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eralized and that in the case of three images there exist two independent trilinear relations between the
coordinates of the images of a 3-D line.

Key-words: Invariants, Geometry, Geometry of N cameras, Grassmann-Cayley algebra, Pliicker relations,
multiple cameras stereo.

(Résumé : tsup)

Original version completed in June 1995, updated October 1995

Unité de recherche INRIA Sophia-Antipolis
2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex (France)
Téléphone : (33) 93 65 77 77 — Télécopie : (33) 93 65 77 65



Sur la géométrie des correspondences entre
points et droites dans N images

Résumé: Nous étudions les relations algébriques et géométriques entre les correspon-
dences de points et de droites dans un nombre arbitraire d’images. Nous proposons
pour ce faire d’utiliser le formalisme de 'algébre de Grassmann-Cayley qui nous
apparait comme 'un des moyens les plus simples pour exprimer de maniére effective
(c’est-a-~dire permettant les calculs) des propriétés géométriques et algébriques.

La situation dans le cas des points est assez bien comprise. Il n’y a que trois types
de relations algébriques sur les coordonnées images d’un point 3-D : des relations
bilinéaires apparaissent lorsqu’on considére des couples d’images et induisent les
contraintes épipolaires, bien connues; des relations trilinéaires apparaissent lorsque
l’on considére des triplets d’images, et des relations quadrilinéaires apparaissent
lorsque I’on considére des quadruplets d’images.

De plus nous montrons que pour un triplet d’images donné, lorsque les contraintes
épipolaires sont connues, il n’y a qu’une relation trilinéaire algébriquement indé-
pendante et qui peut étre utilisée pour prédire les coordonnées d’'un point dans la
troisiéme image & partir des coordonnées des deux autres, ceci méme dans les cas ou
la géométrie épipolaire ne permet pas de le faire (points dans le plan trifocal, centres
optiques alignés). Nous monstrons aussi que les relations trilinéaires impliquent les
bilinéaires, c’est-a-dire les contraintes épipolaires. Enfin nous montrons que les re-
lations quadrilinéaires sont algébriquement dépendantes des relations bilinéaires et
trilinéaires, et donc n’apportent pas a priori d’information supplémentaire.

Dans le cas des droites nous montrons que 1’équation classique de projection
perspective peut étre généralisée convenablement et que dans le cas de trois images
il existe deux relations trilinéaires indépendantes entre les coordonnées des images
d’une droite 3-D.

Mots-clé : Invariants, Géometrie, Géometrie de N caméras, algébre de Grassmann-
Cayley, relations de Pliicker, stéréoscopie.



Geometry and algebra of image correspondences 1

1 Introduction

Understanding the geometry of the correspondences between image primitives
that arise from the perspective projection of three-dimensional objects is fun-
damental for such applications as three-dimensional reconstruction from mul-
tiple views, for example stereo and motion, object recognition, image synthesis,
image coding. Recent theoretical efforts directed toward the development of
such an understanding have demonstrated the importance of projective geo-
metry as the language allowing the simplest description of the underlying phe-
nomena.

In the case of two cameras, the theory is almost complete, the main fact
being that correspondences between points in two images are completely des-
cribed by the epipolar geometry which can itself be summarized algebraically
in a 3 X 3 matrix of rank 2, the fundamental matrix [17, 18, 19]. Moreover, it
has been shown by several authors [9, 13, 26| that once the fundamental ma-
trix is known, and correspondences between points established, the 3-D scene
imaged by the two cameras can be reconstructed up to a projective transfor-
mation. The case of three images or more has not been studied as extensively
as the case of two. Faugeras and Robert [8] have shown that the knowledge
of the three fundamental matrixes of the three pairs of images could be used
to predict correspondences in a third image from correspondences in the other
two by a simple use of the epipolar geometry. We show in the main body of
this article that this method may fail in some cases (see also [31]).

A closely related problem is that of determining the number of degrees of
freedom of the set of the three fundamental matrixes of three views: can they
be arbitrary or do they have to satisfy some constraints? In [16, 8] the answer is
shown to be that they cannot be chosen arbitrarily and that they must satisfy
three algebraic constraints, reducing the number of free parameters from 21 to
18. An alternative to this approach based on the epipolar geometry has been
proposed by Hartley, Shashua and Werman [25, 12, 27] who have introduced
third-degree algebraic constraints on the coordinates of the three images of a
generic 3-D point or line which can also be used to predict coordinates in a
third image from the coordinates in the other two. These algebraic constraints
are called Shashua’s trilinearities or Hartley’s trifocal tensor. Hartley has
shown that they were identical. There are a number of questions related to
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2 Olivier Faugeras and Bernard Mourrain

this tensor which have been left partly unanswered by the previous two authors
and which we address in this paper. These are the following: is this tensor
unique or are there other tensors? Does it have to satisfy algebraic constraints
like the fundamental matrixes? Does it provide a solution to the transfer
problem when the epipolar method fails?

We answer these questions and others by proposing a systematic way of
deriving the necessary and sufficient algebraic relations which have to be sa-
tisfied by the coordinates of image points in an arbitrary number of images in
order for them to be the images of a single 3-D point. We show that these
relationships are of three types only:

Bilinear: This is the well-known epipolar condition provided by the funda-
mental matrix.

Trilinear: These are the trilinear relations of which there are a priori 12 for
three views among which two only are algebraically independent once we
take into account the epipolar constraints.

Quadprilinear: These are the quadrilinear relations which appear when the
number of views reaches four.

We describe the algebraic relations between these three classes of relations as
well as the algebraic relations which must be satisfied by the coefficients of the
trilinear ones.

We also investigate the case of line correspondences. The analysis is made
a bit more complicated than in the case of points because the perspective
projection equation has been developed for points. We show that this equation
can be very simply extended to lines by representing them with their Pliicker
coordinates. The perspective projection matrix for lines is shown to be a 3 x 6
matrix whose rows are the Pliicker coordinates of the lines of intersection of the
three planes defined by the row vectors of the perspective projection matrix
for points.

This representation allows us to extend in a fairly simple way the analysis
which has been done for points. The salient result is the existence of two
independent trilinear relations between the coordinates of the images of a 3-D
line in three views. These two trilinear relations are the formal analog of the
epipolar constraint that applies to the images of a 3-D point in two views.

INRIA



Geometry and algebra of image correspondences 3

The thrust of the paper is to show that all these relations can be deri-
ved systematically and very simply from the pinhole camera model using the
tools of the Grassmann-Cayley algebra. This, we believe, establishes the ade-
quate theoretical framework for analysing the geometry of the correspondences
between N views. We start demonstrating this claim by answering some of
the questions related to their uniqueness and the number of their degrees of
freedom.

2 Notations and definitions

We use projective geometry in all this article. An elementary introduction can
be found in [24, 7]. Capital letters indicate 3-D entities, lower case letters 2-D
or image entities. Bold letters indicate vectors or matrixes. For example, M
represents a 3-D projective point and M one of its 4 X 1 coordinate vectors,
m; is the image of M in the i-th camera, m; one of its 3 X 1 coordinate vectors
of coordinates z;, y;, 2;. The i-th perspective projection matrix is noted P;, a
3 x 4 matrix whose 3 row vectors will be denoted by the digits 3%(i—1)+7, i =
1,---,N, 7 =1,2,3. The perspective projection equation of the first camera
can thus be written as:

1
m1:P1M: 2 M,
3
or
Ty :a=1-M:2-M:3-M (1)

where for example 1 - M represents the usual inner product of the row vector
1 with the column vector M. This equation is equivalent to the three (linearly
dependent) equations

12 M—y1-M=0
y13'M—Zl2'M:0 (2)
zll-M—x13-M:0

RR n°2665



4 Olivier Faugeras and Bernard Mourrain

Finally, given four row or column vectors U;,72 = 1,--- ,4 of size four, the no-
tation [Uy, Uy, Us, Uy will denote the 4 x 4 determinant of these four vectors,
their bracket.

Let us denote by E, the vector space of dimension n on the real numbers.
We will be using both the cross-product of two vectors x and y of F3 = R3,
noted x X y, a vector of E3 and the exterior product of two vectors of E,,

2
noted x Ay, a vector of A £, which is a vector space of dimension i.e.

n
2 bl
also 3 for n = 3. The projective space associated to K, ; will be denoted by
P". We assume that the reader is familiar with the basic results of the exterior
calculus and the Grassmann-Cayley algebra. A good introduction, targeted at
computer vision researchers, can be found in [3], more details can be found in
the quite accessible book by Sturmfels [28]|, and in the more advanced article
by Barnabei et al. [2]. A very brief summary of the material required to read

this article is given in Appendix B.

3 Bilinear constraints

Let us start with the case of two cameras. Even though this case is now well
understood, it is worthwhile going through its analysis because it turns out
that the way we approach it is rather different from the usual way and can be
extended in a straightforward fashion to the trilinear and quadrilinear cases.
Let us choose the first two equations among the three equations (2) for each
of the two cameras. These four equations can be written in matrix form as:

z12 —y1

y13 - 212 _

25 — 124 M=0 3)
y26 — 225

The 4 x 4 matrix which appears in this equation is a linear function of the
two points m; and msy. The question is, what is the necessary and sufficient
condition that the two points m; and mo must satisfy so that they can be
considered as the images of the same point M. The answer is well known and
is that they must satisfy the epipolar constraint [1, 15, 7, 11].

INRIA



Geometry and algebra of image correspondences )

Looking at equations (3) we see that the condition we seek is that the 4 x 4
matrix must be of rank less than or equal to 3 which is equivalent to writing
that its determinant must be equal to 0. Expanding this determinant, we find

Y192 (mgF172m1)

where F'y 5 is a 3 X 3 matrix which we recognize as the fundamental matrix of
the first two images [17, 10, 30].

