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Abstract. The structure of hypersurfaces corresponding to different
spatio-temporal patterns is considered, and in particular representations
based on geometrical invariants, such as the Riemann and Einstein ten-
sors and the scalar curvature are analyzed. The spatio-temporal patterns
result from translations, Lie-group transformations, accelerated and dis-
continuous motions and modulations. Novel methods are obtained for
the computation of motion parameters and the optical flow. Moreover,
results obtained for accelerated and discontinuous motions are useful for
the detection of motion boundaries.
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1 Introduction

The input to the human and most technical vision systems is light intensity f
as a function of space and time. This function defines a hypersurface

S = {x, y, t, f(x, y, t)} (1)

which has the form of a 3-dimensional Monge patch. From a geometric point of
view the curvature is the most important property of the surface in that it deter-
mines the intrinsic structure of the manifold [10], so it is of interest to investigate
how different types of visual inputs are represented by the curvature tensor of
(1). Further, two other geometric invariants, namely the scalar curvature and
the Einstein tensor, will be also considered. The goal is, to gain a better un-
derstanding of multidimensional signals and visual processing. In vision-science
terms, nonlinear representations of dynamic visual inputs are considered. Such
representations are generic but of interest to the perception-action cycle. For
example, the points on (1) with significant curvature can track moving patterns
and the curvature tensor can be used to compute motion parameters [6, 3, 5]. In
this paper, however, we consider the theoretical aspects only. Applications have
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been presented elsewhere, including models of biological visual processing [6, 3,
5].

Geometric methods in computer vision most often deal with the extrinsic
geometry of objects in 3D space and how these objects and their motions project
on the image plane. However, the geometry of the hypersurface (1) has been
used for motion detection [8] with an algorithm based on the gradient of (1). It
has also been shown that the Gaussian curvature of (1) can be used to detect
motion discontinuities [14]. Our approach is related to the so-called structure-
tensor method - see [7] for a review - and this relationship will be discussed in a
forthcoming paper [4].

2 Translation with constant velocity

If the image sequence f(x, y, t) results from any spatial pattern moving with
constant velocity v = {vx, vy}, f is assumed to satisfy the constraint [2]

f(x, y, t) = f(x+ dx, y + dy, t+ dt), (2)

that leads to [2]

−∂f
∂t

=∇f · v, (3)

with ∇f being the spatial gradient of f . Finally the solution of (3) is

f(x, y, t) = f(x− vxt, y − vyt), (4)

showing that the image can be thought of as a “solitary wave” which moves,
without distortion, with constant velocity along a straight line and whose shape
is determined at any given time t by f(·, t).

2.1 Riemann curvature tensor

In this section we first summarize results that have been obtained previously [6,
3] and that will be compared to the results in the following sections.

If we compute the components of the curvature tensor (see Eq. 31 in the
Appendix) for the specific function f in Eq. 4, and then simplify all possible
ratios of components, we obtain the following results: 1

v1 = {R3221,−R3121}/R2121

v2 = {R3231,−R3131}/R3121

v3 = {R3232,−R3231}/R3221.
(5)

Here indices simply denote the fact that we obtain different expressions for v. All
representations vi were obtained by assuming the constant brightness constraint.
1 These and the following simplifications have been performed with the aid of the

software Mathematica [13].



Note that v1 is the classical solution obtained for the optical flow under the
assumption of constant spatial gradient [12] (this is not surprising since this
assumption is more general and includes the constraint in Eq. 4).

From Eqs. 5 we can obtain a further motion vector v4 = {v4x, v4y} with

v4x = sign(v1x)
√
R3232/R2121, v4y = sign(v1y)

√
R3131/R2121. (6)

It seems an interesting result that the sectional curvatures (cf. Eq. 31) de-
termine the direction of motion (but for the sign which is here taken from the
vector v1).

To summarize, we found four different combinations of R components that
are equal and equal to the motion vector in case that Eq. 4 holds (v = v1 =
v2 = v3 = v4). 2 We shall see in later sections, how these expressions might
differ for patterns other than (4).

