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Abstract: We review a recent construction of the free field equations for totally sym-

metric tensors and tensor-spinors that exhibits the corresponding linearized geometry.

These equations are not local for all spins > 2, involve unconstrained fields and gauge

parameters, rest on the curvatures introduced long ago by de Wit and Freedman, and

reduce to the local (Fang-)Fronsdal form upon partial gauge fixing. We also describe

how the higher-spin geometry is realized in free String Field Theory, and how the gauge

fixing to the light cone can be effected. Finally, we review the essential features of local

compensator forms for the higher-spin bosonic and fermionic equations with the same

unconstrained gauge symmetry.

1. Introduction

This article reviews the results of [1, 2] on the geometry underlying the free equations

for symmetric tensors of arbitrary spin s and on its role in corresponding equations for

fermionic tensors of spin s+1/2. It is meant as a contribution to the Conference Proceedings

of the Sakharov, Leuven and SIGRAVMeetings, and to the Proceedings of the 2002 Cargese

Summer Institute. The SIGRAV contribution was accompanied by a less technical lecture

at the companion SIGRAV School, essentially based on [3], while only one of the three

Cargese lectures was actually devoted to this topic. However, since the other two dealt

with results reviewed in detail in [4], it will suffice to confine the attention to this topic. This

will also provide an opportunity to supplement the results in [1] with additional remarks

on their role in String Theory and on the issue of gauge fixing 1. The last two sections,

added in this new version, review the results in [2] and present local compensator forms
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for the higher-spin bosonic and fermionic equations with the same unconstrained gauge

symmetry.

The starting point for our discussion are the elegant equations extracted long ago by

Fronsdal [5] from the massive Singh-Hagen [6] actions,

F ≡ ¤φ − ∂ ∂ · φ + ∂2 φ ′ = 0 , (1.1)

that for spin one and two reduce to the Maxwell equation for the vector potential Aµ and

to the linearized Einstein equation for the metric fluctuation hµν . Here, as will often be

the case in the following, primes (or bracketed suffixes) denote traces, while all indices

carried by the symmetric tensors φµ1...µs and ηµν or by derivatives are left implicit. In

this shorthand notation, where all terms are meant to be totally symmetrized, one need

only get accustomed to a few rules, some notable examples for a D-dimensional space time

being

(∂ p φ) ′ = ¤ ∂ p−2 φ + 2 ∂ p−1 ∂ · φ + ∂ p φ ′ , (1.2)

∂ p ∂ q =

(

p+ q

p

)

∂ p+q , (1.3)

∂ · (∂ p φ) = ¤ ∂ p−1 φ + ∂ p ∂ · φ , (1.4)

∂ · η k = ∂ η k−1 , (1.5)
(

ηk T(s)

)′

= k [D + 2(s+ k − 1) ] ηk−1 T(s) + ηk T ′(s) , (1.6)

where T(s) denotes a symmetric rank-s tensor, but the general case can then be dealt with

in a rather efficient and compact fashion.

At a closer look, however, for spin s > 2 eq. (1.1) appears somewhat less natural than

its first and most familiar instances,

¤Aµ − ∂µ ∂ ·A = 0 , (1.7)

¤hµν − ∂µ ∂ · hν − ∂ν ∂ · hµ + ∂µ∂νh
′ = 0 , (1.8)

since only these involve all available lower spin constructs built from divergences and traces

of the gauge field. This peculiarity has in fact an important consequence: only for spin one

and two does the gauge transformation

δ φ = ∂ Λ (1.9)

leave the Fronsdal operator F invariant, while in general

δ F = 3 ∂ 3 Λ ′ , (1.10)

and as a result for spin s ≥ 3 eq. (1.1) requires a traceless gauge parameter Λ. This

constraint plays a key role in the Fronsdal formulation [5], together with an additional one,

effective from s = 4 onward, on the gauge field, whose double trace φ′′ is also required to

vanish.

We can now review how one can actually forego both constraints, at the price of allow-

ing non-local terms both in the free field equations and in the corresponding Lagrangians,
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but with the clear advantage of eliciting the geometry that underlies them. This geometry

would be naturally expected to play a role in the Vasiliev equations [7, 8], but to date

we have not gone far enough to make definite statements to this effect. However, it is a

fact that String Field Theory [9, 10], in the most symmetric formulation of its free field

equations, deduced in [10] from the BRST analysis of [11], does not involve trace conditions

on the gauge fields or on the corresponding gauge parameters. Rather, as we shall see, it

embodies very nicely the higher-spin geometric equations that we are about to review.

Let us therefore begin by tracing the origin of the double trace constraint on the gauge

field. To this end, it is important to recall that, already at spin two, the naive linearized

Einstein equation

R(lin)
µν = 0 (1.11)

does not follow directly from the Einstein-Hilbert action principle, whose variation actually

gives

δL ∼ δhµν

[

R(lin)
µν −

1

2
ηµν R

(lin)

]

. (1.12)

There is a clear logic behind this result, however, since the linearized Einstein tensor

G(lin)
µν = R(lin)

µν −
1

2
ηµν R

(lin) (1.13)

has the special virtue of being divergence free, and this ensures that δL vanishes, up to a

total derivative, if δhµν corresponds to a gauge transformation. In other words, the gauge

invariance of L rests on two ingredients: the gauge invariance of the field equation and a

suitable Bianchi identity. This pattern extends to all higher-spin symmetric tensors, whose

Bianchi identities

∂ · F −
1

2
∂ F ′ = −

3

2
∂ 3 φ

′′

, (1.14)

however, contain a sort of classical anomaly that involves their double traces. As a result,

for spin > 2 the Einstein-like tensors

G = F −
1

2
ηF ′ (1.15)

can only be compatible with gauge invariant Lagrangians such that

δL ∼ δφ

[

F −
1

2
ηF ′

]