Its elements are 4 x 4 determinants built from the row vectors of the pers-
pective projection matrices P; and P,. In detail

2,3,5,6] —[1,3,5,6] [1,2,5,6]
F1,2 = _[27 3747 6] [1a 3747 6] _[172747 6] - (4)
2,3,4,5] —[1,3,4,5 [1,2,4,5]

the factor y1y2 comes from the choice of the specific equations among (2) to
build the determinant. Another choice of equation will produce another factor
but the matrix F; » will remain unchanged. Note that this constraint can also
be rewritten in a symmetric way, using some standard tools of the Grassmann-
Cayley algebra described in the appendix B:

(12A3+ 13 A1+ 211 A2)A (225 A6+ y26 A4+ 224 N5)=0 (5)

which also explains why it is independent of the choice of the equations. This
constraint can be interpreted geometrically as follows. The vectors 1,2,3
represent planes through the optical center of the first camera. So 2 A 3,1 A
3,1 A 2 are lines through this center and (212 A3 + 113 A1+ 211 A 2) is
just the optical ray from the center to the point M or m;. The equation (5)
corresponds to the fact that the rays from the center of the two cameras have
a common point M in the space P3.

The fact that the fundamental matrix F; , is of rank less than or equal to
two can be found in several ways. The first way is to expand its determinant
as a function of the brackets [¢,7,k,!] and use a straightening algorithm to
rewrite it in standard form (see |28, 23|). The result is found to be the null
polynomial. The second way is to show that there are scalars A;,,72 = 1,2,3
such that Aif; + Aofy + A3f; = 0 where the f;’s are the column vectors of F 5.
This is done explicitly in the next paragraph.

RR n"2665



6 Olivier Faugeras and Bernard Mourrain

The epipoles can also be found quite easily. One way is to find values of
*1,Y1, 21 such that the line (212 A3 4+ 113 A1+ 211 A 2) contains the center
of the second camera which is the intersection 4 A 5 A 6 of the three planes.
Using the standard operators of intersection and sum in the Cayley Algebra
(see |2, 22] or Appendix B), this yields

(.’1’}1[2,4,5,6] - y1[1747576])3
—($1[3,4,5,6] - Z1[1747576])2 + (y1[3747576] - 21[2747576])1 =0

As the vectors 1,2,3 are independent, we obtain a system of 3 (dependent)
equations, which determines the epipole e; 5.

Another way to compute the coordinates of the epipole e;, in the first
image is to use the cross-product of any two row vectors of F;,. Computing
the cross-product of the first two rows, we find a vector whose coordinates
are quadratic polynomials of the brackets. Rewriting these polynomials in
standard form, we find that e; 5 is proportional to the vector

[[1,4,5,6], [2,4,5,6], [3,4,5,6]]"

Similarly, the epipole es; in the second image is found to be represented by
the vector
T
[1,2,3,4], [1,2,3,5], [1,2,3,6]]

These vectors can be also be interpreted as follows: the coordinates of the
image m; of a point M in the first camera are given by [1-M,2-M,3 - M]~.
As the epipole e; 5 is the image of the center of the second camera defined by
4 A 5 A\ 6, the coordinates of e; o are
[1-4A5A6,2-4A576,3-4A5A6]"
=[[1,4,5,6], [2,4,5,6], [3,4,5,6]]" .

One can check that Fi,e;2 = 0:

> evalm(F12 &* E12);

[2,3,5,6][1,4,5,6] — [1,3,5,6][2,4,5,6] + [1,2, 5,6][3,4, 5, 6]
—[2,3,4,6][1,4,5,6] + [1,3,4,6] [2,4,5,6] — [1,2,4,6] [3,4, 5, 6]
[2,3,4,5][1,4,5,6] — [1,3,4,5][2,4,5,6] + [1,2,4, 5] [3,4, 5, 6]

INRIA



Geometry and algebra of image correspondences 7

> map(stgt,");

[0 0 0]

These computations have been done in MAPLE. The function stgt that we
have implemented (see [23]) gives a normal form to any polynomial in the
determinants of 4 points. This normal form is zero if and only if the polynomial
is a consequence of the Pliicker relations. This evaluation shows that

[1,4,5,6]f, + [2,4,5,6]f + [3,4,5,6]f; = 0

4 Trilinear constraints

Let us now add a third image. Equation (3) can be written as

[ .’L‘12 — yl]- i
Y13 — 212
.’L‘25 — y24 _
e g | M=0 (6)
ZL‘38 - y37
L y39 — 238 i

where we have again chosen arbitrarily the first two equations in (2) for each
camera. The results to come are independent of this choice.

The 6 x 4 matrix which appears in this equation is a linear function of the
three points my, mo, m3. The question is, what is the necessary and sufficient
condition that the three points m; must satisfy so that they can be considered
as the images of the same point M. The answer comes again from elementary
linear algebra and is that the 6 X 4 matrix must be of rank less than or equal
to three. This is equivalent to writing that all its 4 x 4 subdeterminants are
zero. There are two types of such determinants:

1. Those which contain two rows arising from one camera and two rows
from another.

2. Those which contain two rows arising from one camera, one row from a
second camera and one row arising from the third camera.

RR n°2665



8 Olivier Faugeras and Bernard Mourrain

There are three determinants of the first type and, as seen in the previous
section, they correspond to the three fundamental matrixes of the three pair
of cameras. There are 12 determinants of the second type. Computing for
example the one built from the first two rows, the third and the fifth and
dividing by y;, we find the following expression

T12223(2,3,5,8] — 212293 (2,3,5,7] + z1y2 3 (2,4, 3, 8]
—21Y2Y31(2,4,3,7] — 1223 (1,3,5,8 + y1 22 y3[1,3,5,7]
—y123y2[1,4,3,8] + y1y2y3[1,4,3, 7] + z1 22 23 [1, 2,5, 8]
—z212293[1,2,5,7] — z1y2 23 [1,2,4,8] + 21 y2 93 [1,2,4, 7]

Just as in the case of the bilinear constraints, the factor y; is irrelevant and
comes only from the choice of the two equations for the first camera. The
other factor is seen to be a polynomial of total degree three in the coordinates
of the points m; and linear in the coordinates of each of them. It is a trilinear
function analog to those discussed by Shashua and Hartley [25, 12]. It has
only 12 nonzero coefficients. If we keep the first two rows fixed, there are
four such determinants, hence a total of 12 trilinearities. Let us denote by
T; jki(my, ma, m3) such a trilinearity obtained with the rows ¢,j,k,l of the
matrix appearing in the left handside of (6).

A geometric interpretation of this result can be obtained as follows. The
line 212 A3 + 13 A1+ 211 A 2 is the optical ray of the point my in the first
camera. Similarly 25 — y24 (resp. 38 — y37) is a line in the second (resp.
third) retinal plane or a plane through the center of the second (resp. third)
camera in P3. More precisely, the first plane (resp. the second) is the plane
containing the optical ray of my (resp. m3) and the line of intersection of
the two planes 4 and 5 (resp. 7 and 8). To see this for the first plane, it is
sufficient to write zo = M -4 and y, = M- 5. Note that the line of intersection
of those two planes goes through the point M. The trilinearity condition is
just the condition that this line and these two planes have a common point in
P3. Algebraically, this is written as

T1235(m1,ma,m3) = (212 A3+ 113 A1+ 211 A 2) A (225 — y24) A (238 — y37)
(7)

This is shown in figure 1. Note that the condition 77535 = 0 does not imply

that the three optical rays intersect at a point, in fact they are in general skew.

INRIA



Geometry and algebra of image correspondences 9

We analyse in detail the geometric interpretation of the trilinearities in section

4.2.

.’L’ll/\2+y12/\3+Z13/\1
| 225 —pa=0
(225 — y24) A (238 — 1 248 — ysT = 0

Figure 1: The trilinearity 7735 expresses the fact that the optical ray z,;2 A
3+y13A1+42;1A2 intersect the line of intersection of the two planes 25— 3,4
and 38 — y37.

All these trilinear relations and the epipolar constraints or bilinear relations
are not independent. For example, it is known [8] that the bilinearities satisfy
the following three relations:

T :
€ 1,-1Fiiy1€i-1=0 fori=1,2,3

where the values of the indexes are computed in the obvious manner.
We now analyse the relations between the trilinearities and the bilinearities.

RR n"2665



10 Olivier Faugeras and Bernard Mourrain

4.1 Algebraic relations between trilinearities and bili-
nearities

It is possible to completely describe the set of algebraic relations between the
trilinearities and the fundamental matrices.

It is convenient to classify the trilinearities into three groups, depending
upon which camera plays a different role. Using the matrix which appears
in equation (6) and the compact notation of equation (7), we put in the first
group, those trilinearities built from the first two rows of matrix (6), in the
second group those trilinearities built from the third and the fourth rows of
(6), and in the third group those trilinearities built from the fifth and the sixth
rows of (6). In detail: The relations between these trilinearities and the binary

Group I

T1235 = (2612 A 3—|—y13/\ 1+ 1A 2) A (.’1325 — y')4) AN (.’L’38 —y37)
T1’2’4’5 = (2612 A3+ y13 AT+ 1A 2) A (y — 295) A (.CL’38 — y37)
T1236 = (:1:12/\3—|-y13/\ 1+211/\2) /\(.’13‘25 — Y2 4)/\(@/39 —Z38)
T1246_(:1:12/\3—|-y13/\1—|-z11/\2)/\( 5)/\(3/39—238)
Group II

T1’3’4’5 = (2612 — yl]-) A (.’1324 NS+ y25 A6+ 226 AN 4) AN (.’L’38 — y37)
T2’3’4’5 = (yl?’ — 212) A (.CL’24 NS+ y25 A6+ Z26 A 4) A (.CL’38 y37)
Ti346 = (212 —y11) A (224 A5+ 125 A6 + 206 A 4) A (y39 — 238)
To346 = (Y13 — 212) A (224 A5+ 125 A 6 + 206 A 4) A (y39 — 238)
Group III

T1,3,5,6 = (2612 — yl]-) A (.’1325 — y24) A (5037 A8+ y38 A9+ 239 A 7)
T1,4,5,6 = (2612 — yl]-) A (y26 — 225) AN (5037 A8+ y38 A9+ 239 A 7)
T2,3,5,6 = (yl?’ — 212) A (.CL’25 — y24) AN (5037 A8+ y38 A9+ 239 A 7)
T2456 = (y13 — 212) A (y26 — 225) AN (:c37/\8—|-y38/\9—|-239/\ 7)

Table 1: Definitions of the trilinearities.

relations are easily found to fall into two categories, the intra-group relations

INRIA



Geometry and algebra of image correspondences 11

of the type of equation (8) and the inter-group relations of the type of equation

(9)-
All possible relations are summarized in figure 2 where the intra-groups

relations are represented by three types of lines and the inter-groups by a
fourth type.