2.2 Einstein tensor

As for the curvature tensor, we can obtain four expressions for the motion vector
by simplifying the components of the Einstein tensor G that is obtained from
the Riemann tensor through a contraction of the indices (see [11] for definition
and properties):

v1 = {G11, G21}/G31

v2 = {G21, G22}/G32

v3 = {G31, G32}/G33.
(7)

The expressions for the components of G contain first and second order deriva-
tives. Unfortunately, these expressions are too large to be printed here but are
available on this paper’s website [1].

As in Section 2.1 we can obtain a further motion vector v4 from the relation
{v2

4x, v
2
4y} = {G11, G22}/G33.

2.3 Scalar curvature

So far we have considered tensor-based representations of spatio-temporal pat-
terns. It can be useful, however, to consider also scalar quantities that can be
derived from S. The scalar curvature C is a contraction of R [10, 11]. Under the
constraint (4) C simplifies to

C =
2 (1 + v · v)

(
fξξfχχ − fχξ2

)(
1 +∇f ·∇f + (∇f · v)2

)2 (8)

2 Note that if we simplify the indices in Eqs. 5 and 6, i.e., we just set 3221/2121 =
3/1, 3121/2121 = 3/2, . . . , we obtain {3/1, 3/2} for the first three vectors and
{33/11, 33/22} for {v2

4x, v
2
4y}.



with f being a function of (χ, ξ) where χ = x − vxt, ξ = y − vyt, and ∇f =
{fχ, fξ}. The dot “·” denotes the scalar product and indices in fχ and fχχ
denote first- and second order partial derivatives respectively. Note that for zero
velocity, the 3D scalar curvature is just the 2D Gaussian curvature in (x, y), as
should be expected.

3 Lie transformation groups

So far we have considered spatio-temporal patterns that arise from a translation,
however, spatio-temporal patterns can result from a variety of transformations.
To investigate how the constant brightness constraint is modified in this case we
shall make use of the theory of Lie transformation groups [9].

If the image is transformed by the action of a linear one-parameter Lie trans-
formation group, whose infinitesimal operator Xλ = a1(x, y)∂/∂x+a2(x, y)∂/∂y,
λ being the parameter of the transformation, then the fundamental flow con-
straint can be written as

f(r, t) = f(r′, t+ dt), (9)

where r = {x, y} and r′ = r + dr. The transformation r → r′ results in

dx = x′ − x = a1(x, y)dλ dy = y′ − y = a2(x, y)dλ. (10)

A straightforward application (omitted here for brevity) of Lie group theory
shows that Eq. 9 leads to

−∂f
∂t

= Xλf
dλ

dt
=∇f · adλ

dt
, (11)

a(x, y) = {a1(x, y), a2(x, y)}T and here λ has been considered a function of t, as
it must be in case of motion.

If several transformation groups are considered, with differential operators
Xλj then Eq. 11 becomes

−∂f
∂t

=
∑
j

Xλjf
dλj
dt

=∇f ·

∑
j

aj
dλj
dt

 . (12)

Suppose dλj/dt = νj to be constant and that aj1 = aj1(y), aj2 = aj1(x), then
the solution of Eq. 12 is

f(x, y, t) = f

x−∑
j

aj1(y)νjt, y −
∑
j

aj2(x)νjt

 . (13)

For instance consider the general rigid motion in 2D, that is given by two trans-
lations along the coordinate axis and by a rotation; in this case a1 = {1, 0}, ν1 =
vOx, a2 = {0, 1}, ν2 = vOy, where O is the center of rotation. Then the velocity



of the center of rotation is just vO = ν1a1 + ν2a2 = {vOx, vOy} that can also be
obtained by usual kinematics. The rotation around O is given by a3 = {−y, x},
ν3 = ω, where ω is the angular velocity. Suppose vO and ω constant; Eq. 13
becomes

f(x, y, t) = f (x− vOxt+ ωyt, y − vOyt− ωxt) , (14)

where x, y are coordinates with respect to O.
For this general case, however, it seems difficult to analyze the effect of such

patterns on the spatio-temporal curvature without additional assumptions.
From Eq. 14 a rotation constraint is defined by

f(x, y, t) = f (x+ ωyt, y − ωxt) . (15)

As Eq. 15 itself, the results for this transformation can be obtained by simply
setting vOx = 0 and vOy = 0 in Eq. 14 and in the equations obtained below for
the transformation (14).