(1.16)

if the gauge parameters Λ of eq. (1.9) are traceless and the gauge fields φ are doubly

traceless. Using the combinatoric rules listed above one can indeed show that, up to a total

derivative, the gauge transformation (1.9) turns eq. (1.16) into

δL ∼ Λ

[

∂ · F −
1

2
∂ F ′ −

1

2
η ∂ · F ′

]

, (1.17)

that can only vanish in general if both restrictions are enforced. Notice that the Bianchi

identity eliminates the first two terms, while the last does not vanish identically. Rather,

via the η tensors, it places again on the gauge parameter the same restriction that ensures
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the gauge invariance of the Fronsdal operator F . To reiterate, the restriction to traceless

gauge parameters is instrumental in the gauge invariance of the Fronsdal equations, while

the restriction to doubly traceless fields ensures that the corresponding action principles

be compatible with the gauge symmetry.

2. Gauge-invariant equations for unconstrained bosons

In order to forego these restrictions, one can follow an iterative procedure that, as in [1],

can be conveniently motivated in the relatively simple spin-3 case, where

δFµ1µ2µ3 = 3 ∂µ1 ∂µ2 ∂µ3 Λ
′ , (2.1)

since one can find rather simply other non-local constructs of F that vary as in (2.1), to

wit

1

3¤

[

∂µ1∂µ2F
′
µ3 + ∂µ2∂µ3F

′
µ1 + ∂µ3∂µ1F

′
µ2

]

,

1

3¤
[ ∂µ1∂ · Fµ2µ3 + ∂µ2∂ · Fµ3µ1 + ∂µ3∂ · Fµ1µ2 ] ,

1

¤ 2
∂µ1∂µ2∂µ3 ∂ · F

′ . (2.2)

The first two expressions actually coincide, as can be seen making use of the Bianchi

identity (1.14), and as a result one is led to two apparently distinct forms for a non-local

fully gauge invariant field equation:

Fµ1µ3µ3 −
1

3¤

[

∂µ1∂µ2F
′
µ3 + ∂µ2∂µ3F

′
µ1 + ∂µ3∂µ1F

′
µ2

]

= 0 , (2.3)

Fµ1µ2µ3 −
1

¤ 2
∂µ1∂µ2∂µ3∂ · F

′ = 0 . (2.4)

These can be actually turned into one another, once they are combined with their traces,

but the second form is clearly somewhat simpler, since its rests on the addition of the

spin-0 construct ∂ · F ′.

For all higher spins, one can arrive at the proper analogue of (2.3) via a sequence of

pseudo-differential operators, defined recursively as

F (n+1) = F (n) +
1

(n+ 1)(2n+ 1)

∂ 2

¤
F (n) ′ −

1

n+ 1

∂

¤
∂ · F (n) , (2.5)

where F (1) = F , whose gauge transformations,

δF (n) = (2n+ 1)
∂ 2n+1

¤ n−1
Λ[n] , (2.6)

involve by construction higher traces of the gauge parameter. Since the n-th trace Λ [n] is

only available for spins s ≥ 2n+1, after a certain number of iterations one is bound to end

up with a fully gauge invariant, albeit non-local, kinetic operator.
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A similar inductive argument determines the Bianchi identities for the F (n),

∂ · F (n) −
1

2n
∂F (n) ′ = −

(

1 +
1

2n

)

∂ 2n+1

¤ n−1
φ[n+1] , (2.7)

where the “anomalous” contribution depends on the (n + 1)-th trace φ[n+1] of the gauge

field, and thus vanishes for all spins s < 2n+2. Summarizing, these results imply that, after

a certain number of iterations, one can obtain non-local Lagrangians and field equations

whose gauge invariance places no restrictions on the gauge fields or on the corresponding

gauge parameters. Eq. (2.7) also implies similar relations for the higher traces of the F (n),

∂ · F (n) [k] −
1

2(n− k)
∂F (n) [k+1] = 0 , (k ≤ n− 1) (2.8)

here written for n large enough so that the “anomaly” on the r.h.s. of (2.7) vanishes

identically. Notice that for odd spin s = 2n− 1 the second term vanishes for the last trace,

so that

∂ · F (n) [n−1] = 0 . (2.9)

These generalized Bianchi identities suffice to define for all spin-s fields fully gauge

invariant analogues of the Einstein tensor,

G(n) =
∑

p≤n

(−1)p

2p p!
(

n
p

) ηp F (n) [p] , (2.10)

obtained combining the proper F (n) with their multiple traces that, for n large enough,

have vanishing divergences like their spin-2 counterpart. This is attained directly by the

subtractions for all even spins, while for odd spins the last term thus generated vanishes

on account of (2.9). From the G(n) tensors, integrating

δ L ∼ δφ G(n) , (2.11)

one can then recover the corresponding gauge invariant Lagrangians.