T1,2,3.57 T1,2,4,5""

Group I

Group II

Group III

- - T274757& - = *\;T273,5,6""

Figure 2: The relations between the 12 trilinearities fall into two categories,
intra- and inter-relations represented in the figure by different types of lines.

The simplest way of explaining the method to obtain algebraic relations
between trilinearities and bilinearities and in general is to use Cramer’s rela-
tions (see appendix A) between the row vectors of the matrix appearing in
equation (6).

Let us for example derive the relation between 71535, 11245, and F; 5. We
consider the row vectors Cq, C,, C3, Cy4, Cy which are related by the Cramer’s
relation:

[027 C37 C47 C5]Cl - [Cl7 C37 C47 C5]CQ + [Cb CQ) C47 C5]C3 - [Ch 027 C37 C5]C4+
[017 CZ) C37 C4]C5 =0

RR n"2665



12 Olivier Faugeras and Bernard Mourrain

Multiplying this equation by C; A C; A 7 we obtain the following relation,
typical of the intra-relations within groups:

Ty 2.45c0eff(Ty235,Y3) — Tho35c0eff(Th245,y3) — T3y2(m) Fyom;)(Fy3my)3 = 0

(8)

If we multiply by C; A C4 AT we obtain a relation between 7T 535 and T 345,
typical of the inter-relations between groups:

=0
(9)

coeff(Ty 3.45,Y3)T1.235 — coeff(T1235,y3)T1 345 — Tacoeff(Ty 356, 23)(m3 Fiomy)

All intra- and inter-relations for the group I are summarized in the table 2.
They are obtained by applying Cramer’s rule to the points (Cy, C,, C3, Cy4, Cs),
(Cl, Cg, Cg, C4, Cg), (Cl7 CQ, Cg, C5, CG)7 and (Cl, CQ, (347 (357 C6)

Let us comment on these relations a little, more will be said later about
their geometric interpretation. For example, let is consider T} 535 and 77 45.
If the pixels m; and my satisfy the epipolar constraint (mjF;sm; = 0), then
the first equation in table 2 shows that the two trilinearities are algebraically
dependent, i.e. that if one is zero for some triple of points (my, mo, m3), then
the other one is in general also 0 for the same triple of points. The words "in
general" mean, for example, that if 7' 5 3 5 is zero then in general the coefficients
of z3 and y3 are not both equal to 0 and hence our equation implies that 77 5 45
is also equal to 0.

Note that since the term mI'F; om; is multiplied by three factors, namely
3, Y2, and (Fy3my)z, this situation may appear in other cases where those
factors become 0. In the case where z3 = 0, it is easily verified that the two
trilinearities are not algebraically dependent since, for example, Ty 235 = 0
and z3 = 0 imply that coeff(T}235,y3) = 0. On the other hand the two cases
yo = 0 and (F;3my)3 do imply that the two trilinearities are algebraically
dependent.

Let us now study in more detail the information contained in the trilinea-
rities.

INRIA
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COGH(T1,2,4,5, 37’3) 1,2,35 — coeff( 1,2,3,55 y3)T1,2,4,5 - $3y2(F1,3m1)3(m§F1,2m1)
coeff(T1 2.36,y2)T1 235 — coeff(T1 235,12)T123,6 — T2y3(F12my)3(miFy 3my)
coeff(T 3.45,y3)T1 235 — coeff(T1 235,y3)T1 345 — w3coeff(Ty 356, 23)(m3 Fy omy )
coeff(Th3.45,y3)T1 235 — coeff(T1 235,y3) T2 345 — £3coeff(Th 356, 23)(m3 Fy omy )
coefl(T 35.6,y2)T1 2,35 — coeff(T1235,2)T1 35,6 + @2coeff(Ty 345, y2)(m] Fy 3my )
COfo(Tf) 3,5,69 yo)Tl 235 — COfo(Tl 2,35, y'))Tf),375W6 — mgcoeff(Tgngﬁ, )(m3 F1 3m1)

Coeff(Tl,zAﬁ, Z')) 12,45 — coeff( 1,2,4,5 Z’))TI,ZA,G - yzys(FLzml)l(mgmel)

coeff(Ti345,y3) 1245 — coeff(Ti245,y3) 1345 — z3coefl(Ti a5, 23)(mI F12m;
COGH(T2,3,4,5, ys) 1,2,45 — coeff( 1,2,4,55 y3)T9,3,4,5 - 373C0€ff(T2,4,5,6, 23)(m§F1,2m1
coeff(T1 456, 22)T12,45 — Coeff(Tl 245, 22) 1456 + yocoell(Th 345, 2)(m3 Fy 3my
Coeff(TgA,g),G, Zf))Tl 2,45 — COCff( )Tf)74,5,6 + yQCOeﬂ‘(TQ7374,5, mg)(m§F1,3m1

Z22
Z22

Coeff(Tl,z,s,G, y3) 1,2,46 — coeff( ,2,4,65 y3)T1,2,3,6 - Z3y2(F1,3m1)1(m§F1,2m1)

1
coefl(Tr3.46,y3) 1246 — coeff(T1246,Y3)T2346 + 23c0efl(Th 456, 23)(m3 Fy omy)
coefl(T13.46,Y2)T1246 — coeff(T1246,Yy2)T1 346 + 23c0efl(T1 456, z3)(mi Fy omy)
COGH(T1,4,5,6, Z?)Tl 24,6 — coeff( 1,2,4,65 Z‘))T1,4,5,6 + yzCOfo(Tl,3,4,6, xz)(mgFl,gml)
coefl(Th 456, 22)T1246 — coeff(T1 246, 22)Tra56 + yacoefl(Ts 346, z2)(mI Fy 3my)
coeff(To3.46,93)T1,2,36 — coeff(T1236,y3) 12346 — 2z3coeff(Ts 356, 23)(m5 Fqomy)
coeff(T1 3 46, yS)T1,2,3,6 — coeff(T1236,Y3)T1 34,6 — z3c0eff(T1 356, 3)(m] Fy omy)
coeff(T1 356, 92)T1,2.36 — coeff(Th 236, y2)T1 356 + Tacoeff(Th 346, 22)(m3 Fy 3my)
coeff(To 356, y2) 1236 — coeff(Th 236, y2)To356 — T2coeff(Th 346, 22)(mi Fy 3my)

T T
Tioas - Ti236 — T1235 T1246 + Yoys(m; Fiomy)(mz Fy3m;)

Table 2: The relations of the elements in the group I.
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14 Olivier Faugeras and Bernard Mourrain

4.2 Geometric Information contained in the trilineari-
ties

We have seen that if three image points my, msy, mg3 are such that they zero
a given trilinearity, for example 77535, it means that the optical ray of m;
intersects the line of intersection of two planes going through the optical ray
of my and mg, respectively (see figure 1).

4.2.1 (mq,mg,m3) zero two trilinear relations

Let us now see what happens if the three points are such that they zero another
trilinearity. Several cases are possible: first the second trilinearity can be in
the same group, i.e I, or not, and second it can be related to 77 235 or not. Of
course, the geometric information contained in the fact that two trilinearities
are equal to 0 is equivalent to the one contained in their algebraic relations.

Let us consider the case of Tj345, also in group I, which is related to
Ti235- The optical rays of m; and m, intersect which can also be understood
algebraically by the fact that the two trilinearities are related through the
fundamental matrix F; 5, as shown in table 2.

Let us now move to the case of T} 546, also in the group I, but unrelated to
Ti235. The situation is shown in figure 3: the optical ray of m, intersects the
two lines of intersection of the planes x25 — 924 and 38 — y37 on one hand and
Y26 — 255 and y39 — 238 on the other hand. In particular, it is seen in this figure
that none of the three optical rays intersect in general. On the other hand,
if we assume that any two of the three optical rays intersect, then it implies
generically that the third optical ray goes through their point of intersection.

Let us now move to the case of Tj 345, in the group II, and related to
Ti235 through the fundamental matrix F; 5. The optical rays of m; and m,
intersect which can also be understood algebraically by the fact that the two
trilinearities are related through the fundamental matrix F;,, as shown in
table 2.

Let us finally consider the case of 755456, in the group II, but unrelated to
T 235. Like in the second case above, the fact that 7% 535 and 75 3 46 are both
equal to 0 does not imply that the three optical rays intersect at a point.

INRIA
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(1'25 - y24) A (.’L’38 - y37)

Figure 3: A geometric interpretation of 77535 and 715 46: none of the three
optical rays intersect in general.
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16 Olivier Faugeras and Bernard Mourrain

4.2.2 (mq,mg,m3) zero three or more trilinear relations

From table 2, we can extend this kind of analysis to the case where more than
two trilinearities are equal to 0. One of the salient results of this analysis is
that if four trilinearities within the same group are equal to 0 for some triplet
of image points, this does not imply that the three corresponding optical rays
intersect. For example, in the case of the group I, it only implies that the first
optical ray intersects the second and the third. Similarly, for the group II, it
only implies that the second optical ray intersects the first and the third and,
for the group III, it only implies that the third optical ray intersects the first
and the second.

In order for the three optical rays to intersect at a point, one trilinearity
must be chosen from each group. For example, if we choose T35 in the
group I, Ty 345 in the group II, and 73356 in the group III, then it can be
seen from table 2 that the conjunction of the first and the second trilinearities
implies in general that the first two points satisfy the epipolar constraint, the
conjunction of the second and the third trilinearities implies in general that
the second and the third points satisfy the epipolar constraint (apply Cramer’s
rule to the rows (Cy, Cj3, Cy4, Cs, Cq)), and that the conjunction of the first
and the third trilinearities implies in general that the first and the third points
also satisfy the epipolar constraint (see table 2). Furthermore, it can be seen
that three is the smallest number of trilinearities necessary to ensure that the
threee optical rays intersect.

4.3 Recovering the three fundamental matrices from
two trilinearities

On the other hand, is it possible to recover the binary relations from a smaller
number of trilinearities? This is interesting because this would be an alter-
native way to estimate the epipolar geometry of a set of three cameras. We
now show that the complete epipolar geometry or, equivalently the three fun-
damental matrices, can be recovered from the knowledge of only two of the
trilinearities.