3.1 Riemann curvature tensor

For this type of input the vectors vi differ, and they depend on x, y, t, vOx, vOy, ω
and the first and second order derivatives of f(χ, ξ) with χ = x − vOxt + ωyt
and ξ = y − vOyt− ωxt.

However, we obtain interesting results if we further assume that the gradient
of f vanishes. In this case the components of R are:

R2121 = D
(
1 + t2ω2

)2
R3131 = D

(
vOy + tvOxω + xω − tyω2

)2
R3232 = D

(
vOx − tvOyω − yω − txω2

)2
R3121 = D

(
1 + t2ω2

) (
−vOy − tvOxω − xω + tyω2

)
R3221 = −D

(
1 + t2ω2

) (
−vOx + tvOyω + yω + txω2

)
R3231 = −D

(
vOx − tvOyω − yω − txω2

) (
vOy + tvOxω + xω − tyω2

)
with :
D = fχχfξξ − fχξ2

(16)

and f as a function of (χ, ξ) defined as above. It is straightforward to check that
in this case all the vectors vi (Eqs. 5 and 6) point in the same direction, which
is the direction of the vector:

{vOx − tvOyω − yω − txω2,−(vOy + tvOxω + xω − tyω2)} (17)

3.2 Einstein tensor

For the Einstein tensor, again, we could not obtain useful simplifications but for
the case of zero gradient. Surprisingly, the independent components of G are



equal to those of R in this case (but for the signs):

G33 = − R2121

G22 = − R3131

G11 = − R3232

G32 = R3121

G31 = − R3221

G21 = R3231

(18)

3.3 Scalar curvature

For zero gradient the scalar curvature simplifies to

C = −2D
(
1 + t2ω2

) (
1 + vOx

2 + vOy
2 + 2vOyxω − 2vOxyω +

(
t2 + x2 + y2

)
ω2
)

(19)

Note that for zero rotation and velocity, C is, in coordinates (χ, ξ), the 2D
Gaussian curvature (with zero gradient).

4 Translation with time-dependent velocity

We now consider the more general case where the image shift contains higher-
order terms, i.e., the motion can be accelerated, i.e.,

f(x, y, t) = f(x− d1(t), y − d2(t)). (20)

4.1 Riemann curvature tensor

With the constraint in Eq. 20, we still obtain for the curvature tensor

{R3221,−R3121}/R2121 = {d′1(t), d′2(t)}, (21)

but the other three expressions {R3231,−R3131}/R3121, {R3232,−R3231}/R3221,
and {R3232, R3131}/R2121 do not simplify to yield the velocity components.

However, if we assume that the gradient of f(χ, ξ) vanishes (fχ2 + f2
ξ = 0),

we obtain the following relations:

{R3231,−R3131}/R3121 = {d′1(t), d′2(t)}
{R3232,−R3231}/R3221 = {d′1(t), d′2(t)}
{R3232, R3131}/R2121 = {d′1(t)2, d′2(t)2}

(22)

i.e., the motion vectors v2, v3, and v4 are obtained only for local extrema of
f(χ, ξ) (that are extrema of f(x, y) also).



