′), the connected components of G′. Furthermore, we refer to
nt(G′) and t(G′) as the number of non-trivial and trivial components of G′, respectively. Definition 3.9 expresses
formally the idea of a component graph.

Definition 3.9. Let G = (C ∪ I, E) be a split graph. We define the component graph G′ of G as

G′ = G \ E(G[C]) =
c(G′)⋃
i=1

Gi.

Definition 3.10. Let G = (C ∪ I, E) be a split autoconnected graph. We define the set L(Gi) of a component
Gi of G′ as

L(Gi) = V (Gi) ∪ (V (Gi) ∩ C),

for every i ∈ [c(G′)].

See in Figure 3 examples of sets L(Gi) of G′, for i ∈ [3].

Lemma 3.11. The set V (GG) \ L(Gi) is convex in GG, for every i ∈ [c(G′)].

Proof. Let i ∈ [c(G′)]. We show that the closed interval of any two vertices of V (GG) \L(Gi) does not intersect
L(Gi). We have three cases:

(1) w, w′ ∈ V (G) \ V (Gi);
(2) w, w′ ∈ V (G) \ (V (Gi) ∩ C);
(3) w ∈ V (G) \ V (Gi) and w′ ∈ V (G) \ (V (Gi) ∩ C).

Case 1. Let w, w′ ∈ V (G) \ V (Gi), and v ∈ V (Gi).

Let P be a shortest (w, w′)-path passing through v. Since G is a split graph and by definition of Gi, P contain
two vertices x, y ∈ C. Then xy ∈ E(G) and thus P cannot be a shortest path, a contradiction.

Case 2. Let w̄, w̄′ ∈ V (G) \ (V (Gi) ∩ C), and v ∈ L(Gi).
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Let P be a shortest (w̄, w̄′)-path passing through v. Clearly, w̄w̄′ /∈ E(G) and therefore ww′ ∈ E(G).
If v ∈ V (Gi), this implies that v = w or v = w′, but this yields a contradiction since both w, w′ cannot

belong to I and one of w, w′ must belong to V (Gi)∩C. If v ∈ V (Gi)∩C, NG(v) is a clique, and thus P cannot
be a shortest (w̄, w̄′)-path, a contradiction.

Case 3. Let w ∈ V (G) \ V (Gi), and w′ ∈ V (G) \ (V (Gi) ∩ C).

If w′ = w, then I[w, w′] = {w, w′}. Now suppose that w′ 6= w. If ww′ /∈ E(G), then I[w, w′] = {w, w′, w}.
Otherwise, ww′ ∈ E(G), then I[w, w′] = {w, w′, w′}. Hence I[w, w′] ∩ L(Gi) = ∅.

By all cases, we obtain that for all w, w′ ∈ V (GG) \L(Gi), I[w, w′]∩L(Gi) = ∅. Therefore, the set V (GG) \
L(Gi) is convex in GG, for every i ∈ [c(G′)]. �

Since G is also split, Lemma 3.11 holds for GG, that is, considering
⋃c(G

′
)

j=1 Gj be the components of G
′
,

we have that the set V (GG)\L(Gj) is convex in GG, for every j ∈ [c(G
′
)]. In view of that, we achieve the lower

bound result.

Theorem 3.12. Let G be a split autoconnected graph. It holds that h(GG) ≥ max{c(G′), c(G
′
), 2}.

Proof. By Lemma 3.11, V (GG) \ L(Gi), for every i ∈ [c(G′)], and V (GG) \ L(Gj), for every j ∈ [c(G
′
)],

are convex sets. Thus, Lemma 3.1 implies that every hull set of GG must contain at least one vertex from
L(Gi) and L(Gj). Since the components Gi and Gi′ , (resp. Gj and Gj′) are disjoints for all i, i′ ∈ [c(G′)],
i 6= i′, (resp. j, j′ ∈ [c(G

′
)], j 6= j′), each vertex v ∈ V (G) (resp. v ∈ V (G)) intersects exactly one L(Gi)

(resp. L(Gj)). This implies that h(GG) ≥ max{c(G′), c(G
′
)}. Since |V (G)| ≥ 2, h(GG) ≥ 2, hence the result

h(GG) ≥ max{c(G′), c(G
′
), 2} holds. �

Proceeding on the upper bound results, first we present some useful lemmas. Let S be a subset of the vertices
of a graph G. In Lemma 3.13 we show that for two vertices u, v in V (G) at distance three from each other,
if u, v ∈ H(S), then their closed neighborhoods NG[{u, v}] as well as NG[{u, v}] belong to H(S). Furthermore,
we deal with a split graph G that has only one trivial component in G′. In Lemma 3.14 we show that if G′ has
only one trivial component, then G

′
also has only one trivial component, and vice versa.