In order to write the fully gauge invariant equations in a compact form, it is convenient

to resort to the trick of [15], contracting the gauge fields φµ1···µs with a vector ξ. It is then

simple to show that traces and divergences of the resulting expressions,

Φ̂(x, ξ) =
1

s!
ξµ1 · · · ξµs φµ1···µs , (2.12)

can be recovered applying the differential operators ∂ξ · ∂ξ and ∂ξ · ∂, where ∂ξ denotes a

derivative with respect to ξ. Starting from the Fronsdal term

F̂(Φ̂) =
[

¤ − ξ · ∂ ∂ · ∂ξ + (ξ · ∂)2 ∂ξ · ∂ξ
]

Φ̂ , (2.13)

the result of the successive iterations can then be written in the compact form

n−1
∏

k=0

[

1 +
(ξ · ∂)2

(k + 1)(2k + 1)

∂ξ · ∂ξ
¤

−
ξ · ∂

k + 1

∂ξ · ∂

¤

]

F̂(Φ̂) = 0 , (2.14)

– 5 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Augusto Sagnotti

where for spin s a fully gauge invariant operator is reached after
[

s+1
2

]

iterations. Expand-

ing this expression and combining it with its trace it is then possible to show that the field

equations can always be reduced to the form

F = ∂ 3 H , (2.15)

that generalizes eq. (2.4). Under a gauge transformation, by consistency, δH = 3 Λ ′, and

therefore the local forms (2.13) can be recovered from (2.14) making use of the traces of

the gauge parameters Λ to reach the “Fronsdal gauges” H = 0. The final gauge fixing to

the light cone, however, presents some subtleties, and will be discussed in a later section.

Gauge invariant Lagrangians can be also associated to eq. (2.15), as can already be

seen for spin 3. They differ from those corresponding to the F (n), and have the virtue

of reducing to the local expressions of [5] in the Fronsdal gauges H = 0, but the general

expressions for the corresponding Einstein-like tensors are less transparent, and we shall

thus refrain from displaying them explicitly.

3. Gauge-invariant equations for unconstrained fermions

One can also arrive at similar non-local geometric equations for totally symmetric tensor-

spinors ψµ1···µs . In this case the local fermionic equations of [5]

S ≡ i (6∂ ψ − ∂ 6ψ) = 0 (3.1)

are gauge invariant under

δψ = ∂ ε (3.2)

only if the gauge parameters are subject to the constraint

6ε = 0 . (3.3)

In addition, the S operators satisfy the “anomalous” Bianchi identities

∂ · S −
1

2
∂ S ′ −

1

2
6∂ 6 S = i ∂ 2 6ψ ′ , (3.4)

and therefore the gauge variation of the generic Lagrangian

δL ∼ δψ̄

[

S −
1

2

(

η S ′ + γ 6 S
)

]

(3.5)

can only vanish if eq. (3.3) is supplemented by

6ψ ′ = 0 , (3.6)

the fermionic analogue of the double trace condition for boson fields.

It is convenient to notice that the fermionic operators for spin s+1/2 can be formally

related to the bosonic operators for spin s according to

Ss+1/2 −
1

2

∂

¤
6∂ 6 Ss+1/2 = i

6∂

¤
Fs(ψ) . (3.7)
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This amusing link generalizes the obvious one between the Dirac and Klein- Gordon oper-

ators and, for the rather familiar s = 1 case, connects the Rarita-Schwinger operator, that

when combined with its γ trace can be reduced to the form (3.1), to the Maxwell operator,

according to

Sµ −
1

2

∂µ 6∂

¤
6 S = i

6∂

¤
[ ¤ ηµν − ∂µ ∂ν ] Aν , (3.8)

where we have restored the conventional index notation.

One can also show, by an inductive argument, that similar relations hold between the

non-local fully gauge invariant counterparts of eqs. (1.1) and (3.1). They link the fermionic

kinetic operators S (n), defined recursively as

S(n+1) = S(n) +
1

n(2n+ 1)

∂ 2

¤
S(n) ′

−
2

2n+ 1

∂

¤
∂ · S(n) , (3.9)

and such that

δ S(n) = − 2 i n
∂ 2n

¤ n−1
6ε [n−1] , (3.10)

to the corresponding corrected bosonic operators of the previous section, according to

S
(n)
s+1/2 −

1

2n

∂

¤
6∂ 6 S

(n)
s+1/2 = i

6∂

¤
F (n)
s (ψ) . (3.11)

This relation also determines the “anomalous” Bianchi identities of the S (n),

∂ · S(n) −
1

2n
∂ S(n) ′

−
1

2n
6∂ 6 S(n) = i

∂ 2n

¤ n−1
6ψ[n] , (3.12)

and therefore, for n large enough so that S (n) is gauge invariant and eq. (3.12) is free of

the “anomalous” term, the corrected Einstein-like operators

G(n) = S(n) +
∑

0<p≤n

(−1)p

2p p!
(

n
p

) ηp−1
[

η S(n) [p] + γ 6 S(n) [p−1]
]

, (3.13)

whose divergences vanish on account of eqs. (3.12) and of their (γ-) traces, and from which

gauge invariant Lagrangians can be recovered. For the sake of brevity, in the following we

shall mostly restrict our attention to bosonic higher-spin fields.

4. Free-field geometry

Following de Wit and Freedman [16], one can define generalized connections of various

orders in the derivatives for all spin-s gauge fields. This can be done by an iterative

procedure, so that, in the compact notation of the previous section, for any field of spin s,

after m iterations one can define

Γ(m) =
1

m+ 1

m
∑

k=0

(−1)k
(m
k

) ∂m−k 5k ϕ , (4.1)

where we are now using two types of derivatives for two distinct sets of indices, ∂ for

the m symmetric indices (α1 · · ·αm) introduced by the derivatives and 5 for the other s
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symmetric ones (β1 · · · βs) originating from the gauge field. It is simple to show, by an

inductive argument, that the gauge transformation of Γ(m) is

δ Γ(m) = 5m+1Λ , (4.2)

so that all m indices of the first set are within the gauge parameter. Hence,

Γ(s−1) =
1

s

s−1
∑

k=0

(−1)k
(s−1

k

) ∂s−k−1 5k φ , (4.3)

is the proper analogue of the Christoffel connection for a spin-s gauge field, since its gauge

transformation contains a single term. That these objects can be defined in general can be

also recognized noticing that the (s− 1)-th derivatives of the spin-s gauge transformations

of eq. (1.9) imply that one can retrieve a composite connection Γα1···αs−1;β1···βs , such that

