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On the Geometry of Isotropic Arrays

Ulkii Baysa) Student Member, IEEEBNd Randolph L. Mose$enior Member, IEEE

Abstract—We consider array geometries whose direction-of-ar-  In this paper, we concentrate on arrays that have uniform per-
rival (DOA) estimation performance is isotropic. An isotropic formance over the whole field of view. We consider both planar
array is one whose Cramér—Rao bound (CRB) on the DOA of a 4,4 yolume array geometries that have isotropic DOA estima-
single source is uniform for all angles. For both planar arrays . . .
and volume arrays we derive necessary and sufficient conditions _t'on performance. For planar arrays, the grray_s are |sot_rop|c
on array element locations so that the array is isotropic. We also in the sense that the CRB on the DOA estimation of a single
present several designs of isotropic planar and volume arrays. The source is uniform for all source arrival angles from 0 te. 2
results apply to both narrowband and wideband scenarios.We For volume arrays, we use the bound on the mean square an-
analyze the special case where a planar array is used to estimategu|ar error (MSAE) as the criterion. The MSAE is a scalar

the DOA of three-dimensional (3-D) source. Finally, we compare fth bet i d estimated unit beari
isotropic array performance to the best possible array perfor- measure of the error between true ana estimated unit bearing

mance. vectors pointing toward the source, and its bound is computed
L . from the CRB. The array is said to be isotropic if the bound on
Index Terms—Array geometry, DOA estimation, isotropic, wide- . . . .
band. the MSAE is constant for all azimuth and elevation angles in

[0, 27) x (—(m/2), «/2). Since the CRB and bound on the
MSAE are independent of any particular estimator and ML es-
. INTRODUCTION timators asymptotically achieve these bounds, they are useful

HE LOCATION of the elements in an array strongly‘:rite”a for array design. Our results apply to both narrowband

affects the direction-of-arrival (DOA) estimation per-&nd wideband signals.
formance of the array. There has been a considerable amourfifays with uniform performance have been studied in var-
of work done on the design of arrays to achieve or Optimiggus contexts. In his dissertation, MacDonald [12] considers
desired performance goals that include terms such as céa@tropic arrays and presents conditions for isotropic perfor-
space, error variance, or resolution limits [1]-[6]. Much offance. Hawkes and Nehorai [13] use the bound on the asymp-
the array design literature is devoted to linear arrays (Bic mean square angular error to define an isotropic array.
combination of linear arrays), perhaps because they are simplt¢y derive the angle CRB for a single far-field source and
to analyze and because computationally efficient and effectigdve sufficient conditions on array geometry for the bound of
DOA estimation algorithms are available for such arrays. 3¢ MSAE to be constant for all DOAs. Mirkin and Sibul [14]
the other hand, linear arrays have nonuniform performan@d Nielson [15] consider conditions on the array geometry for
the DOA estimation performance degrades considerably nadych the single source azimuth and elevation CRBs are uncou-
endfire. pled. Mirkin and Sibul [14] also derive a sufficient condition for

Several different performance and design criteria have be€Rtropic planar array performance.
introduced to be used in obtaining optimal arrays. Performancel he present paper can be considered an extension and gen-
comparisons of some common array geometries are preser@gaization of [12]-[15]. We provide necessary and sufficient
in [7] and [8]. In [9], the authors introduce a measure of sinfonditions on isotropic array performance for both planar and
ilarity between array response vectors and show that the siy@lume arrays, thereby unifying and extending the results in
ilarity measure can be tightly bounded below. The array wif#2]-[15]. In doing so, we summarize the results from [12],
the highest bound is optimum in the sense that it has the bwétich are apparently not widely known in the array signal
ambiguity resolution. In [10], a sensor locator polynomial is ilProcessing community. In addition, we develop a geometric
troduced for array design. A polynomial is constructed usm’gterpretation of the isotropy condition that provides additional
prespecified performance levels, such as detection-resolutiBfight into the geometry of isotropic arrays and provides new
thresholds and Cramér—Rao Bounds (CRBs) on error variaribgthods for designing isotropic arrays. Finally, we provide
and its roots are the sensor locations of the desired linearshple bounds for comparing the performance of the optimal
planar array. In [11], differential geometry is used to charaésotropic arrays to that of the optimal (anisotropic) array.
terize the array manifold, and an array design framework based he organization of the paper is as follows. In Section II,
on these parameters is proposed. we describe the system model and state our assumptions. Sec-
tion 11l discusses the planar array scenario; we define the per-

. . . . formance and isotropy conditions, give necessary and sufficient
Manuscript received April 26, 2002; revised November 27, 2002. This

work was supported in part by the U.S. Army Research Office under Gra‘ﬁ@ndmons on thef array geometry for |sotrop_|c performance, and
DAAH-96-C-0086. The associate editor coordinating the review of this pappresent several isotropic planar array design methods. In Sec-

and approving it for publication was Dr. Fulvio Gini. o tion 1V, we study the three-dimensional (3-D) arrays; we define
The authors are with the Department of Electrical Engineering, The Oh{ﬂ . diti f hi . d suff

State University, Columbus, OH 43210-1272 USA. _e ISOtropY condition for this case,. give necessary and sufti-
Digital Object Identifier 10.1109/TSP.2003.811227 cient conditions on the 3-D array for isotropic performance, and

1053-587X/03$17.00 © 2003 IEEE



1470 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

For the 3-D case where a signal arrives from azimuth aggle
b and elevation anglé, u(6) = u(¢, ¥), where

u(gp, 1) = [cos(¢) cos(v)), sin(p) cos(4p), sin(y)]T.  (4)

AssumingTy is long enough, the(w;) vectors are uncor-
related.