Lemma 3.13. Let G = (C ∪ I, E) be a split autoconnected graph, u, v ∈ I and S ⊆ V (GG). If dG(u, v) = 3
and u, v ∈ H(S), then NG[{u, v}] ∪NG[{u, v}] ⊆ H(S).

Proof. Let u, v ∈ I such that dG(u, v) = 3. Since uūv̄v and uxyv, for x ∈ NG(u) and y ∈ NG(v), are shortest
paths between u and v, and NG(u) ∪ NG(v) ⊆ C we have that NG(u) ∪ NG(v) ∪ {u, v} ⊆ I[u, v]. Since
uy, vx /∈ E(G), for x ∈ NG(u) and y ∈ NG(v), we have that ūȳ, v̄x̄ ∈ E(G). Consequently x ∈ I[x, v] and
y ∈ I[y, u]. Therefore NG[{u, v}] ∪NG[{u, v}] ⊆ H(S). �

Lemma 3.14. Let G = (C ∪ I, E) be a split autoconnected graph. Then t(G′) = 1 if and only if t(G
′
) = 1.

Proof. Suppose that t(G′) = 1. Let v be the trivial component of G′. Since NG[v] = C, NG(v) = I, hence
I ∪ {v} is a clique of G. Since C is an independent set, at most one vertex from C can belong to a clique in G.
Hence I ∪ {v} is a maximum clique. Since t(G′) = 1, for every u ∈ C \ {v}, |NG(u) ∩ I| ≥ 1. Thus, for every
u ∈ C \ {v}, |NG(u)| ≤ |I| − 1. Then |NG(u)| implies that I ∪ {v} is the unique maximum clique of G.

Since C is maximum, for every y ∈ I, we have that |NG(y)| < |C| and since C is unique, there exists no y ∈ I
such that y is adjacent to |C| − 1 vertices. Then, for every y ∈ I, |NG(y)| ≤ |C| − 2. This implies that, for every
y ∈ I, |NG(y) ∩ C| ≥ 2.

Since, for every y ∈ I, NG(y) ∩ C 6= ∅, it follows that v is the unique trivial component of G
′
, therefore

t(G
′
) = 1.

Reciprocally, suppose that t(G
′
) = 1. Since G is also split, by the same previous arguments, now applied for G

′
,

we conclude that t(G′) = 1. �
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Let G be a split autoconnected graph. As we have done with the lower bounds, we establish a relation of the
upper bounds of h(GG) with the number of components of G′. To show that we divided the proof concerning
about the number of trivial and non-trivial components of G′. The case of at least one of the parameters
nt(G′), t(G′), nt(G

′
) or t(G

′
) be greater than one is provided by Theorem 3.15, and the remaining cases follow

in Theorems 3.18 and 3.19.

Theorem 3.15. Let G = (C ∪ I, E) be a split autoconnected graph. If max{nt(G′), t(G′), nt(G
′
), t(G

′
)} ≥ 2,

then h(GG) ≤ max{c(G′), c(G
′
)}.

Proof. To proceed with the proof we consider two cases (1) nt(G′) ≥ 2 or nt(G
′
) ≥ 2, and (2) t(G′) ≥ 2 or

t(G
′
) ≥ 2. By definition of complementary prism, we know that GG is isomorphic to GG. Then, without loss of

generality, we may consider c(G′) ≥ c(G
′
). In view of that, we show a hull set of GG in each case: (1) nt(G′) ≥ 2

and (2) t(G′) ≥ 2.

Case 1. nt(G′) ≥ 2.