4.2 Einstein tensor

For the Einstein tensor under the constraint (20) we could not obtain any simpli-
fications. However, under the additional constraint of zero gradient (see above)
we obtain:

{G11, G21}/G31 = {d′1(t), d′2(t)}
{G21, G22}/G32 = {d′1(t), d′2(t)}
{G31, G32}/G33 = {d′1(t), d′2(t)}
{G11, G22}/G33 = {d′1(t)2

, d′2(t)2}
(23)

4.3 Scalar curvature

In case of the additional assumption of zero gradient (see above), the scalar
curvature simplifies to:

C = 2(1 + d1
′(t)2 + d2

′(t)2)(fξξfχχ − fχξ2) (24)

with f being a function of (χ, ξ) where χ = x− d1(t), ξ = y − d2(t).

5 Discontinuous motion

In this section we consider different types of motion discontinuities and how
they are represented by the curvature tensor. In particular, we will show that
the expressions for the vectors vi in Eqs. 5 and 6 differ. Therefore the differences
can be used as indicators of discontinuous motions [3, 4]. An exception are the
locations where the gradient of f vanishes (local extrema).

5.1 Velocity step

We first consider the case where the velocity vector changes suddenly from zero
to {vx, vy}, i.e. the image-sequence intensity f(x, y, t) is defined by

f(x, y, t) = f(x− vxγ(t), y − vyγ(t)) (25)

where γ(t) is the unit step function. We obtain

{R3221,−R3121}/R2121 = {δ(t)vx,−δ(t)vy} (26)

where δ(t) is the Dirac-Delta distribution.
Note that this vector is different from zero only at t = 0 when it points in

the direction of the motion vector {vx, vy}, i.e., −R3121/R3221 = vy/vx. This is
not the case for the other three vectors in Eqs. 5 and 6. For example, for v2 we
obtain:

−R3131/R3231 =
v2
yδ(t)

2
fχξ

2 + vyδ
′(t)fξfχχ − vy2δ(t)2

fξξfχχ + vxδ
′(t)fχfχχ

δ(t)2(vxvyfξξfχχ − vxvyfχξ2)
(27)



with f as a function of (χ, ξ) and χ = x − vxγ(t), ξ = y − vyγ(t). Similar
but different expressions are obtained for R3231/R3232 and R3131/R3232. For the
extrema of f(χ, ξ) (assumption of zero gradient as above), however, all the four
vectors (Eq. 5 and 6) point in the direction of {vx, vy}.

5.2 Onset of a spatial pattern

Here we consider the case:

f(x, y, t)→ f(x, y)γ(t) (28)

i.e., the spatial pattern f(x, y) is turned on at time t = 0.
We obtain the following results:

{R3221,−R3121}
R2121

= δ(t){fyyfx − fyfxy
fxy

2 − fyyfxx
,
fxfxy − fyfxx
fxy

2 − fyyfxx
}

{R3231,−R3131}
R3121

= { δ(t)
2fyfx−f(x,y)γ(t)δ′(t)fxy

δ(t)(γ(t)fxfxy−γ(t)fyfxx) , −(δ(t)2fx
2)+f(x,y)γ(t)δ′(t)fxx

−(δ(t)γ(t)fxfxy)+δ(t)γ(t)fyfxx
}

{R3232,−R3231}
R3221

= { −δ(t)
2fy

2+f(x,y)γ(t)δ′(t)fyy
−δ(t)γ(t)fyyfx+δ(t)γ(t)fyfxy

,
−δ(t)2fyfx+f(x,y)γ(t)δ′(t)fxy
−δ(t)γ(t)fyyfx+δ(t)γ(t)fyfxy

}
{R3232, R3131}

R2121
= {−δ(t)

2fy
2+f(x,y)γ(t)δ′(t)fyy

−γ(t)fxy2+γ(t)fyyfxx
, −δ(t)

2fx
2+f(x,y)γ(t)δ′(t)fxx

−γ(t)fxy2+γ(t)fyyfxx
}

(29)

Note that the four expressions, which are equal for translations, differ for this
specific dynamic pattern. For this type of input (Eq. 28) it is interesting to look
at the components of R for the case of zero spatial gradient. We obtain the
following results:

R2121 = γ(t)(−fxy2 + fyyfxx)/N
R3131 = (f(x, y)γ(t)δ′(t)fxx)/N
R3232 = (f(x, y)γ(t)δ′(t)fyy)/N
R3121 = 0
R3221 = 0
R3231 = (f(x, y)γ(t)δ′(t)fxy)/N
with:
N = 1 + δ(t)2

f(x, y)2

(30)

Note that two of the components are zero, such the the vector v1 is zero and
the vectors v2 and v3 are undefined due to a zero denominator.