INRIA



Geometry and algebra of image correspondences 17

4.3.1 Recovering the epipoles

Let us start with the epipoles. It is clear geometrically and can be verified alge-
braically that for each of the twelve trilinearities, let us call it 7" for simplicity,
the following three relations hold:

T(ml, €21, 63’1) =0 \V/ml
T(el’g, ma, 63’2) =0 Vmg (]_0)
T(e13,e23,m3) =0 Vmg

Let us consider in turn each one these three relations and show how they can
be used to determine effectively the epipoles. In the case of T} 535, we rewrite
it as

T1235(m1, ma, m3) = A(mg, ms)zy + B(mg, m3)y; + C(ma, m3)z

Each polynomial A, B, C' is homogeneous linear in the coordinates x5,y and
x3,v3. Hence each one of them defines a collineation from P! to PL. Let us call
these collineations Fy, Fig, Fo. In order to see this, let us for example write

A(mg, m3) = cxox3 + droys — aysTs — byays

the condition A(mg,m3) = 0 is equivalent to

(193 + b
02 -
603 —|— d
where we have defined 0, = Z—'g’ and 03 = ;—z as two projective parameters

on the two projective lines. Because T(my,ez21,e31) = 0 Vmy implies that
Aez1,e31) = Bleas,ez1) = Clezr,e31) = 0, we know that there exists at
least one value 63 of fy such that:

Fa(05) = Fp(05) = Fo(05) (11)

This is equivalent to the fact that 69 is a fixed point of the two collineations
FXIFB and Fg LF.. The fixed points of these two collineations are obtained
by solving the two quadratic equations

0 =F;'Fp(0) and 0= F5;'Fc(0)

RR n"2665
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The coefficients of these two equations are shown to be of degree two in the
brackets and it is shown by reduction and normalization that they are both
divisable by e51[2]62 — ez 1[1], the remaining factors being in general different.
This shows constructively how to recover the ratio of the first two coordinates
of e from Tj535. Of course, the ratio of the first two coordinates of e3; is
obtained, for example, from the one of those of e;; by applying any one of
the three collineations. The same reasoning applied to 7} 246 shows how to
recover the ratio of the second to the third coordinates of ey ; and e3;.

Let us now consider the second of the three equations (10) and show that
the coordinates of ej9,e13,€32, and e3; can be recovered from 7,35 and
Ti946. Let us rewrite the first trilinearity as follows

Ti235 = P(my,m3)zs + Q(mq, m3)ys

the coefficients P and () are homogeneous and linear in the coordinates of m,
and in the first two coordinates of mg. This means that they can be rewritten
as

P(my,mg) = l(mq)zs + l1(m1)ys and Q(mq,m3) = lo(mq)zs + I3(m1)ys

The polynomial {(my) (resp. l3(my), l2(my), l3(m1)) is homogeneous and linear
in the coordinates of m; and hence defines a line in the first retinal plane. The
equation P(mq,m3) = 0 (resp. Q(mq, m3) = 0) therefore defines a pencil of
lines generated by [ and [; (resp. lp and l3) in the first retinal plane. Since these
two pencils have the same projective parameter (z3,ys3), they are in projective
correspondence. It is known that in that case (see for example [24]), the points
of intersection of two corresponding lines of each pencil is on a conic. In our
case, the equation of that conic is very simple :

[(mq)l3(mq) — li(m1)la(my) =0

Let us show that this conic is singular and made of two lines which are the
images in the first retina of the lines 4 A5 and 7 A8, going through the second
and the third optical centers, respectively. In order to see this, let us consider
first the line 4 A 5. Any optical ray (Oq,m;) that intersects this line at a
point M defines a plane going through this point and the line 7 A 8. It is
clear geometrically that for all planes going through the line 4 A 5 (i.e. for all
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T2,y> in the equation of T} 5 35) the line of intersection of that plane with the
previous plane through 7 A 8 and M will go through M and hence intersect
(O1,my) (see figure 4). The conic therefore contains the image through the
first camera of the line 4 A 5.

4N53
TA8

Oq
O

Figure 4: The conic contains the image of the line 4 A 5.

Let us now consider the line 7 A 8 and the plane defined by this line and
the optical center O;. It is 7 A 8. For each plane going through the line 4 A 5
(i.e. for all zo,y,) the line of intersection of that plane with the previous plane
is of course contained in that plane and hence intersects all optical rays with
origin O; and contained in the plane defined by O; and 7 A 8 (see figure 5).
The conic therefore contains the image through the first camera of the line
TA8.

The corresponding situation in the first retinal is shown in figure 6. We
have represented in this figure the lines of equation [ = 0 (resp. l» = 0), which
is the image of the line of the intersection, noted 5 A 8 (resp. 4 A 8), of the
planes 5 and 8 (resp. 4 and 8), the lines of equation {; = 0 (resp. I3 = 0),
which is the image of the line of the intersection, noted 5 A 7 (resp. 4 A T),
of the planes 5 and 7 (resp. 4 and 7), of the two pencils, as well as the lines,
noted 4 A5 and 7 A 8, which form the conic oocus of the points of intersection
of the corresponding lines of the two pencils.
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TA8

O3

O,

Figure 5: The conic contains the image of the line 7 A 8.

Note that the epipole e; 5 is on the image of the line 4A5 and the epipole e; 3
on the image of the line 7A8. These two lines are obtained in a straightforward
fashion from the trilinearity 7723 5.

If we now consider the trilinearity 7% » 4 6, Wwe obtain in a similar fashion the
image of the line 8 A 9 as the line joining the vertices of two pencils of lines
and the image of the line 5 A 6 as the line 4 A 5 in the previous case. The
epipoles e 2 and e; 3 are obtained by intersecting the images of the lines 4 A 5
and 5A 6, and 7A 8 and 8 A9, respectively. For each epipole, we also recover
the corresponding epipole in the third image, namely e3, for e; > and e3; for
e1,3. Indeed, the point e; 5 is on the image of the line 4 A 5 and corresponds to
a unique value of the ratio of the coordinates z3 and y3 when one considers the
two pencils of lines obtained from 77235 and to a unique value of the ratio of
the coordinates y3 and z3 when one considers the two pencils of lines obtained
from Tj946. This yields the coordinates of e32. A similar reasoning applies
for e3 ;.
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4N3

Figure 6: The locus of the points of intersection of corresponding lines in the
two pencils is decomposed into two lines (see text).
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We still have to determine e; 3. This can be done using the third equation
(10), exchanging the roles of my and mg3, and writing:

Ti235 = R(my, mg)zs + S(m1, ma)ys

the coefficients R and S are homogeneous and linear in the coordinates of m,
and in the first two coordinates of my. They can be rewritten as

R(ml,mg) = l(ml)IEg + lg(ml)yg and S’(ml,mg) = ll(ml)Q?g + lg(ml)yg

Like in the previous case, each equation R(mj,mz) = 0 and S(mq,ma) = 0
defines a pencil of lines in the first retinal plane. Since these two pencils have
the same projective parameter (z2, ), they are in projective correspondence.
The locus of the points of intersection of two corresponding lines is the same
conic as in the previous case which we know to be degenerate. Hence, the ratio
of the first two coordinates of e; 5 (resp. es 1) are obtained from the projective
parameter corresponding to the lines of the pencils going through the point
e13 (resp. ej2). Just like before, the ratios of the second coordinates can be
obtained from T} 5 4.

4.3.2 Recovering the fundamental matrices

Now that we have recovered the epipoles, let us show how to recover comple-
tely the fundamental matrices. This can be seen first geometrically and then
algebraically. Consider the points (my, ms) such that T3 5 35(m1, mo, e31) = 0.
Since e3; is the image in the third retina of O, this means that for each point
mg of the plane 7 defined by O; and 7 A 8 and each pair (my,my) such that
T1235(m1, ma,e31) = 0 we have T 235(mq, ma, m3) = 0. Because of the geo-
metric interpretation of this relation, this implies that the optical rays m; and
mg intersect, even though the point mj3 is left unspecified in the plane 7. The-
refore, there must be some information about ¥y 3 within T3 5 3 5(m1, mo, €31).
This can be checked algebraically since, after reduction, we find that

T1235(m1, mo,e31) = (F13my)s(z2e21[2] — yoe21[1])

Since we now know the epipoles, this yields the third row of F; 3. Similarly, if
we consider the relation T} 2 4 6(m1, M2, €31) = 0, we obtain

T1727476(m17 m27 6371) = (F173m1>1(y2e271[3] - Z2e2’1 [2])
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which yields the first row of F; 3. Having two rows and the two epipoles, it
is easy to compute the third row to completely determine the fundamental
matrix Fy 3.

In a similar fashion, the expressions T} 2 3 5(m1, €21, m3) and T} 5 4 (1, €21, M3)
can be used to determine the fundamental matrix F,.

In order to determine F53, we can proceed as follows. Consider a point
my and its epipolar line in the first image, represented by Fj ym,. Choose any
point m; different from e;, on that line and use the two trilinearities 77535
and T 246 to predict mg in the third image. Since by construction m; and
my satisfy the epipolar constraint, we know from section 4.2 that the three
optical rays (O;, m;), i = 1,2, 3 intersect at a point. Hence the point mg3 must
be on the epipolar line of mj in the third retinal plane, represented by F5 3my,.
When m; moves along the previous epipolar line, mz moves on a locus which
contains the epipolar line of ms. Since the coordinates of the predicted point
mg are quadratic functions of the coordinates of my, its locus is a conic which
can be shown by some simple algebraic manipulations to split into two lines,
the line of equation y3 = 0 and the line of equation mj F33m,. In detail, the
equation of the locus is:

(3/262,1[3] - 2262,1[2])(9262,1[1] - 37262,1[2])61,2[3]y3m§1F2,3m2 =0

This completes the determination of the epipolar geometry of the three cameras
from two of the trilinearities in group I, Ti 235 and 772 46.

4.4 Algebraic constraints on the coefficients of the tri-
linearities within the same group

It is straightforward to show that each group of four trilinearities depends
upon 27 projective parameters. We have also shown that those trilinearities
can be used to recover the three fundamental matrices and ffrom which it is
known that the three perspective projection matrices of the three cameras can
be recovered up to an unknown collineation of 3-space. It is also known that
the number of degrees of freedom is equal to 18. There must therefore exist 8
constraints that are satisfied by the 27 free parameters. We are now going to
discover these constraints using the previous study.
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To fix the ideas, let us work with 77 535. With the same notations as in
section 4.3.1, we write it as

T4 235(m1, ma, m3) = P(my, mg)xs + Q(my, mg)ys = R(mq, ma)xs + S(mq, ms)ys,

and introduce the four lines [, [1, l5, and I3 of the first retinal plane which are the
images of the 3-D lines 5A8, 5A7, 4A\7 and 48, respectively. The conditions
that must be satisfied by the coeflicients a, b, ¢ and a;, b;, ¢;, t =1,--- ,3 are
obtained from the study in the previous section.