Let I1 = {i ∈ [c(G′)] : |V (Gi)| = 1} and I2 = [c(G′)] \ I1.
For every k ∈ [c(G′)], we obtain the set S by choosing uk ∈ V (Gk) such that V (Gk) = {uk} if k ∈ I1 and

uk ∈ V (Gk) \ C if k ∈ I2. Notice that |S| = c(G′). We show that H(S) = V (GG).
By hypothesis, |I2| ≥ 2. For all i, j ∈ I2, i 6= j, since dG(ui, uj) = 3, Lemma 3.13 implies that NG[{ui, uj}]∪

NG[{ui, uj}] ⊆ H(S).
Let u ∈ NG(ui), u′ ∈ NG(uj), for some i, j ∈ I2, A = I\NG(u) and B = I\NG(u′). We have that A ⊆ NG(u),

then A ⊆ I[u, ui]. Similarly, B ⊆ NG(u′), then B ⊆ I[u′, uj ]. Since A ∪B = I, I ⊆ H(S).
Only vertices of I that are not yet in H(S) are those who are at distance 2 to all the other vertices from I.

However such vertices cannot exists because nt(G′) ≥ 2. Hence I ⊆ H(S), which implies that C ⊆ H(G) and
finally, C ⊆ H(S). Therefore S is a hull set of GG, and h(GG) ≤ c(G′).

Case 2. t(G′) ≥ 2.

If nt(G′) ≥ 2 we fall back on Case 1. Thus, consider that nt(G′) = 1. Let G1 be the non-trivial component of
G′ and Gi, for i ∈ [c(G′)] \ {1}, be the trivial components of G′. For some x ∈ V (G1)∩C, let S = V (Gi)∪ {x},
for every i ∈ [c(G′)] \ {1}. Notice that |S| = c(G′). We show that S is a hull set of GG.

By hypothesis, t(G′) ≥ 2. Then there exist i, j ∈ [c(G′)] \ {1} such that Gi and Gj are trivial components in
G′. Let vi (resp. vj) be the single vertex in V (Gi) (resp. V (Gj)). Since vivj ∈ E(G), vivj /∈ E(G). Consequently,
viȳv̄j is a shortest (vi, vj)-path, for every y ∈ I. Then I ⊆ I[vi, vj ].

For every i ∈ [c(G′)] \ {1}, dG(x, vi) = 1, then vi ∈ I[x, vi]. Furthermore, vertices in y ∈ I and w ∈
C \ {x, v2, . . . , vc(G′)} belong subsequently to H(S), by the closed intervals y ∈ I[x, y] and w ∈ I[y, v2]. Hence
V (G) ⊆ H(S).

Given that V (G) ∪ I ⊆ H(S) it is easy to see that V (G) ⊆ H(S).
By all cases there exists a hull set of GG of order c(G′). Since c(G′) ≥ c(G

′
), the result h(GG) ≤

max{c(G′), c(G
′
)} holds. �

By Theorems 3.12 and 3.15 we obtain the equality stated in Corollary 3.16. That result evidences that for
complemetary prisms of split graphs the hull number can be unlimited. The class of complementary prisms
KnKnKnKn is an example of h(KnKnKnKn) = n.

Corollary 3.16. Let G = (C ∪ I, E) be a split autoconnected graph. If max{nt(G′), t(G′), nt(G
′
), t(G

′
)} ≥ 2,

then h(GG) = max{c(G′), c(G
′
)}.

Proof. It follows directly from Theorems 3.12 and 3.15. �
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Now, it remains the cases in which nt(G′) < 2, nt(G
′
) < 2, t(G′) < 2 and t(G

′
) < 2. Since we disregard the

trivial graphs, we have that nt(G′) = 1 and nt(G
′
) = 1. By Lemma 3.14 if t(G′) = 1, then t(G

′
) = 1. Otherwise,

for t(G′) 6= 1, we have that t(G
′
) = 0 or t(G

′
) ≥ 2. If t(G

′
) ≥ 2 the proof follows by Theorem 3.15 Case 2. So,

it remains the cases t(G′) = 0, t(G
′
) = 0, and t(G′) = 1, t(G

′
) = 1, that follows in Theorems 3.18 and 3.19,

respectively.
We first show a proposition that will be useful in the proof of Theorem 3.18. The next proposition is a slight

modification of Proposition 3.4 now considering a split graph G = (C ∪ I, E). For a set of vertices S of GG,
Proposition 3.17 shows that every vertex lying on a path in the component graph G′ of G will belong to H(S)
depending if some specific vertices in C ∪ I belong to H(S).