δΓα1···αs−1;β1···βs = ∂β1
· · · ∂βs Λα1···αs−1 , (4.4)

inverting a linear system with
(2s−1

s

)

unknowns. Moreover, all Γ’s with m > s are gauge

invariant, and in particular

Γ(s) =
1

s+ 1

s
∑

k=0

(−1)k
(

s
k

) ∂s−k 5k φ (4.5)

is the proper analogue of the Riemann curvature tensor. This generalized curvature is

of the form Rα1···αs;β1···βs , and is totally symmetric under the interchange of any pair of

indices within each of the two sets. In addition, as shown in [16],

Rα1···αs;β1···βs = (−1)sRβ1···βs;α1···αs , (4.6)

and a generalized cyclic identity holds. These concepts can be also related to an interesting

generalization of the exterior differential, whereby the familiar condition d2 = 0 is replaced

by ds+1 = 0 [17].

There is another, perhaps more obvious way, to generate a gauge invariant quantity

from a connection Γ(s−1) that transforms as in (4.4), a curl with respect to any of its β

indices. However, the choice of [16] has the virtue of simplicity, since it results automatically

in a tensor with two totally symmetric sets of indices. For instance, the symmetric curvature

of [16] for the spin-2 case is a linear combination of ordinary Riemann tensors, while its

trace in the first symmetric set of indices is proportional to the ordinary Ricci tensor. If

we now restrict our attention to the Γ(m)’s with m even, and for the sake of clarity let

m = 2n, eq. (4.2) implies that the total trace of Γ(2n) over pairs of β indices, Γ(2n)[n], is a

totally symmetric spin-s tensor such that

δ
1

¤n−1
Γ(2n) [n] =

∂2n+1

¤n−1
Λ[n] . (4.7)

Up to an overall proportionality constant, this is exactly the gauge transformation of the

F (n), and in particular, if s = 2n, Γ(2n)[n] is the n-th trace of the spin-s analogue of
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the Riemann tensor defined above. The iterative procedure of the previous section is

thus providing a rôle for the higher-spin connections of [16], so that the geometric gauge-

invariant equations for even spin s = 2n can be written in the form

1

¤n−1
R[n]

;µ1···µ2n = 0 , (4.8)

a natural generalization of the linearized Einstein equation.

The odd-spin case s = 2n+1 presents a further minor subtlety, in that the correspond-

ing curvatures Γ2n+1 have an odd number of β indices. The simplest option is then to take

a trace over n pairs of β indices in Γ2n+1 and act with a divergence on the remaining one.

The end result for spin s = 2n+ 1 is then

1

¤n
∂ · R[n]

;µ1···µ2n+1 = 0 , (4.9)

a natural generalization of the Maxwell equation. Notice that the Maxwell and Einstein

cases are the only ones when these geometric equations are local. In all cases, however, the

Fronsdal operators provide local, albeit partly gauge fixed, forms for them. As anticipated

in the previous sections, these are the least singular fully gauge invariant equations, while

more singular forms can be obtained combining eqs. (4.8) and (4.9) with their traces, as

in section 2.

5. The issue of gauge fixing

In the previous sections we have seen how the non-local geometric equations for higher-spin

bosons can be reduced to the usual local forms using the traces Λ′ of the gauge parameters

to reach the “Fronsdal gauges” H = 0. The resulting Fronsdal equations, however, present

a subtlety, since they involve unconstrained fields φ, whose double traces φ ′′ do not vanish

identically. As we shall see, this subtlety requires a slight revision of the standard gauge-

fixing procedure and, as a result, the field equations themselves set to zero the double

traces on shell, leaving again the right set of modes.

Whereas in the usual local formulation the de Donder gauge condition

D ≡ ∂ · φ −
1

2
∂ φ′ = 0 (5.1)

is used to reduce the Fronsdal equation to the canonical form

¤φ = 0 , (5.2)

the same procedure runs into a difficulty in this case. Indeed, while the gauge variation of

D under (1.9) is in general

δD = ¤Λ − ∂ 2 Λ′ , (5.3)

once the trace of the gauge parameter has been used to set H = 0, eq. (5.3) can only

be consistent if the de Donder gauge condition is modified in order that it be identically

traceless. While not automatic, since in our case φ′′ does not vanish identically as in [5],
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this can be achieved following once more an iterative procedure. Before dealing with the

general case, it is perhaps instructive to discuss explicitly this issue for a spin-4 field, the

first case where the problem presents itself.

For a spin-4 field in D dimensions, one can modify D by the addition of a higher trace,

to finally impose

D + ∆ ≡ ∂ · φ −
1

2
∂ φ′ +

1

2(D + 2)
η ∂ φ′′ = 0 , (5.4)

that is identically traceless. When used in the Fronsdal equation, in momentum space this

leads to

p 2 φµνρσ +
1

D + 2
[ ηµν pρ pσ + · · · ] φ′′ = 0 , (5.5)

and this equation can only have non-trivial eigentensors if p2 = 0, since the second term

does not contain any dimensionful parameter. With a light-like momentum p+, choosing

for instance (µ, ν, ρ, σ) equal to (+,−,+,+), it is then simple to see that eq. (5.5) sets

φ′′ = 0. At this point, the gauge condition reduces to the usual de Donder form, with

a field now constrained as in [5]. The non-local equation thus propagates correctly spin-

4 polarizations, despite the fact that a traceless gauge parameter, left over after setting

H = 0, is originally accompanied by an unconstrained gauge field.