’
. <
’

................ ~ar” I1l. PLANAR ARRAYS

In this section, we consider the special case of a planar array
Fig. 1. Three-dimensional coordinate system showing the bearing vecwith elements on théz, ) plane at locations; = [z;, vi]”.
u(@, ) for a signal arriving from azimutt and elevation). The array is used to estimate the DOA of a wideband sig(it#)
which is coplanar with the array and arrives at an argle

provide some design methods. We also consider the isotropic
performance when a planar array is used to estimate the DOA Single-Source CRB
of a 3-D source. Section V presents a performance comparisoror the system model described in Section Il and under the
between isotropic array and an array designed for optimal pefanar array and coplanar signal assumptions, the CRB for the
formance for a single source direction; we provide a bound @ource DOA estimate is given by [16]
performance loss imposed by the isotropy condition for the ge-
ometry considered. Section VI concludes the paper. 1 7 1 . )
CRB($) = 3= | Y —e (Agf(wj)ij A¢(wj))
j=1
Il. SYSTEM MODEL

We assume an array of identical isotropic sensors located O] <Rs(wj> - (Rs_l(wj) + i Af(wj)

atr; fori € [1, N]. We will consider both planar arrays in which i

r: = [z, y;]7 and volume arrays in which = [z, ;. 2]T. nTY1!
Following [16], we adopt a system model describing a source X A¢(wj)> ) }

impinging on the array. A single far-field sourcét), which

is, in general, wideband, impinges on the array from direction

8 = [¢, ¥], whereg denotes the azimuth angle measured couhlere,A¢ = dA/d¢ is the derivative ofd with respect to the

terclockwise from ther-axis on ther—y plane, and) denotes DOA angle¢, Py = I — A(A7A)~1AH is the projection

the elevation angle measured from they plane (see Fig. 1). matrix onto the subspace orthogonal to the column spack of

The noise at the sensors is assumed to be independent, Z&r@v;) = F{si(w;)sy (w;)} is the spatial covariance matrix

mean, Gaussian, and independent of the source signal. Theafbthe impinging signals at frequeney;, and ® denotes the

servation timél” is partitioned intak intervals of lengtl; and Hadamard product.

a.J-point discrete Fourier transform is applied to each interval. For the model given by (1) and (2), we find

Then [16]

(®)

CRB(¢) =[G(B. ¢) - " O]
Trp(wj) = Ag(wj)sk(w;) + ne(wj), j=1...,J I w2 .
j j j j L K P=2K2Nzw—Jpj<l— n; ) @
=1,..., ¢ piN +n;
wherezy (w;), np(w;) areN x 1 vectors, and(w;) is a scalar. du(¢)” _ du(¢)
The elements ok (w;), nk(w;), andsg(w;) are the discrete G(B, ¢) = déb B déb (8)
Fourier coefficients of the sum of the sensor outputs, the noise, N
and the signal source at the discrete frequengcyespectively. 1 T
In addition B=y Z;W —re)(ri = 7e) ©)
Ag(w;) = |:ejw_7d1 (9)7 ejw»,d2(9)7 L ejwde(g):|T @) wherer. is the centroid of the array, i.e.,
1 o

whered,, (9) = u”'(9) -r1, /c is the propagation delay associated re = o7 > i (10)
with the kth sensorg is the speed of propagation, an¥) is i=1

the unit vector pointing toward the signal source (see Fig. 1). Foy
a planar signal arriving from anglg 6 = [¢], and we denote
u(8) with u(¢); in this case

(7), p; is the signal power, and; is the noise power at fre-
guency intervalj.

We see that the CRB is a product of two terms. The first
(G(B, ¢)) depends only on the source D@#Aand the array ge-
u(¢p) = [cos(), sin(4)]”. (3) ometry through the matri®; the second) depends on source
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y a function of spatial anglé and at frequencyw, and corre-

sponding wavelengthy = 27c¢/wy is given by
Wi, (¢) = a® (¢)a(o) (12)

. . T
u — | pi@m/X0)u(d)"-m 327/ Ao)u” (6)-rn
A a(¢) [e e ] . (13)
\. * A Taylor series approximation of the array g&ifi,, (¢)| about
the anglep, yields (to second order)
T N (272

%=100) Wo@ll = N = 5 () 6B w6 — . 19

Using (14), the half-power beamwidth of the array is given by
(Mo/2m)\/1/G(B, ¢o) and is thus linearly proportional to the
square-root of the CRB for estimatinfg [see (6)]. Thus, the