Proposition 3.17. Let G = (C ∪ I, E) be a split autoconnected graph. For k ≥ 2, let w0v1w1 . . . vkwk (or
w0v1w1 . . . vk) be a path in G′, such that vi ∈ I, for every i ∈ [k], and wj ∈ C, for every j ∈ [k] ∪ {0}.
Consider that, for every i ∈ [k], there exists zi ∈ C such that vizi /∈ E(G), and let S ⊆ V (GG).
If {w0, z1, . . . zk, v1, . . . , vk} ⊆ H(S), then wk ∈ H(S) (resp. vk ∈ H(S)).

Proof. The proof is by induction on k. Let k = 1. Since w0, v1 ∈ H(S), and v1v1 ∈ E(GG), we obtain that
v1 ∈ I[w0, v1]. Since zi ∈ H(S), and v1z1 /∈ E(G), then w1 ∈ I[v1, z1].

Let k > 1. By induction hypothesis, wk−1 ∈ H(S). Then, since vk ∈ H(S), we have that vk ∈ I[wk−1, vk].
Since zk ∈ H(S), and vkzk /∈ E(G), it follows that wk ∈ I[vk, zk]. �

Theorem 3.18. Let G = (C ∪ I, E) be a split autoconnected graph such that nt(G′) = 1, nt(G
′
) = 1, t(G′) = 0

and t(G
′
) = 0. Then h(GG) ≤ 3.

Proof. To prove that h(GG) ≤ 3 we must construct a hull set of GG of order three. We first show the existence
of three vertices that are the basis of our construction. Consider d = max{degG(v) : v ∈ I}, and y ∈ I such that
degG(y) = d.

Claim 1. There exist x ∈ C \NG(y), and y′ ∈ NG(x) ∩ I.

Proof of Claim 1. Suppose, by contradiction, that there exists no x ∈ C \ NG(y). Then, for every x ∈ C,
x ∈ NG(y). This implies that C∪{y} is a clique of G, a contradiction, since we consider a partition of V (G) such
that C is a maximum clique. Now, since t(G′) = 0 and xy /∈ E(G), x is not an isolated vertex in G′, then there
exists y′ ∈ NG(x) ∩ I. ut

Let x ∈ C \ NG(y), and y′ ∈ NG(x) ∩ I. To avoid repetitive notation when considering the operations of
union, intersection and symmetric difference on the sets NG(y) and NG(y′), we write U = NG(y) ∪ NG(y′),
A = NG(y) ∩NG(y′), and D = NG(y)4NG(y′), respectively.

We consider a partition R ∪ L of I \ {y, y′} such that R = {v ∈ I \ {y, y′} : ∀u ∈ D, uv ∈ E(G)}, and
L = I \ (R∪ {y, y′}). Furthermore, we let R1 = {v ∈ R : NG(v)∩ (C \U) 6= ∅}, and R2 = R \R1. We show hull
sets of GG considering R1 be empty or not.

Case 1. R1 = ∅.

Let S = {x, y, y′}. See Figure 4 for an example. First, we have that NG(y) ⊆ I[x, y], y′ ∈ I[x, y′] and
y ∈ I[y, y′].

Since degG(y) is maximum in I, there exists z ∈ NG(y) such that y′z /∈ E(G). Thus NG(y′) ⊆ I[y′, z], which
implies that U ⊆ H(S). Since D ⊆ U ⊆ H(S), and, for every w ∈ NG(y′) \ A, w̄ȳ ∈ E(G) (resp. for every
w′ ∈ NG(y) \A w̄′ȳ′ ∈ E(G)), we obtain that D ⊆ I[D ∪ {y, y′}].

Let v ∈ L. By definition of L, there exists z ∈ D such that vz /∈ E(G), which implies that v̄z̄ ∈ E(G). Since
z is either adjacent to y or y′, and, for every v ∈ L, v̄ȳ, v̄ȳ′ ∈ E(G), it follows that v ∈ I[{y, y′, z}]. Hence
L ⊆ H(S). By definition of L we have also that L ∪ {y, y′} = I \R2 ⊆ H(S).

Now, we show that L ∪ (NG(L) \ U) ⊆ H(S). For that, we are interested in the paths of minimum length
between L ∪ (NG(L) \ U) and U .



S2412 D. CASTONGUAY ET AL.

Figure 4. Example of hull set for Case 1 of Theorem 3.18.