In general, for a spin-s field φ one can define

∆ =
∑

k≥2

[

ck,1 η
k−1 ∂ φ[k] + ck,2 η

k ∂ · φ[k]
]

, (5.6)

where the coefficients ck,1, available for k ≤
[

s
2

]

, and ck,2, available k ≤
[

s−1
2

]

, can be

determined recursively requiring that

∆′ =
∑

k≥2

{

ηk−1∂ · φ[k]

[

2 ck,1 + ck,2 k (D + 2(s− k − 2))

]

+ ck,1 (k − 1) (D + 2(s− k − 1)) ηk−2 ∂φ[k]

+ ck,1 η
k−1 ∂φ[k+1] + ck,2 η

k ∂ · φ[k+1]

}

(5.7)

cancel the trace of the naive de Donder condition D, i.e. that

∆′ −
1

2
∂ φ′′ = 0 , (5.8)

so that

D + ∆ = 0 (5.9)

is an allowed gauge condition. This requires that

ck+1,1 = −
ck,1

k [D + 2(s− k − 2)]
, (5.10)
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and therefore

ck,1 =
(−1)k

2 (k − 1)!
∏

2≤`≤k [D + 2(s− `− 1)]
( k ≥ 2 ) . (5.11)

The ck,2 are then determined by the inhomogeneous difference equation

ck+1,2 +
ck,2

(k + 1) [D + 2(s− k − 3)]
= gk , (5.12)

where

gk =
(−1)k

2 (k + 1)!
∏

2≤`≤(k+2) [D + 2(s− `− 1)]
, (5.13)

whose solution is

ck,2 =
(−1)k−1

2 (k − 1)!
∏

2≤`≤(k+1) [D + 2(s− `− 1)]
( k ≥ 2 ) . (5.14)

As a result, the field equations reduce in general to

¤φ+ ∂∆ = 0 , (5.15)

while the existence of non-vanishing solutions requires that p2 = 0, the only covariant

condition that can emerge from a kinetic operator, invertible as a result of the gauge-fixing

procedure, that only involves dimensionless parameters. Eqs. (5.9) then turn (5.15) into

∂ D = 0 , (5.16)

and, with a light-like momentum p+, it is easy to convince oneself that these imply

D = 0 , (5.17)

and therefore, via their traces, φ′′ = 0.

When combined, as usual, with residual gauge transformations, the de Donder con-

ditions thus retrieved leave only the polarizations corresponding to irreducible, traceless

symmetric spin-s tensors. Still, the need for these generalized (D +∆)-gauges appears to

reflect interesting properties of this formulation at the quantum level, that deserve further

investigation.

6. Higher-spin geometry and String Theory

We now want to show that the higher-spin geometry discussed in the previous sections

plays a clear, albeit indirect, role in String Theory. That this should be the case can be

simply anticipated. Following [11, 10], the free equations of String Field Theory can indeed

be written in the form

Q |Φ〉 = 0 , (6.1)

where Q denotes the BRST operator of the first-quantized string, and have the chain of

gauge invariances

δ|Φ(n)〉 = Q |Φ(n+1)〉 , (6.2)
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with Φ(1) the string gauge field and Φ(n) (n > 1) the corresponding chain of gauge (per

gauge) parameters. It should be appreciated that neither (6.1) nor (6.2) involve trace

conditions. Whereas they describe massive higher-spin modes, their limit as α ′ → ∞ is

thus expected to result in fully gauge invariant free massless higher-spin equations with

no trace constraints like those in [5]. This is indeed the case, and for symmetric tensors

(say, in the “leading Regge trajectory” generated by the lowest string oscillators α−1 in

the bosonic string), the limit α′ →∞ yields the equations

¤φ = ∂ C ,

∂ · φ − ∂ D = C ,

¤D = ∂ · C , (6.3)

that link the unconstrained spin-s tensors φ, spin-(s−1) tensors C and spin-(s−2) tensors

D, are invariant under the unconstrained gauge transformations

δ φ = ∂ Λ ,

δ C = ¤Λ ,

δ D = ∂ · Λ , (6.4)

and follow from the Lagrangians

L = −
1

2
∂µ φ ∂

µ φ − φ ∂ C − s C ∂ D

−
s

2
C2 −

(s

2

)

∂µD ∂µD . (6.5)

On can also eliminate the auxiliary field C, reducing eqs. (6.3) to the pair of equations

F = ∂2
(

ϕ
′

− 2D
)

,

¤ D =
1

2
∂ · ∂ · ϕ −

1

2
∂ ∂ ·D , (6.6)

One can also introduce similar fermionic systems,

6∂ ψ = ∂ χ ,

∂ · ψ − ∂ λ = 6∂ χ ,

6∂λ = ∂ · χ , (6.7)

that link the unconstrained spin-(s+1/2) tensor-spinors ψ, spin-(s− 1/2) tensor-spinors χ

and spin-(s− 3/2) tensor-spinors λ, are invariant under the unconstrained gauge transfor-

mations

δ ψ = ∂ ε ,

δ χ = 6∂ ε ,

δ λ = ∂ · ε , (6.8)
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and follow from the rather simple Lagrangians

L = i ψ̄ 6∂ ψ − i ψ̄ ∂χ + i ∂ χ̄ ψ − i s χ̄ 6∂ χ

+ i s χ̄ ∂ λ − i s ∂λ̄ χ − i s(s− 1) λ̄ 6∂ λ . (6.9)

We recently came to know that actually the system (6.3), in the slightly different

form (6.6, first emerged from a study of the lower excitations of the bosonic string in

the low-tension limit in the work of A. Bengtsson [12], and played a key in the more

recent, interesting BRTS constructions of Pashnev, Tsulaia and others [13], that we shall

comment further upon in the next sections. On the other hand, the fermionic system (6.7)

does not play directly a role in the superstring, where totally symmetric tensor-spinors are

eliminated by the GSO projection, but it does enter the spectrum of type-0 strings [14].