First, writing that the three collineations F4, Fip and F satisfy the condi-
tion (11), we can eliminate #2 and obtain a polynomial condition of degree 8
in the coefficients a, b, c and a;, b;, ¢;, 1 = 1,--- ,3. Let us denote it by H.

Second, we considered earlier the two pencils of lines

.’1731 + y311
x3ly + ysls

and
Tol + yoly
zoly + ol3

and we saw that the points of intersection of the corresponding lines of these
two pencils had to lie on two degenerate conics. In order for this to be true,
it is necessary and sufficient that the value of z3,ys (resp. of z5,y2) for which
the corresponding line of the first pencil goes through the vertex of the second
pencil is the same as the value of z3,y3 (resp. of z3,y2) for which the corres-
ponding line of the second pencil goes through the vertex of the first one. In
that case, the conics degenerate in the line going through the two vertexes and
the line going through the two points of intersection of the lines corresponding
to the value 0 of 3 (resp. of 23) and to the value 0 of y5 (resp. y2).

Writing these conditions, we obtain two polynomials of degree six in the
parameters a;, b;, ¢;, ¢t = 1,--- ,4 which are identical. Let us denote it by K.
It is found furthermore that the following relation between H and K is true

H = K(bgbg - b4b1)

which shows that H is in the ideal generated by K or, simpler, that there is only
one necessary condition on the parameters a, b, ¢ and a;, b;, ¢;, 1 = 1,--- ,3,
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namely K = 0. It can be easily shown that K is a polynomial of degree 2 in
some 3 X 3 determinants involving the vectors 1, 1;, : =1,--- ,3:

K=[1L1| |14 1] — |4 Ll|[11]=0 (12)

We find it convenient now to move our analysis to 71 346. It shares only
three of its coefficients with T} 535, those of 1. Therefore we introduce three
new lines 1} = [a},b], 4], 1 = [a),b), ch]" and 1; = [a},b}, ch]" and write
T1,2,4,6 as

Ti246 = yo(ys(aizy + biy; + ciz1) + z3(ahzy + bhyy + ch21))+
+22(ys(ahmy + by + chz1) + zs(azy + byy + c21))

A similar reasoning as the one conducted for 77535 shows that these coeffi-
cients have to satisfy the condition

[TL LI L] -1 1] |11 1 |=0 (13)

Moving now to T4 245, it is seen that only three new coefficients appear, as
. . n
compared to 11235 and T 546. Therefore we introduce one more line 1, and
write 71945 as

Tioas = Ya(z3(ahmy + bhys + chz1) + ya(agzy + byys + cy21))—
+zo(z3(azy + by + cz1) + ys(arzy + biys + c121))

The same reasoning as before shows that these coefficients must satisfy the
condition

ML L[| LLL[ —[1LL|[1LL =0 (14)

Finally we move to Ti 236 for which it is only necessary to add a ninth line,
noted 1y:

Ti236 = —@a(ys(agey + bhys + chz1) + z3(azy + bys + c21))+
+y2(ys(azzy + b3ys + cz21) — z3(az1 + boys + c221))

And we find the constraint

(LI L | 1LY +[1L1 |11 =0 (15)
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Four further constraints must be satisfied by the 27 coefficients of the four
trilinearities in the same group. They can be seen as consistency constraints
so that the estimates of the epipolar geometry provided by T}, 45 and 71236
are consistent with those provided by 7,35 and T 5 4.

For example, the line 1; must satisfy two other conditions than (14). The
first condition can be obtained by noticing that the point of intersection of 1,
and 1; (5A6AT) must be the same as that of 1; and the line going through the
points IA1, and I§ Al;. The second condition is that the point of intersection of
1, and I, (6 A7 A8) must be the same as that of 1, and the line going through
the points 1 A1y and 15 A l3.

Similarly, for T} 93, it can be seen that the lines I3, I; and (1A 1) A (13 Als)
must go through a common point or that the lines 15, I and (15 A1) A (1A 15)
must go through a common point.

Another way to state this result is to say that once 71535 and 77946 are
defined and satisfy (12) and (13), 1, (resp. l3) is completely determined: it
goes through the points A, and By (resp. Az and Bj) defined as follows: A
(resp. Ajs) is the point of intersection of 1; (resp. 13) and the line going through
the points 1A1, and 1§ A1} (resp. through the points 1A1; and 1} ALy); Bs (resp.
Bj3) is the point of intersection of I}, (resp. 15) and the line going through 1A1;
(resp. 1 Aly) and 15 Al (resp. 1j Alg). This does not completely determine
1, and 13, since they still depend upon a scale factor which is fixed by the two
further conditions (14) and (15). This is shown in figure 7.

Note that as a byproduct of our analysis, we have obtained a minimal
parameterization of the set of the twelve trilinearities with eighteen parameters:
27 parameters defined up to a scale factor minus our eight constraints, that is
18. A minimal parameterization is relatively easy to obtain as shown now.

Let us assume, for example, that the three vectors 1;, « = 1,2, 3 are linearly
independent and express 1 in the basis they form:

3

i=1
Equation (12) then implies that
Q10 + O3 = 0 (].6)
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Figure 7: Determination of the lines 1, and 1;.
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We are now using 11 parameters to represent 775 35: the 9 coordinates of the
three vectors 1;, ¢+ = 1,2,3, oy and ay. Moving on to 77546, We can use the
6 coordinates of, say, 1] and I}, and the first two coordinates 3;, i = 1,2,3 of
15 in the basis formed by 1, 1}, 1} since f5 is obtained, because of (13), by the
following equation:

P16z +Ps =0 (17)

1, and lg are then obtained, as described previously, as homogeneous functions
of the 19 coefficients that we have so far. Hence, all the coefficients of the
trilinearities in the group I can be written as functions of those 19 parameters.
Since we can apply a global scale factor to those coefficients, we have in fact a
minimal representation with 18 parameters.

4.5 Algebraic relations between the coefficients of the
trilinearities in different groups

There exist very simple relations between the coefficients of the trilinearities
in the different groups. More specifically, the coefficients of each trilinearity
in one group can be expressed as quadratic functions of the coefficients of at
most two trilinearities in another group. For example, the coeflicients of T3 3 45
can be expressed as quadratic functions of those of T 5 3 5 and T 5 4 5 as shown
now.

The key is to use once again Cramer’s rule. Let us show as a start that
the three coefficients of s, yo, 2o appearing in the coefficient of zyz3 can be
expressed as a cross-product of two vectors of coefficients of 17 535 and 17 2 4 5.
Indeed, let us apply Cramer’s rule to the five vectors 4, 5, 6, 2 and 8 and
multiply the resulting expression by 2 A 8. We obtain:

[5,6,2,814 N2 A8 —[4,6,2,8]5 N2 A8+ [4,5,2,8/6 A\2A8 =0
Multiplying by 1 and rearranging the signs we obtain

2,4,5,8][1,2,6,8] +[2,5,6,8][1,2,4, 8] + [2, 6,4, 8][1,2,5,8] = 0
Similarly, if we multiply by 3, we obtain

[2,4,5,8]2,3,6,8] + [2,5,6,8][2,3,4,8] + [2,6,4, 8][2,3,5,8] = 0

INRIA



Geometry and algebra of image correspondences 29

These two expressions show that the vector cog of coordinates [[2,4, 5, 8],[2, 5, 6, 8],[2, 6, 4, 8]
is proportional to the cross-product of the two vectors c108 = [[1, 2, 6, 8],[1, 2, 4, 8],[1, 2, 5, 8]]
and co33 = [[2,3,6,8],2,3,4,8],12,3,5,8]] whose coordinates appear in Ty 35

and Tj245. More precisely, we have the following relation

[]_,2, 3,8]C28 = C198 X Ca38 (18)

Note that the factor [1,2, 3, 8] in front of cgg is the second coordinate of ej ;.

If we now change 8 in 7, we immediately obtain that the vector co; =
[[2,4,5,7],]2,5,6,7],[2,6,4,7]] is proportional to the cross-product of the two
vectors c1o7 = [[1,2,6,7],[1,2,4,7],[1,2,5, 7] and ca37 = [[2, 3,6, 7],[2, 3,4, 7],[2,3, 5, 7]]
whose coordinates also appear in T} 535 and T 545. More precisely, we have
the following relation

[]_,2, 3, 7]C27 = C197 X Ca37 (19)

Note that the factor [1,2,3,7] in front of cq7 is the first coordinate of es ;.
Let us now apply Cramer’s rule to the five vectors 4, 5, 6, 1 and 8 and
multiply the resulting expression by 1 A 8. We obtain:

[5,6,1,814 N1 A8 —[4,6,1,85AN1A8+[4,51,86A1A8=0
Multiplying by 2 and rearranging the signs we obtain

1,4,5,8][1,2,6,8] + [1,5,6,8][1,2,4, 8] + [1,6,4,8][1,2,5,8] = 0
Similarly, if we multiply by 3, we obtain

1,4,5,8][3,1,6,8 +[1,5,6,8][3,1,4,8] +[1,6,4,8][3,1,5,8] = 0

These two expressions show that the vector ¢35 = [[1, 4, 5, 8], [1, 5, 6, 8], [1, 6, 4, 8]]

is proportional to the cross-product of the two vectors 25 and c315 = [[3, 1, 6, 8],[3, 1, 4, 8], [3, 1, 5, 8]]
whose coordinates appear in 71935 and T1245. More precisely, we have the

following relation

[1,2,3,8]cis = ca18 X Ciag (20)

If we now change 8 in 7, we immediately obtain that the vector cy7 = [[1,4,5, 7],
[1,5,6,7],[1,6,4,7]] is proportional to the cross-product of the two vectors c;o7
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and c317 = [[3,1,6,7], [3,1,4,7], [3,1,5,7]] whose coordinates also appear in
Ti235 and Ty 945. More precisely, we have the following relation

[1,2,3,T]cir = €17 X Ciz7 (21)

Note in passing that (20) and (21) can be obtrained from (18) and (19) by
changing 1 into 2, 3 into 1, and 2 into 3. Since we have seen in section 4.3 how
to recover the first two coordinates of e3 ; from 77 o 3 5 this shows, as advertised,
that the coefficients of 77 345 in group II can be very simply recovered from
the coefficients of 71235 and 71245, in group L.