Since G′ is connected, for k ≥ 2, there exists a shortest path w0v1w1 . . . vkwk (or w0v1w1 . . . vk) in G′ between
w0 ∈ U and wk ∈ NG(L) \ U (resp. vk ∈ L), where vi ∈ I, wi ∈ C, for every i ∈ [k].

Recall that, up to this point (R2 ∪ R2) ∩ H(S) = ∅. By definition of R2, NG(R2) ⊆ U . Then the shortest
path w0v1w1 . . . vkwk (or w0v1w1 . . . vk) in G′ does not contain vertices from R2. From this observation we can
proceed to show that v1, w1, . . . , vk, wk will be successively included to H(S).

By the maximality of degG(y) we have that degG(vi) < degG(y) + 1 = |NG(y)∪{x}|, for every i ∈ [k]. Hence,
there exists zi ∈ NG(y) ∪ {x} such that vizi /∈ E(G) for every i ∈ [k]. Since w0, z1, . . . , zk ∈ U ⊆ H(S), and
vi ∈ I \ R2 ⊆ H(S), for every i ∈ [k], it follows from Proposition 3.17 that wk ∈ H(S) (resp. vk ∈ H(S)).
Consequently L ∪ (NG(L) \ U) ⊆ H(S).

It remains to show that R2 ∪R2 ∪A ∪NG(L) \ U ⊆ H(S).
Since G

′
is connected, for k ≥ 2, there exists a shortest path w0v1w1 . . . vkwk (or w0v1w1 . . . vk) in G

′
between

w0 ∈ I \R2 and wk ∈ R2 (resp. vk ∈ A ∪NG(L) \ U), where vi ∈ C, and wi ∈ I, for every i ∈ [k].
We show that, for every i ∈ [k], there exists z ∈ I \R2 such that v̄iz̄ /∈ E(G). It is clear that z = y for every

v ∈ A, since v̄ȳ /∈ E(G). Now, let v ∈ NG(L) \ U . We know that NG(R2 ∪ {y, y′}) ∩ (NG(L) \ U) = ∅. Since G′

is connected, there exists z ∈ L such that vz ∈ E(G), which implies that v̄z̄ /∈ E(G), with z ∈ L ⊆ I \R2.
Since w0, z ∈ I \R2 ⊆ H(S), and vi ∈ A ∪NG(L) ⊆ H(S), for every i ∈ [k], Proposition 3.17 (dual) implies

that wk ∈ H(S) (resp. vk ∈ H(S)). Hence, R2 ∪ A ∪ NG(L) \ U ⊆ H(S). Finally, since D ∪ R2 ⊆ H(S),
we obtain that R2 ⊆ I[D ∪R2], which completes the proof of Case 1.

Case 2. R1 6= ∅.

Let y′′ ∈ R1 such that NG(y′′) \ U is maximum, and S = {x, y, y′′}. First, we have that NG(y) ⊆ I[x, y],
y′′ ∈ I[x, y′′], and y ∈ I[y, y′′]. Since degG(y) is maximum, y′′ is not adjacent to every vertex in NG(y) ∪ {x},
then NG(y′′) ⊆ I[NG(y) ∪ {x, y′′}].

Let x′′ ∈ NG(y′′) \ U . Since x′′ ∈ H(S), and x̄′′ȳ ∈ E(G), we obtain that x′′ ∈ I[x′′, y]. Hence NG(y′′) \ U ⊆
H(S). Since x̄′′ȳ′ ∈ E(G), and x̄′′ȳ′′ /∈ E(G), it follows that y′ ∈ I[x′′, y′′]. Consequently y′ ∈ I[x, y′]. This
implies that D ∈ I[D ∪ {y, y′}]. Since x′′ is not adjacent to any vertex in R2, we have that x′′ is adjacent to
every vertex in R2. Thus, R2 ⊆ I[x′′, y′′]. Then, R2 ⊆ I[D ∪R2].

Let v ∈ L. By definition of L, there exists z ∈ D such that vz /∈ E(G), which implies that v̄z̄ ∈ E(G). Since
z is either adjacent to y or y′, and, for every v ∈ L, vy, v̄ȳ′ ∈ E(G), it follows that v ∈ I[{y, y′, z}]. Hence
L ⊆ H(S).