Generalizations of these equations to tensors with mixed symmetry can also be obtained

as interesting applications of the BRST procedure, as in [13, 2], but for brevity here we

shall confine our attention to the simpler case of fully symmetric tensors.

It is important to notice that eqs. (6.3) and (6.7), that we shall henceforth refer to as

“triplets”, propagate lower spins as well. This can be foreseen rather simply in the light-

cone description of the string states, where, say, the physical polarizations for the system

(6.3) would correspond to states created by products of transverse string oscillators of the

type αi1−1 · · ·α
is
−1 |0〉, that indeed describe a nested chain of modes of decreasing spins. The

simplest non-trivial case of this type, αi1−1α
i2
−1 |0〉, presents itself at the first massive level

of the open bosonic string. In the α′ → ∞ limit these states become massless, and while

the traceless part of this two-tensor describes massless spin-2 modes, its trace describes

an independent scalar mode. In general, one thus expects that the local system (6.3)

propagate independent sets of irreducible modes of spins s, s− 2, and so on, down to zero

or one according to whether s is even or odd.

In order to analyze directly the physical polarizations described by eqs. (6.3), it is

convenient to choose the gauge C = 0, that can be reached solving a wave equation for

the gauge parameter Λ and reduces the system to a pair of wave equations for φ and D,

together with the constraint

∂ · φ − ∂ D = 0 . (6.10)

One can now take for φ and D two plane waves characterized by the same light-like momen-

tum p+, and the result follows if the constraints of eq. (6.10) are combined with residual

gauge transformations also described by plane waves of momentum p+, that as such do not

affect the original gauge choice C = 0, obtaining

δφ(+)k (a)s−k = k p+ Λ(+)k−1 (a)s−k , (6.11)

p+ φ− (+)k (a)s−1−k = k p+D(+)k−1 (a)s−1−k , (6.12)

where a stands collectively for any of the other directions, “-” or “i”. Using eq. (6.11), one

can eliminate all components of the gauge field φ with at least a lower “+” index, and then

eq. (6.12) kills all other components with no lower “+” indices and at least a lower “-”

index, while the other choices of k in eq. (6.12) dispose of the whole of D. In conclusion,
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one is left with the transverse components φi1···is , that indeed describe the (traceless)

polarizations of a spin s field, together will all their traces, that indeed correspond to the

chain of spins s, s − 2, and so on, down to zero or one according to whether s is even or

odd. A similar, if more involved, argument, applies to the fermionic system, and shows

that, with a spinor-tensor ψµ1···µn and its χ and λ companions, one is actually propagating

all half-integer lower spins, together with the maximum one.

Confining for simplicity our attention to the bosonic system (6.3), we can now show

how, after a suitable elimination of the C and D fields, φ satisfies the non-local equations

of [1]. This can be done in two different ways. The first consists in the direct elimination

of C from the divergence of the second of eqs. (6.3), that when combined with the third

gives

¤D +
1

2
∂ ∂ ·D =

1

2
∂ · ∂ · φ . (6.13)

Inverting the differential operator in (6.13) defines a solution for D that, by construction,

eliminates all lower-spin modes, and substituting it in the second of (6.3) expresses C in

terms of φ. Finally, substituting C in the first of eqs. (6.3) yields a non-local fully gauge

invariant equation equivalent to (2.15). This can be seen explicitly for the first few cases,

but in general one can find a simpler argument noticing that φ and D define the chain of

lower-spin fields (n ≥ 1)

Wn = φ [n] − 2nD [n−1] (6.14)

Eqs. (6.3) and (6.4) imply that these fields satisfy the chain of inhomogeneous Fronsdal

equations

F (Wn) = ∂ 2 Wn+1 , (6.15)

and transform under gauge transformations as ordinary fields of spin s− 2n, i.e.

δ Wn = ∂ Λ[n] . (6.16)

One can now look for solutions of eqs. (6.3) that are free of lower-spin excitations.

Naively, this would correspond to eliminating W1, but more naturally one can demand

that W1 be pure gauge, letting

W1 = φ′ − 2D = ∂ α , (6.17)

where eq. (6.3) implies that a gauge transformation affects α according to

δ α = Λ′ . (6.18)

Substituting in eqs. (6.3) then gives the inhomogeneous Fronsdal equation

F (φ) = 3 ∂3 α , (6.19)

a local form in terms of the source α of the non-local geometric equations of [1], as ad-

vertised. These can be recovered deriving from (6.19) corresponding equations for the

F (n),

F (n) = (2n + 1)
∂ 2n+1

¤n
α[n] , (6.20)
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where by construction α is replaced by its multiple traces, and thus disappears altogether

for n large enough, so that eventually one retrieves the non-local homogeneous equations

of section 2. On the other hand, the direct elimination of W1 leads to the usual homo-

geneous Fronsdal equation with a traceless gauge parameter, but, as is section 5, with an

unconstrained gauge potential.