By substituting δ for γ, δ′ for δ, and δ′′ for δ′ we obtain the results for
flashing pattern, i.e., f(x, y, t) → f(x, y)δ(t). The above results are a special
case of modulation, i.e. f(x, y, t)→ f(x, y)a(t) with a(t) = γ(t) and a′(t) = δ(t).



6 Discussion

Differential geometry provides powerful tools for analyzing the geometric struc-
ture of multidimensional manifolds. With these tools it is possible to construct
invariants that capture the structure of the manifold [10, 11]. We have consid-
ered the visual input as a manifold with a specific metric that is defined by
image intensity f(x, y, t) (it is the metric of the hypersurface in Eq. 1), and we
have looked at the curvature tensor R of that manifold as the most prominent
geometric invariant and at two specific contractions of R (we had also looked
at the Ricci tensor but had not obtained any meaningful result). In particular,
we have shown how selected constraints on f , that are related to motion, affect
these geometric invariants. By doing so we have found novel methods for the
computation of motion parameters.

Thus, the reported results show that relevant information about spatio-
temporal patterns can be gained by analyzing the above-mentioned curvature
measures. We have first considered translations and have obtained new expres-
sions for the flow fields in terms of the components of the Einstein tensor. We
have then generalized the usual constraint Eqs. 2 and 3 to the more general
case of transformations that form Lie transformation groups. For these transfor-
mations we have shown how the transformations giving rise to spatio-temporal
patterns are encoded by the curvature measures. Meaningful results, however,
have been obtained only for zero gradient, i.e. the local extrema of f(χ, ξ) (that
are extrema of f(x, y) as well) with coordinates (χ, ξ) depending on the transfor-
mation. Finally, we have also considered discontinuous motions that have been
described by step functions and Dirac-Delta distributions. These functions have
been analyzed analytically as global patterns, but, of course, the scope is to de-
tect local discontinuities and motion boundaries. In practical applications, the
size of the local neighborhood will be determined by the filters used to compute
the derivatives, and these filters can be implemented on multiple scales.

Methods based on the four motion vectors derived from R, i.e. Eqs. 5 and
6, have already been applied, both to obtain robust motion estimations and to
model biological motion sensitivity [6, 3, 5]. The authors had assumed that the
four motion vectors will differ in case of discontinuous motions and have used
these differences as indicators of occlusions and noise. Here we have shown that
the vectors do indeed differ for such patterns. It seems an important result that
the vector v1 still yields the correct motion in case of accelerated motions (Eq.
21) but the other three vectors do not (except for zero gradient). For discon-
tinuous motions the vector v1 again plays a distinct role and thus supports the
idea of confidence measures based on the differences among the vectors vi. The
question of how many vectors to use in which combinations still needs further
investigation, but applications show that the use of all four vectors improves the
results compared to using only two or three vectors.

In conclusion, we have shown that the intrinsic geometry of spatio-temporal
patterns, generated by specific transformations, provides useful information on
the parameters of the transformations and new insights for the coding of motion
and dynamic features.
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A Components of the Riemann curvature tensor

R2121 = (fyyfxx − fxy2)/(1 +∇f)
R3131 = (fttfxx − fxt2)/(1 +∇f)
R3232 = (fttfyy − fyt2)/(1 +∇f)
R3121 = (fytfxx − fxtfxy)/(1 +∇f)
R3221 = (fytfxy − fyyfxt)/(1 +∇f)
R3231 = (fttfxy − fxtfyt)/(1 +∇f)
with:
1 +∇f = 1 + fx

2 + fy
2 + ft

2

(31)