We consider X ∪ Y a partition of R1 \ {y′′} such that X = {v ∈ R1 \ {y′′} : ∀u ∈ (A \NG(y′′))∪ (NG(y′′) \U),
uv ∈ E(G)}, and Y = R1 \ (X ∪ {y′′}).

Let a ∈ A\NG(y′′). Since āȳ′′ ∈ E(G), we obtain that a ∈ I[a, y′′]. Thus, A \NG(y′′) ⊆ H(S). Let v ∈ Y . By
definition of Y , and since we selected y′′ ∈ R1 such that NG(y′′) \U is maximum, there exists u ∈ (NG(y′′) \U)
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such that uv /∈ E(G), then ūv̄ ∈ E(G). Since ūȳ′′ /∈ E(G), and u ∈ NG(y′′) \ U ⊆ H(S), we have that
v ∈ I[u, y′′]. It follows that Y ⊆ H(S), and Y ⊆ I[D ∪ Y ]. Hence, NG(Y ) ⊆ H(S).

Now, we show that L ∪ (NG(L) \ (NG(Y ∪ y′′) ∪ U)) ⊆ H(S).
Since G′ is connected, for k ≥ 2, there exists a shortest path w0v1w1 . . . vkwk (or w0v1w1 . . . vk) in G′ between

w0 ∈ NG(Y ∪ y′′) ∪ U and wk ∈ NG(L) \ (NG(Y ∪ y′′) ∪ U) (resp. vk ∈ L), where vi ∈ I, wi ∈ C, for every
i ∈ [k].

By definition of X, no vertex in X is adjacent to some vertex in NG(L)\(NG(Y ∪y′′)∪U), then w0v1w1 . . . vkwk

(resp. w0v1w1 . . . vk) does not contain vertices from X.
By the maximality of degG(y) we have that degG(vi) < degG(y) + 1 = |NG(y)∪{x}|, for every i ∈ [k]. Hence,

there exists zi ∈ NG(y) ∪ {x} such that vizi /∈ E(G), for every i ∈ [k]. Since w0, z1, . . . , zk ∈ NG(Y ∪ y′′) ∪ U ⊆
H(S), and vi ∈ I \ X ⊆ H(S), for every i ∈ [k], it follows from Proposition 3.17 that wk ∈ H(S) (resp.
vk ∈ H(S)). Consequently L ∪ (NG(L) \ (NG(Y ∪ y′′) ∪ U)) ⊆ H(S).

Similarly to Case 1, since G
′
is connected, Proposition 3.17 (dual) can be used to show that X∪A ∩NG(y′′)∪

NG(L) \ (NG(Y ∪ y′′) ∪ U) ⊆ H(S). Since X ⊆ H(S), we obtain that X ⊆ I[X ∪U ], therefore H(S) = V (GG).
By all cases we have that there exists a hull set of GG of order three, which completes the proof. �

Figure 4 shows an example of complementary prism GG illustrating Case 1 of Theorem 3.18. The black
vertices represent a hull set of GG.

Theorem 3.19. Let G = (C ∪ I, E) be a split autoconnected graph such that nt(G′) = 1, nt(G
′
) = 1, t(G′) = 1

and t(G
′
) = 1. Then h(GG) ≤ 3.

Proof. Let v be the trivial component of G′. Let G1 be the graph induced by V (G) \ {v}.
Since G1 is a subgraph of G that satisfies nt(G′1) = 1, nt(G

′
1) = 1, t(G′1) = 0 and t(G

′
1) = 0, we proceed

in a similar way as in the proof of Theorem 3.18. Consider d = max{degG(w) : w ∈ I}, and y ∈ I such that
degG(y) = d. Let x ∈ C \ (NG(y) ∪ {v}), and y′ ∈ NG(x) ∩ I. Claim 1 implies the existence of x, y, y′ in
V (G1) ⊆ V (G).

Let U = NG(y) ∪ NG(y′), A = NG(y) ∩ NG(y′), and D = NG(y)4NG(y′). Consider R = {v ∈ I \ {y, y′} :
∀u ∈ D, uv ∈ E(G)}, and R1 = {v ∈ R : NG(v) ∩ (C \ U) 6= ∅}. We show hull sets of GG considering R1 be
empty or not.

Case 1. R1 = ∅.