7. Local compensator forms of the field equations in flat space

In the previous section we have seen how a single spin-s field can be described by a “triplet”

whose lower-spin excitations are restricted to be pure gauge by eq. (6.17), a choice moti-

vated by the fact that ϕ
′
− 2D transforms as a canonical spin-(s − 2) field. This indeed

turns the first of eqs. (6.6) into (6.19), where α is a spin-(s − 3) field that plays the role

of the single compensator needed in this formulation, but the second eq. (6.6) takes an

apparently more complicated form, and becomes

¤ϕ
′

+
1

2
∂ ∂ · ϕ

′

− ∂ · ∂ · ϕ =
3

2
¤ ∂α + ∂2 ∂ · α . (7.1)

In terms of the Fronsdal operator, however, this simplifies considerably, since eq. (1.1)

indeed implies that

F
′

= 2¤ϕ
′

− 2 ∂ · ∂ · ϕ + ∂ ∂ · ϕ
′

+ ∂2 ϕ
′′

, (7.2)

so that (7.1) is equivalent to

F
′

− ∂2 ϕ
′′

= 3¤∂α + 2 ∂2 ∂ · α . (7.3)

On the other hand, the trace of eq. (6.19) is

F
′

= 3¤∂α + 6 ∂2 ∂ · α + 3 ∂3α
′

, (7.4)

and thus, by comparison, one obtains

∂2 ϕ
′′

= 4 ∂2 ∂ · α + ∂3 α
′

= ∂2
(

4∂ · α + ∂α
′
)

. (7.5)

The conclusion is that the “triplet equations” (6.3) imply a pair of local equations for

a single massless spin-s gauge field ϕ and a single spin-(s− 3) compensator α,

F = 3 ∂ 3 α ,

ϕ
′′

= 4 ∂ · α + ∂ α
′

, (7.6)

that are invariant under the unconstrained gauge transformations

δ ϕ = ∂ Λ , (7.7)

δ α = Λ
′

, (7.8)

and clearly reduce to the standard Fronsdal form after a partial gauge fixing using the

trace Λ
′
of the gauge parameter.

– 15 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Augusto Sagnotti

These local equations are nicely consistent, since the second is implied by the first, as

can be seen using the Bianchi identity of eq. (1.14). However, it is important to stress that

these are not Lagrangian equations, somewhat in the spirit of the Vasiliev form of higher-

spin dynamics [7, 8]. A Lagrangian form for the compensator equations can be obtained,

as in [13, 2], at the expense of introducing a number of additional fields, although the

resulting procedure is nicely guided by the BRST approach.

One can also repeat the construction of local compensator equations for Fermi fields.

Here the story parallels the discussion in subsection 3, since the fermionic Fang-Fronsdal

operator (3.1) varies into a term proportional to the gamma-trace of the gauge parameter,

δS = −2 i ∂2 6ε , (7.9)

under the gauge transformation

δψ = ∂ ε . (7.10)

In addition, S satisfies the “anomalous” Bianchi identity (3.4), and as a result the gauge

parameter and the gauge field were constrained in [5] to satisfy the conditions

6ε = 0 , 6ψ ′ = 0 . (7.11)

As for integer-spin fields, one can also eliminate these constraints introducing a single

compensator field ξ. The resulting equations,

S = − 2 i ∂2 ξ ,

6ψ
′

= 2 ∂ · ξ + ∂ ξ
′

+ 6∂ 6ξ , (7.12)

are then invariant under the gauge transformations

δψ = ∂ ε ,

δξ = 6ε , (7.13)

involving an unconstrained gauge parameter, and are nicely consistent, since the first im-

plies the second via the Bianchi identity (3.4). As in the bosonic case, however, these are

not Lagrangian equations. Corresponding Lagrangian equations have not appeared yet,

but they are expected to follow from a direct, if tedious, procedure, along the lines of [13].

8. Local compensator forms of the field equations in (A)dS

One can also extend the spin-s compensator equations of the previous section to (anti)de

Sitter backgrounds, henceforth denoted by (A)dS for brevity. This was done in [2], and it is

worthwhile to review briefly these results, given also the central role of (A)dS backgrounds

in the Vasiliev formulation [8]. While [13] contains also derivations of Lagrangian equations

based on the BRST formalism, here we shall simply content ourselves with an account of

the direct constructions of [2].
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To this end, one needs only two additional inputs, the commutator of two covariant

derivatives on a vector

[∇µ,∇ν ]Vρ =
1

L2
(gνρ Vµ − gµρ Vν) , (8.1)

where L determines the AdS curvature and the dS case is recovered formally continuing L

to imaginary values, and the corresponding commutator on a spinor,

[∇µ,∇ν ] η = −
1

2L2
γµν η , (8.2)

where γµν is antisymmetric in µ and ν and equals the product γµγν when µ and ν are

different, since these determine all other cases.

Let us therefore begin by considering the bosonic case, noticing that the gauge trans-

formations for the fields ϕ and α in such a curved background take naturally the form

δ ϕ = ∇Λ ,

δ α = Λ
′

, (8.3)

where ∇ denotes and (A)dS covariant derivative.

One can then proceed in various ways, for instance starting from the gauge variation

of the (A)dS form of the Fronsdal operator

δFL ≡ δ

{

F −
1

L2
[(3−D − s)(2− s)− s]ϕ− 2gϕ

′

}

= 3 (∇3Λ
′

) −
4

L2
g∇Λ

′

, (8.4)

so that

FL = F −
1

L2

{

[(3−D − s)(2− s)− s] ϕ + 2 g ϕ
′
}

, (8.5)

and it is then simple to conclude that the compensator form of the higher-spin equations

in (A)dS is

F = 3∇3α+
1

L2
{[(3−D − s)(2− s)− s]ϕ+ 2gϕ

′

} −
4

L2
g∇α ,

ϕ
′′

= 4∇ · α + ∇α
′

. (8.6)

These are again nicely consistent, as can be seen making use of the Bianchi identity,

that now becomes

∇ · FL −
1

2
∇F

′

L = −
3

2
∇3 ϕ

′′

+
2

L2
g ∇ϕ

′′

, (8.7)

and one can in fact verify that the first of (8.6) implies the second.