To be complete, we summarize in table 3 the relations of the remaining
coeflicients of the trilinearities in group Il to those of the trilinearities in the
group I and in table 4 the relations of the coefficients of the trilinearities in
group IIT to those of the trilinearities in the group I. For this last table, the
notations are very similar to those used in table 3. For example, the vector
dys has coordinates [[2,5,7, 8],[2,5,8,9],[2, 5,9, 6]], and the vector dja5 has co-
ordinates [[1,2,5,9],[1,2,5,7],[1,2,5,8]]. This completes the determination of

[1,2,3,7] c17 = €317 X C1a7
[1,2,3,8] c1s = €318 X C1a8
[]_, 2, 3, 9] Cig = C319 X Ci99
[]_, 2, 3, 7] Co7 = Cj97 X Ca37
[]_, 2, 3, 8] Cgog = Cj98 X Co3g
[]_, 2, 3, 9] Cog = Cj99 X Ca39
[]_, 2, 3, 7] C37 = Co37 X C317
[]_, 2, 3, 8] C3g = Co38 X C318
[]_, 2, 3, 9] C3g = Ca239 X C319

Table 3: Relations of the coefficients of the trilinearities in group II with those
in group I

the coefficients of the trilinearities in the groups II and III as functions of the
coefficients of the trilinearities in the group I.

INRIA



Geometry and algebra of image correspondences 31

[1,273,4 diy = diog X dsig

]
[1,2,3,5] dis = digs x dsgs
[1,2,3,6] dig = dig6 x dsg
[1, 2, 374] doy = dazq X diog
[1,2,3,5] dos = dass X dyas
[1,2,3,6] dog = dase X dyge
[1,2,3,4] d3s = d3iq X dogg
[1,273,5} d3s = dai5 X da3s

[1,2,3,6] dgg = dsi6 x dage

Table 4: Relations of the coefficients of the trilinearities in group III with those
in group I

4.6 Relation to previous work

It is now a good time to relate our approach to previous ones, namely that of
Hartley [12] and Shashua [|. Since in reference [12] Richard Hartley relates his
work to that of Shashua, we will relate ours to his and the reader can proceed
by transitivity. Hartley introduces an entity depending upon three indexes
which he denotes by T, 1, 7, K =1, 2, 3. To be consistent with his notations,
let us denote the coordinates of a point m; in the first retina by u, k =1, 2, 3,
those of a point ms in the second camera by uj, k = 1, 2, 3, and those of a
point mg in the second camera by u',;, k=1, 2, 3. Hartley then shows that if
three points my, msy, mg are the images of the same 3-D point, then the four
following quantities, obtained by varying the indexes ¢ and [ between 1 and 2,
are equal to 0:

3
_ 1 " ! " 1 " 1 "
THS.L"I = E uk(uiul Tkgg — U3y TkiS — uiu3Tk31 + U3u3T]ﬂ'1) (22)
k=1

Hartley further assumes that uz = uj = uz = 1.
In defining the matrix appearing in the left hand-side of equation (6), we
have arbitrarily selected the first two equations appearing in (2) since the
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third one is linearly dependent of the first two and since it does not change the
results. For the sake of consistency with Hartley’s work, let us suppose that
we redefine equation (6) in the following equivalent manner:

[ Zl]_ — IL‘13 i
Y13 — 212
224 — 2226 _
16 — 225 M =0, (23)
237 — 2L'39
| y39 - 238 ]

and then use this equation to define the trilinearities. Looking at the table 1,
it should be clear that the four relations of Hartley (equation (8) in [12]) are
exactly the trilinearities in the group I and that the correspondence between
the T;;;’s and the brackets is extremely simple: Tj;; is the bracket obtained by
choosing the ith element of the first column, the kth element of the second,
and the /th element of the third column of the following "matrix":

2AN3 4 7
JA1 5 8
1AN2 6 9

For example, T111 = [2, 3,4, 7], and we have the formal correspondence:

THS 3 =Tip35 THS12=-Ti236 THSy1=-Tipas THS22="Ti246
(24)

This clearly shows the relationship between our work and Hartley’s and, by
transitivity, between our work and Shashua’s. In particular, we think that the
geometric interpretations of the trilinearities which are simple in our formalism
shed a new light on the problem, making it much easier to grasp; this is
a theoretical advantage. This theoretical advantage can perhaps be turned
into a practical advantage as well since, as shown in sections 4.3 and 4.4,
the geometric interpretation gives a natural minimal parametrization of the
trilinearities.

In particular, we have seen what are the eight algebraic constraints on the
27 parameters upon which the four trilinearities in each group depend and
what they mean geometrically.
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5 Degenerate cases

If the trilinearities were only useful to recover the epipolar geometry, then one
may wonder why bother. We show now that they are in fact more powerful
than the fundamental matrixes in the sense that they remain algebraically
independent when the fundamental matrixes are not. To put it in another
way, they can be used to predict the location of a third point in the third
image given a pair of correspondences between the first two images even when
the fundamental matrixes cannot be used to do so. This is already known
thanks to Shashua’s work [|. In the following sections, we simply show that
our formalism naturally yields the same results.

5.1 Optical centers not aligned

In this configuration, it is known that if the point M is in the trifocal plane (the
plane defined by the three optical centers), its image in one of the cameras, for
example mg, cannot be predicted from its images m; and ms in the other two
cameras [31]. The traces of this plane in the three retinal planes are the three
trifocal lines (e;;+1, €i442), @ = 1,2,3. This is because the epipolar lines of m;
and my in the third image are identical and therefore mg cannot be obtained
as their intersection: m3 is undefined on the common epipolar line. But the
trilinear relations can be used to compute the position of m3 on this line.
To show this, let us assume that m; = a;e;2 + b1 ey 3, my = azex; + baeys,
m3 = ag e3;+b3 e3, are on the trifocal lines. In this case, the bilinear relations
are satisfied whatever the values of the a;, b, are. Substituting these relations
in Ty 356, taking the normal form (as standard monomials in determinants),
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we obtain:

a1bya3(1,2,3,5][1,2,3,6][4,5,7,8 [4,7,8,9]
+byasbs[1,2,3,5][1,2,3,6][4,5,7,8][4,7,8,9]
—aybyag[l,2,3,5]°[4,6,7,8][4,7,8,9]
—byasbs[1,2,3,5]°[4,6,7,8][4,7,8,9]
—a1byag[1,2,3,4][1,2,3,6][4,5,7,8][5,7,8,9]
—byasbs[1,2,3,4][1,2,3,6][4,5,7,8][5,7,8,9]
+2aybya3(1,2,3,4][1,2,3,5][4,6,7,8][5,7,8,9]
+2byaybs[1,2,3,4][1,2,3,5][4,6,7,8][5,7,8,9]
—aybyaz1,2,3,4][1,2,3,5][4,5,7,8][6,7,8,9]
—byasbs[1,2,3,4][1,2,3,5][4,5,7,8][6,7,8,9]
— a1 byag[1,2,3,4][5,6,7,8][5,7,8,9]
—byaybs([1,2,3,4][5,6,7,8][5,7,8,9] = 0

This fairly ugly polynomial can be rewritten more simply as:
azP(a1,b1,a2,b2) + b3Q(a1,b1,a2,b2) =0

where P and () are two non zero homogeneous polynomials of degree 2 in
a1, by, as,by. They are nonzero because the bracket monomials are nonzero
since they are in normal form.

Consequently, knowing the position of any two points (for example m; and
mg) on the epipolar lines, the third (for example m3) is completely determined
by the previous equation.

5.2 Optical centers aligned

In this configuration, the epipoles e; ,_; and e, ;11 are identical and the epipolar
lines of two corresponding points m; and ms in the third image are always
identical. The corresponding point mg is thus undefined on this epipolar line.
But, just as in the previous case, the trilinear relations can be used to compute
the position of mg on this line. As the centers are on a same line L, we can
assume that this line is the line 1 A 2 and that the planes 4 and 7 (resp. (6
and 9) are identical to the plane 1 (resp. 2).
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Let us denote by L; the expression 212 A3 + y13 A1+ 211 A 2. It is easy
to show that

Tio3s = xaw3li A5 A8 — z1(z2y3(1,2,3,5] — yx3(1,2,3,8])
Tioa6 = 2z2z3Li AN5A8— 21(x2y3(1,2,3,5] — yau3(1,2,3,8])

Looking at equation (4), it is seen that F, is proportional to

0 -1 0
0 0 O
1 0 0
Thus, if we take o = x; and 25 = y;, m; and my correspond to each other.
We then have:

T1’2’3’5 = .’.L'l(.’L'g(Ll ADA8— y2[1238]) — y3$1[1235])
T1’2’4,6 = ZgylLl ABAN8— 21($1y3[1235] — y2$3[1238])

Except if z; = 0, the equation 77235 = 0 can be used to compute the ratio of
z3 and y3 and, except if y; = 0, the equation T3 546 = 0 can be used to recover
the ratio of z3 and y3. This determines the third point from the first two.

6 Quadrilinear constraints

Let us now add a fourth image. Equation (6) can be written

1712 — 1/11
Y13 — 212
1725 — y24
Y26 — 225
o g7 | M=0 (25)
y39 - 238
26411 — y410
L y412 — 2411 i

where we have again chosen arbitrarily the first two equations in (2) for each
camera. The results to come are independent of this choice.
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The 8 x 4 matrix which appears in this equation is a linear function of
the four points my, mo, m3, my. The question is, what is the necessary and
sufficient condition that the four points m; must satisfy so that they can be
considered as the images of the same point M. The answer comes again from
elementary linear algebra and is that the 8 x4 matrix must be of rank less than
or equal to three. This is equivalent to writing that all its 4 x4 subdeterminants
are zero. There are three types of such determinants:

1. Those which contain two rows arising from one camera and two rows
from another.

2. Those which contain two rows arising from one camera, one row from a
second camera and one row arising from a third camera.