Let S = {y, y′, v}. We have that A = NG(y)∩NG(y′) ⊆ I[y, y′]. Since nt(G′) = 1, we have that dG(y, y′) < 3,
hence A 6= ∅. Since v is adjacent to every vertex in A, we obtain that v ∈ I[A ∪ {v}]. Consequently
U = NG(y) ∪NG(y′) ⊆ I[{v, y, y′}]. Since vy, vy′ /∈ E(G), v̄ȳ, v̄ȳ′ ∈ E(G), then y, y′ ∈ I[{y, y′, v}].

At this point, we have that x, y, y′ ∈ H(S). Since G1 is a subgraph of G with nt(G′1) = 1, nt(G
′
1) = 1,

t(G′1) = 0 and t(G
′
1) = 0, Theorem 3.18 Case 1 implies that V (G1) ∪ V (G1) ⊆ HG1G1

({x, y, y′}). Since
G1G1 is an isometric subgraph of GG, Lemma 3.2 implies that V (G1) ∪ V (G1) ⊆ H({x, y, y′}), consequently
V (GG) = H(S).

Case 2. R1 6= ∅.

Let y′′ ∈ R1 such that NG(y′′) \U is maximum, and S = {y, y′′, v}. We have that NG(y)∩NG(y′′) ⊆ I[y, y′′].
Since nt(G′) = 1, we have that dG(y, y′′) < 3, hence NG(y) ∩ NG(y′′) 6= ∅. Let z ∈ NG(y) ∩ NG(y′′). Since
vz ∈ E(G), we have that v ∈ I[z, v]. It follows that NG(y) ∪ NG(y′′) ⊆ I[{v, y, y′′}]. Since vy, vy′′ /∈ E(G),
v̄ȳ, v̄ȳ′′ ∈ E(G), then y, y′′ ∈ I[{y, y′′, v}].

So far, we have that x, y, y′′ ∈ H(S). Since G1 is a subgraph of G with nt(G′1) = 1, nt(G
′
1) = 1, t(G′1) = 0 and

t(G
′
1) = 0, Theorem 3.18 Case 2 implies that V (G1) ∪ V (G1) ⊆ HG1G1

({x, y, y′′}). Since G1G1 is an isometric
subgraph of GG, Lemma 3.2 implies that V (G1) ∪ V (G1) ⊆ H({x, y, y′′}), consequently V (GG) = H(S).

By all cases we have that S is a hull set of GG, and the result h(GG) ≤ 3 holds. �
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Still considering a split autoconnected graph G, we show in Corollary 3.20 an equality for the case nt(G′) = 1,
nt(G

′
) = 1, t(G′) = 1, and t(G

′
) = 1.

Corollary 3.20. Let G = (C ∪ I, E) be a split autoconnected graph. If nt(G′) = nt(G
′
) = t(G′) = t(G

′
) = 1,

then h(GG) = 3.

Proof. Let v be the trivial component of G′. The upper bound follows by Theorem 3.19. So, remains to show
the lower bound h(GG) ≥ 3.

Since v is a simplicial vertex in G, and v is a simplicial vertex in G, Lemma 3.3 implies that S∩{v, v} 6= ∅. Let
x ∈ {v, v}, and suppose that S = {u, x} is a hull set of GG. Since dGG(u, x) < 2, for every u ∈ V (GG)\{v, v}, we
have that H(S) = NGG[u]∩NGG[x]. This implies that H(S) 6= V (GG), a contradiction. Therefore, h(GG) ≥ 3.
�

We close our contributions with the result expressed in Corollary 3.21. We consider split autoconnected
graphs G such that diam(G) = diam(G) = 2. If nt(G′) ≥ 2 or nt(G

′
) ≥ 2, then diam(G) = 3 or diam(G) = 3,

which does not belong to the current case. If t(G′) ≥ 2 or t(G
′
) ≥ 2 we fall back on Theorem 3.15, hence

h(GG) = max{c(G′), c(G
′
)}. Thus, we consider nt(G′) = 1, nt(G

′
) = 1, t(G′) ≤ 1, and t(G

′
) ≤ 1.

Corollary 3.21. Let G = (C ∪ I, E) be a split autoconnected graph such that diam(G) = diam(G) = 2.
If max{nt(G′), t(G′), nt(G

′
), t(G′)} < 2, then h(GG) = 3.

Proof. It follows from Theorems 3.6 and 3.15. �
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