The fermionic compensator equations (7.12) can be also generalized to (A)dS back-

grounds. The gauge transformation for a spin-s fermion becomes in this case

δψ = ∇ ε +
1

2L
γ ε , (8.8)

– 17 –



j
h
w
2
0
0
3

27th Johns Hopkins Workshop on Current Problems in Particle Theory:
Symmetries and Mysteries of M Theory Augusto Sagnotti

where ∇ denotes again an (A)dS covariant derivative, and in order to proceed, one needs

only the commutator of two covariant derivatives on a spin-1/2 field of eq. (8.2).

For a spin-s fermion (s = n+ 1
2), where n is the number of vector indices carried by

the field ψ, the compensator equations in an (A)dS background are then

(6∇ψ − ∇ 6ψ) +
1

2L
[D + 2(n − 2)]ψ +

1

2L
γ 6ψ

= −{∇,∇}ξ +
1

L
γ∇ ξ +

3

2L2
g ξ ,

6ψ
′

= 2∇ · ξ + 6∇ 6ξ + ∇ξ
′

+
1

2L
[D + 2(n − 2)] 6ξ −

1

2L
γ ξ

′

, (8.9)

and are invariant under

δψ = ∇ ε ,

δξ = 6ε , (8.10)

with an unconstrained parameter ε.

Eqs. (8.9) are again non-Lagrangian, like their flat-space counterparts (7.12), but are

again nicely consistent, on account of the (A)dS deformation of the Bianchi identity (3.12),

∇ · S −
1

2
∇S ′ −

1

2
6∇ 6S =

i

4L
γ S ′ +

i

4L
[(D − 2) + 2 (n − 1)] 6 S

+
i

2

[

{∇,∇} −
1

L
γ∇ −

3

2 L2

]

6ψ ′ , (8.11)

where now the Fang-Fronsdal operator S is also deformed and becomes

S = i (6∇ψ − ∇ 6ψ) +
i

2L
[D + 2(n − 2)]ψ +

i

2L
γ 6ψ . (8.12)

9. Conclusions

It is becoming increasingly clear that a deeper understanding of String Theory cannot

forego a closer look at its massive excitations. As a result, Higher Spin Gauge Theory is

quickly coming to the forefront of current research, since it appears to provide key examples

of dynamical systems whose structural complexity is somehow intermediate between those

of String Theory and of ordinary low-spin theories. With this is mind, in [1] we reconsidered

the standard free higher-spin equations, exhibiting a geometric structure that makes them

more akin to their low-spin counterparts. This rests on the replacement, for spin greater

than two, of the ordinary local kinetic operators of [5] with non-local ones that guaran-

tee the invariance of the field equations under gauge transformations with unconstrained

parameters and the absence in the Bianchi identities of “anomalous” terms depending on

the double traces (or triple γ-traces) of the gauge fields. The end result can be linked to

the generalized curvatures introduced by de Wit and Freedman [16], as the local Frons-

dal equations were linked in [16] to the traces of the second-order connections. Suitable

compensators can dispose of the non-local terms, while preserving the unconstrained gauge
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invariance, but only at the price of making the geometry that underlies the equations less

transparent, and therefore they were only briefly discussed in [1].

In [1] we had also noticed that the geometric equations can always be turned to the

local, Fronsdal form after partial gauge fixings involving the traces of the gauge parame-

ters. Here we have supplemented this result, showing that if the usual de Donder gauge

conditions are modified in order that they be identically traceless, as demanded by the

presence of unconstrained fields, the resulting field equations set to zero their double traces

on shell. Once these are removed, the study of on-shell polarizations proceeds as in the

standard case, despite the apparent initial presence of more field components together with

the same number of traceless gauge parameters.

Finally, we have shown how String Theory makes a full, if indirect, use, of the cur-

vatures of [16]. In the bosonic case, these are embodied in a set of local gauge invariant

equations propagating modes of spin s, s − 2, and so on, down to zero or one according

to whether s is even or odd, that follow from the Stueckelberg-like equations for massive

string modes in the limit α′ →∞. As we have seen, these reduce to the non-local equations

of [1] once one restricts the attention to fields that are free of lower-spin excitations.

The string-inspired systems of “triplets”, however, are of interest in their own right,

can be simply extended [2] to the mixed-symmetry tensors discussed in [18], and their

ability to describe nested chains of lower spins may well prove valuable in establishing

more direct links between String Theory and Higher-Spin Gauge Theory, or in providing

level-like truncations for the latter. For the time being, following [2], we have seen how the

“triplet” equations of section 6 provide an interesting route toward simple non-Lagrangian

local compensator forms of the field equations for higher-spin bosons and fermions, that

we have displayed both for a flat and an (A)dS background, that plays a key role in the

Vasiliev formulation [8]. These display the same unconstrained gauge symmetry as the

non-local equations of the previous sections, and are also nicely determined by the BRST

approach of [13, 9]. More details, together with local Lagrangian forms for the bosonic

equations, are discussed at length in [2].

It will be very interesting to elucidate the possible role of the higher-spin geometry

reviewed here in the Vasiliev formulation [8], or in the conformal higher-spin theory pro-

posed by Segal in [19], also in view of its relation to String Theory and to the BRST-like

systems studied in [20, 13]. We hope to return to some of these issues in the near future.
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