3. Those which contain one row arising from each camera.

There are six determinants of the first type and, as seen in the previous sec-
tions, they correspond to the six fundamental matrixes of the six pairs of
cameras. There are 32 determinants of the second type and 16 determinants
of the fourth type. Computing for example the one built from the first, third,
fifth, and seventh rows, which we note @)1 357, in agreement with our notation
for trilinearities, we find the following expression

1 T2 2324 (2,5,8,11] — 21 2223 y4 [2,5,8,10]
— 21 22Y3 24 (2,5, 7,11 + 1 22 Y3 ¥4 [2,5,7, 10
— 1Yo w324 [2,4,8,11] + 21 y2 234 [2, 4, 8,10
+z1y2ys 24 [2,4,7,11] — 1 Y2 Y394 [2,4,7,10
— 1z x324[1,5,8, 11 + y1 zo 234 [1,5,8,10
+ Y122 y3 e [1,5,7,11] — y1 22 y3 94 [1, 5,7, 10]
+y1yez3ea[1,4,8,11] —y1 Y2 2394 [1,4,8,10]
—y1y2y3 x4 (1,4, 7,11+ y1y2 Y394 [1,4,7,10]

]
]
]
]

This is seen to be a polynomial of total degree four in the coordinates of the
points m; and linear in the coordinates of each of them. It is a quadrilinear
relation which has been reported by Triggs [29]. The geometrical interpretation
of this computation is as follows: 212 — y;1, ... represent lines in the images,
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which are the intersections of the retinal planes with planes through the optical
centers of the cameras in 2. The vanishing of the quadrilinear polynomial is
just the condition that these four planes have a common point in P2,

Assuming that all the bilinear and trilinear relations are satisfied, it is
possible to show that the quadrilinear relations are satisfied because they can
be obtained as linear combinations of the previous ones. Indeed, this is also
a consequence of the Pliicker relations or Cramer’s rule. Let consider for
instance the 4 dimensional rows Cy, Cy, C3, Cs, C; of the matrix (25). They
are connected by the Cramer relation

[Cs,C3,C5,C7] C — [Cy,C3,C5,C7] Cy + [Cq, Cy, C5, Cr| Cs
_[017 027 C37 C7] C5 + [Cl7 C27 C37 C5] C7 =0

Multiplying for instance by C; A 5 A 6 we obtain a relation of the form

[Cq,C3,C5,Cr] [Cq,Cy, 5,6] — [Cq,Cy,C3,Cr] [Cq,C5,5,6] (26)
+ [C4,C2, C3,C5][Cy,Cr,5,6] =0

Remark that the first term [Cy, C3, C5, C] is the previous quadrilinearity and
the other are trilinearities. More precisely, the previous equation can be re-
written as:

yl(Q1,3,5,7(F1,2m1)1 - T1,2,3,7C0€ff(T1,3,4,5, yz) - T1,2,3,5C06ff(T1,3,4,7, yz)) =0
(27)

This is a “generic” linear relation between the quadrilinearities and the trili-
nearities. Hence the quadrilinear relations do not add more information.

It turns out that the four cameras case is the generic one since if we consider
more than four cameras the same reasoning as before will show that there
are no other relations than those that we have already described, bilinear,
trilinear, and quadrilinear and that the quadrilinear are dependent of the first
two classes.

7 The case of lines

The case of lines is also important since they are quite often present in 3-D
scenes and therefore in images. Hartley [12] has started analysing the case of
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line correspondences. We provide here a complete treatment and relate it to
the case of point correspondences. In order to do this, we first generalise the
perspective projection matrix, defined in the case of points, to lines. Given
two 3-D points M; and M,, the line L = (M;, M5) can be represented by its
Pliicker coordinates, noted L = Mj A M, = [L'2) L3 LY L2 [** 347 a
6 X 1 vector whose coordinates are defined up to a scale factor and satisfy the
following quadratic equation

[L, L] = LPL* — LBL* + LML* =0 (28)

Now, given the line L = (M;, M), its image [ through a camera defined
by the perspective projection matrix P is represented by the 3 x 1 vector:

1= PM; x PM, =
((2-My)(3- M) — (3 M3)(2- My), (3- My)(1-My) — (1-My)(3 - My),
(1-My)(2-Mz) — (2 Myp)(1- My))"

Each coordinate of this vector is antisymmetric in My, M,. Moreover, the first
coordinate is antisymmetric in 2, 3, the second in 3, 1 and the third in 1, 2.
It is easy to verify that the image line d, image of the line L is represented by
the vector d of coordinates

[(2A3)-L,(3A1)-L, (1A2) LT
We can rewrite this linearly in terms of Pliicker coordinates as
d = PL (29)
where P is the following 3 X 6 matrix:

2A3
3A1
1AN2

The matrix P plays for 3-D lines the same role that the matrix P plays for
3-D points.
Equation (29) is thus equivalent to

li:la:l3=(2A3)-L:(3A1)-L:(1A2)-L
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We know that this yields two independent equations, for example

L3AN1—-12A3

L1A2-133A1 L=0

Each row of the matrix that appears in the left hand-side of this equation
represents a line going through the optical center of the camera and through
a point of the image line d. It can be readily verified that each row vector
satisfies the equation (28) and therefore represents a line. In fact, we have for
instance b1 A2 =133 A1 =1A (122 +133).

Let us now consider a second camera defined by its perspective matrix
P, and the corresponding matrix P,. We can now ask the same question as
for points: given a line d in the first image and a line d’' in the second one,
what are the necessary and sufficient conditions that these lines must satisfy
in order to be the images of the same 3-D line L? These conditions would be
the equivalent of the epipolar constraint in the case of points. The previous
analysis shows that we have four equations like the ones above:

L3A1—1,2A3
L1AN2—133A1
L6 AN4—1,5M6
LAND — 1,6 N4

L=o

The matrix which appears on the left hand-side is 4 x 6, hence its kernel is of
dimension larger than or equal to 2. Therefore there is no condition and two
image lines can always be considered as the images of a 3-D line, a well-known
fact in computer vision.

Things become interesting when a third camera comes in because we now
have six independent equations:

LL3A1—132A3 ]
L1A2-133A1
Lend—1,5N6
Lans —1L6A4
LOANT—1,8A9
LTA8—I;9ANT |
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The necessary and sufficient conditions for the three lines d, d’, d' to be the
images of the same 3-D line are that a) the 6 x 6 matrix which appears on
the left hand-side of the previous equation is of rank less than or equal to
5, and b) that there exists in its kernel a vector L which represents a line,
i.e. which satisfies equation (28). The first condition is equivalent to writing
that its determinant is zero. We note that this determinant is a polynomial
of total degree 6 in the coordinates of the three lines d, d’, d' and that it is
divisible by the monomial Iy 74 I;. The remaining polynomial is of degree 3 in
the coordinates of the three lines, a trilinear relation whose coefficients can be
expressed in terms of the row vectors of the perspective projection matrixes
P17 PQ, P3.

The second condition is equivalent to the condition that the six 5 x 5
minors of the 6 x 5 matrix obtained by erasing any of the rows of the previous
6 x 6 matrix satisfy equation (28). This condition is a bit tricky to write
and this is the reason why we have preferred a slightly different approach.
Let L;;¢ = 1,---,6 be the six lines represented by the rows of the previous
6 x 6 matrix. L3 and Ly go through the second optical center, and they define
a plane going through the optical center of the second image which is, in
terms of the Grassmann-Cayley formalism, their join L3 V Ly. This plane is
represented by 114 + 155 + 46. Similarly, L5 V Lg defines a plane represented
by 1,6 + 1,7 + 18 going through the optical center of the third camera and
through the image line d'. These two planes meet at a line L which is their
meet (L3 V Ls) A (Ls V Lg). The conditions we seek are that the two lines Ly
and L, meet L. Hence, we obtain the two scalar equations:

Ll N ((Lg V L4) AN (L5 V LG)) =0
L2 N ((Lg V L4) AN (L5 V LG)) =0

Each one of these conditions is seen to be a polynomial of total degree 5 in the
coordinates of the image lines d, d’, d'. Since both polynomials are divisible
by the monomial 4l,, the two conditions are actually of total degree 3, the
monomial being a consequence of the choice of the particular equations in
building the 6 x 6 matrix.

According to the previous analysis, the two conditions can be rewritten as:

(L3AT1 — 12 A3)A (L4 + 155 +156) A (116 + 1,7 +1,8) =0
(LIA2 —L3A)A L4+ 155 +156) A ({6 +1,7+1;8) =0

INRIA



Geometry and algebra of image correspondences 41

Using the notations of section 4.6, they can be rewritten as:

ll 23 TQZ]lil;l — lg 23 le]lil;l =0

i,j=1 i,j=1

o 325 i Toislily — 13 327 5y Toiglil; = 0

From which we see that we have:

3 3 3
li 1y @ I3 = Z Tlijlél}' : ZTZijlgl;‘l : Z T3i]'l'lil;'l

2,j=1 1,7=1 2,j=1

which is precisely the expression found by Hartley [12] and relates the line
trilinearities to the point trilinearities in the group I through the relations
(24).

8 Conclusion

We have shown that the geometry of the correspondences between the images
of a single 3-D point in NV cameras can be described by three types of relations
between the coordinates of the image points. These relations fall into three
classes of which only the first two are sufficient since all elements in the third
one are algebraically dependent of elements in the first two. The coefficients
of these relations have been shown to be 4 X 4 determinants of the row vectors
of the perspective projection matrixes of the cameras.

We have shown that the trilinear relations are useful in some degenerate
cases of practical importance where the bilinear relations cannot be used for
prediction.

We have started the analysis of the algebraic constraints between the trili-
near and the bilinear constraints and shown that the trilinear constraints imply
the bilinear ones. Finally, we have shown how to extend this analysis to lines
correspondences. All this has been achieved by simple symbolic computations
in projective geometry using the Grassmann-Cayley algebra formalism.
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A Cramer’s relation

We derive Cramer’s relation for five vectors of a vector space of dimension
4. It should be clear that the method is extendable to any dimension. Let
Ci, Gy, C3, C4 and Cs5 be five vectors of a vector space of dimension 4. Since
they are linearly dependent, there exist five scalars A;; ¢ = 1,--- ;5 not all
equal to zero such that:

¥ _ NG =0

We compute the ratios A\;/As, i = 1,---,4 by taking the exterior product of
this equation successively by Co A C3 A Cy, C; A C3 A Cy, C; A Cy A Cy, and
C; A Cy A C3. We finally obtain the desired formula:

[CoAC3ACLACs]CL — [Ci AC3 A CLAC5]Cy + [Cr A Cy ACy A Cs]Cs—
[C1 ACy A C3 AC5]Cy + [C1 ACy AC3 A Cy|Cs

B Some basics about the Grassmann-Cayley
algebra

The ambient space where we want to work is a projective space [P of dimension
n (over the field k). After taking a referential, we can consider it as the
projective space associated to a k-vector space E of dimension n + 1. Let
e = (eg,...,e,) be a basis of E. If (ug,...,u,) is a non-zero vector of E, we
will denote by u = (ug : - : u,) the element of the projective space P = P(E)
associated to it (that is the set of (n + 1)-tuples equal to (ug,...,u,) up
to multiplication by a non-zero scalar). We will denote by u the multiple
%(uo, vy Uy) of u (if ugB # 0) such that the first coordinate is 1.

We want to manipulate points, lines, planes, etc of this space. For this
purpose let recall the construction of the exterior algebra AE of E (see [5]).
The exterior algebra AE is the k-algebra space generated by the "words" on
the alphabet eg,... ,e, denoted by

(where A is the multiplication operator or concatenation) modulo the following
relations:

INRIA
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1. Ais bilinear: e; A (Aej + per) = Ae; Aej+ pe; A ey,
2. A is anti-commutative: e; A e; = —e; Ae;.

This implies that
ANE=kdE®NED---dA"TE

where A*E is the k-vector space generated by the terms e; A --- A e;, (with
iy < -+» <1). An element of AFE is said to be of degree k.

The dimension of AE is 2" a basis is (e;, A -+ A €;, )1<iy<-<i, <nt+1 and
AE contains E and k. The coordinates of an element Lof A*T'E in the basis
e, N\ -+ N\ e;, are denoted by (Ll[d,... ,ix]).

For all vectors w3 = (U1,1, .- ,Unt+1,1)s -+ s Um = (Uimy- - s Unt1,m) Of E,
the coordinates of ug A+ - - Ay, in the basis (e;, A---Ae;,, )1<iy <-<ci,, <n+1 Of A™E
are the corresponding determinants |u;, ;|1<ikr<m. Writing “us A--- A u,, = 07

is equivalent to saying that {ui,... ,u,,} are linearly dependents.
We denote by |ug, ... ,u,| the determinant of the vectors us,... ,u, in the
basis e.

The Grassmannian

The space of representation of linear spaces, that we are going to use, is the
projective space P(AE) associated to this k-vector space. For any element
L € AE, we define L as the set of vector v € E such that v A L = 0. A point
v is in the space (v, ... ,vq) if and only if it satisfies

vANv A ANy = 0.

Consequently if L = vy A -+ A v, the vector space L is the space generated by
V1,... ,Vg. It is independent of the representation v; A --- A v, that we have
chosen for L. If we choose another basis wq, ... ,wy of E, we have the relation
wo A -+ Awy, = det,(w) L where det,(w) # 0 is the determinant of the basis w
in v. This gives us a one-to-one correspondence between the subspaces of E of
dimension k£ and the element of AE of the form v; A -+ A vg.
In E4, the line generated by two points a = (1, a1, a2, a3) and b = (1, by, b, b3)

is the element of A’E of coordinates the 2 x 2 minors of the matrix

1 a; as as
1 b1 by g
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This yields, up to a sign, the 3 coordinates of the vector ab and the 3 coordi-
nates of 6 x ob where o = eo is the origin of the frame and X is the vector
product.

In this representation, points in P(E) are elements of degree 1 in P(AE),
lines are of degree 2, planes of degree 3 and so on.

Definition B.1 — The subset of P(A*E) of elements of the form vy A--- Ay,
is called the Grassmannian Gi(E) of k-spaces in E.

The coordinates of an element of the form v; A --- A v}, are the determinants
k x k of the matrix [vg,...,v;] and satisfy the well-known Pliicker relations
(see [6], [14]). We denote by G the union of all G4(E) for 1 < k < n.

The lines in a space P3 = P(E;) (where ey, ... ,e;3 is a basis of [) are
represented by elements of P(A?E). The coordinates of an element L € G,
in the basis eg A e1, eg A ez,e1 A ea, eg A e3, €1 A eg,ea A eg are denoted by
(Log : Loz : L1a : Log = L1 : Lagz). A line through two points a,b will be
represented by L = a A b. Its coordinates (which are the 2 X 2 minors of the
matrix [a, b]) satisfy the relation

LoiLsg — LopLi3z+ LozLlip = 0. (32)

Conversely an element of P(A’E) which satisfies this relation is of the form
a A b. The elements satisfying this relation form the Grassmannian G, of Ps.

The quadratic form (32) defines a non-degenerate bilinear product (denoted
by [ | ]) and we have the following properties:

e For every element L of P(A?E), [L|L] = 0 if and only if L € G,.
e For every points a,b,¢,d € P, [a A blc A d] = det(a,b,c,d).
e For every lines in L, L' € Gy, [L|L'] = 0 if and only if L N L' # 0.

The first point comes from the definition of the inner-product. The second
point is the expansion of a 4 x 4 determinant by the Laplace’s rule in terms
of 2 X 2 minors. For the third point, remark that L is of the form a A b, L' of
the form ¢ A d and L meets L' iff the 4 points a,b,c,d are in a same plane :

det(a,b,c,d) = 0.
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Relations

Let k[Gi] be the space of algebraic functions on Gj. They are polynomials
of the coordinates Xy = {[j1,...,7k], with 0 < j; < -+ < j; < n}. The
identities satisfied by these variables form an ideal I; which is generated by
the Pliicker relations.

Moreover, there is an algorithmic way to reduce to a normal form the
polynomials in these variables. It involves the structure of algebra with
straightening laws of k[Gj].

Definition B.2 — Let < be the partial order on Xy, such that

s o gkl < g -0 k) 3 1 < g, 0k <

We say that m is a standard monomial for < if it is of the formm =z - zy,
with z; € Xy and 1 L -+ L x,. Let S be a subset of the standard monomials
for <.

Proposition B.3 — The set of standard monomials S form a k-basis of the
algebra k[Gy|. Any polynomial in the variables Gy can be reduce to a normal
form with the rules

[ila"‘ 7ik] [j17'-- 7]k] (33)

- _E(U) Z [ila s 7ilai7+17 s aiz][jga s 7.7.;7-}-17.7.1-{-27 s ajk]
oceS\{id}

with 11 < jJ1,...% < 71 but 411 > 7101 and where S is the set of permutations
of {itg1y- -+ stk J1y- .- 5 141} Such that if | < --- <if et 57 <--- < ji,,.

This can be extended to determinants of different sizes. References for this
proposition can be found in [4], [20].

Intersection and Sum

In order to represent intersection and sum of vector space, we introduce the
following operator. For any elements A = a;A---Aa, € APE, B = bjA---Ab, €
NE,

» Yn—g>

AAB:Ze(g)a;’b_q_}_l/\..-/\ag|ag7... a’ bl;---abq|
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if p+ ¢ > n and 0 elsewhere.

This element of APT¢~"E represents the intersection of Aand B C E ifit
is a generic intersection (if the dimension of the intersection is p + ¢ — n).

This is the usual Cayley operator defined in [2], [6]. It assumes implicitly
that the intersection of the linear spaces is generic. For instance, in the space
P5 the intersection of a line a A b with a plane cAd A e is given by ab, ¢, d, e| —
bla,c,d, e|. With this representation, it is easy to see that it is an element of
the line (a,b). Using Cramer’s relation, we can also rewrite it as —c|a, b, d, e| +
dl|a,b,c,e| — ela,b,c,d| which is typically an element of (d,c,e).

But in geometric problems, it is frequent that the intersection is not of the
generic dimension. Think for instance to the intersection of two coplanar lines
in a space of dimension > 3. So one needs to extend this operator defining
Aj when the intersection is of dimension p — k. This can be done by changing
the scalars and introducing "determinants" of different size |ay,... ,a;| (for
instance |ay, ... ,ag, tgy1,. .. ,t,| where t; are generic vectors of E). See [21].

A A B = Ze(o)a;_kﬂ,... saglaf A---Aag_p Aby Ao+ Ay
a
In this case, it is also possible to define the operator "sum" as follows:

o
p

AVszZe(a)a‘{/\---/\agfk/\bl/\---/\bq|a;7k+1,... ,a

This allows us to use Cramer’s rule as follows. Suppose that we have a
relation of the form a Aa; A --- A ag = 0 where a; A ... Aag # 0. We would
like to derive a relation on a. As (ai,...,aq) — |ai,..., a4 is a multilinear
alternate form, we can deduce that

a|a17 s 7a’d|_a1|a27 s 7ad7a|+a’2|a17 as,...,Qad, a’|+ : -+(_1)dad|a17 <o Q4-1, a| =0.

If we are working in a projective space, as |a, ... , aq| # 0, we can use the rule
of substitution

a — aylag,...,aq,a| — aglay, as, ... ,aq,a| + -+ (=1)agla,. .. ,aq_1,al.
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Working in the dual

One is often lead to work in the dual space [ of linear forms on E. We can
proceed in the same way as with E, defining /\]E7 the Grassmannian of /\]@, e

The kernel of an element H of [ is an hyperplane of E. We also associate
to the element L = Hy A --- A Hp, the linear space L of hyperplanes H such
that H A H; A --- A H, = 0. We denote by L the set of vectors which are in
ker(H) for all H € L. Tt corresponds to the intersection of the vector spaces
Hy,..., H.

So the interpretation of the geometric operations have to be inverted. The
sum (resp. intersection) of elements of [ corresponds to intersection (using
the well-know relation (A + B)* = A+ N B*) (resp. sum) in E.

If Hy, Hy, Hs, Hy, H5 are planes of P3, then Hy A Hy (resp. Hs A Hy A\ Hp)
represents the intersection line (resp. point) of the two (resp. 3) planes and

Hl |H27H37H4aH5| — H2 |H17H37H47H5|

is the plane passing through this line and this point.
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