Fig. 2. Geometrical interpretation 6f( B, ¢) as the moment of inertia of the parametric CRB performance measure also has a nonparametric
projected points of array locations onto the line orthogonad(o). . . .
interpretation of array beamwidth.

and noise powers as a function of frequency. This is an impdd- Isotropic Planar Arrays

tant property because the impact of the array geometry on th?From (8), we see tha(B, ¢), as well as the single-source
CRB is the same, regardless of whether the source spectrumsg s independent of translation of the array element loca-

narrowband or wideband, and regardless of the source sigfighs; therefore, without loss of generality, we assume that the
and noise spectral densities. Thus, the results that follow apglyay is centered at the origim.(= [0, 0]T). Under this as-

to a broad class of array signal processing scenarios. Note %ption,B in (9) simplifies to
the matrix B is the 2« 2 moment of inertia matrix of the array
points. Any two array geometries that have the same moment of 1 &
inertia matrices also have identical CRB performance. B = N Z riri . (15)
We note that the array performance criterion we have chosen i=1
does not take into account potential array ambiguities that arisaye are interested in planar array geometries whose single-
when the array manifold from two different DOAs are close tgoyrce CRB is independent of signal arrival anglaNe refer
one another (see [9] for a discussion of this topic). Ambiguitigg such arrays asotropic arrays The following result gives
are less of a problem for wideband arrays because the frequeRg¥essary and sufficient conditions on the element locations of

diversity eliminates many DOA ambiguities [17]. an array so that the array is isotropic.
Theorem 1:Let an N-element planar array have elements
B. Geometric Interpretation located at; = [z, ;)T and be centered at the origin (that is,
N .. .. .
We can writeGG(B, ) explicitly in the following form: >_i—1 7 = 0). Then, the array is isotropic if and only if
B = kI, (16)
N
G(B, ¢) = (ri—re)" Pu, (1; = 7c) whereB is given by (15) [ is the 2x 2 identity matrix, and:
=1 is a positive constant.
N 5 Proof: Since B is symmetric and non-negative definite,
=Y P (ri =)l A1) we can write
1=1
)\1 0 6{
whereP,,, = I — u(¢)u’(¢) is a projection matrix. Equation B =level] 0 Ao Lel .

(11) admits the following geometric interpretation [12]. Project
the N sensor points onto a line orthogonal to the D@Aand whereA; > X, > 0 and where); is the eigenvalue corre-
passing through the centroid; the®( 3, ¢) is the moment of sponding to eigenvectar;. Substituting (3) and (17) into (8)
inertia of these projected points (see Fig. 2). gives

_ 2 2
C. Beamwidth Interpretation G(B, ¢) = A1 cos”™ f + Aasin” 8 (18)

The parametric CRB measure of performance is also directirere 3 is the angle between(¢) andes (cos 8 = elu(¢)).
related to the nonparametric array beamwidth. To see this, cd¥e find from (18) thatG(B, ¢) is constant for ali if and only
sider an array that employs delay-and-sum weights, that is, the,; = A. [ |
signals at each sensor are delayed to time-align signals arrivind\ geometric interpretation of Theorem 1 follows from (17);
from angle¢,, and then, these signals are summed to formsing the decomposition given in (1#,can be represented as
the array output. Then, the complex-valued array responseaasellipse inR? (see Fig. 3). I\; = A, (i.e., the array is planar
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D)

Fig. 4. Seven-element isotropic planar array obtained as the superposition of

Fig. 3. Ellipse representation of the symmetric, nonnegative definite matl%cfour' and a three-element circularly symmetric array.
B.

is also in this class. Then, it follows that (15) and (16) are satis-

isotropic), the ellipse representation Bfin Fig. 3 is a circle fied for any circularly symmetric subarray or any superposition

with radius)\; . of circularly symmetric subarrays. An example geometry, where
Theorem 1 appears in [12]. The eigenvalue approach usedifour- and a three-element subarray are combined to form a

the proof appears to be new and leads to both a simpler pré§¥en-element array, is given in Fig. 4. Notice that radii of the

and some new methods for designing isotropic arrays that &t#arrays may be equal or unequal, and the orientation angles
presented below. of the two subarrays are arbitrary.

Corollary 1: If an array is isotropic, then 2) Isotropic Transformation:Given any N-element array
centered at the origin whose array moment of inertia matrix
1 X is given by (17) withA; > )., then an isotropic array can be
G(B,¢)=k= IN Z 7] (19)  found by either “stretching” the array in the direction or
i=1 by shrinking it in thee; direction. Specifically, if the sensor
Proof: Substitution of (16) and (3) into (8) vyieldslocations are transformed from
G(B, ¢) = k. In addition, withB = k15, (15) gives

ri = azer + Bies (23)
1 N 1 N
— Z 2_ Z 2 _ k. 20) to
T y; = k. (20)
N 1=1 N =1 )\1
ri =k oy +— B 24
Thus r aier /3 iz (24)
N N .. .
1 s 1 2 2\ for any constani, then the transformed array is isotropic.
N Z [lrill” = N Z (7 +47) = 2k (21) 3) Rotated GeometrieswWe propose a design method where
=t =t an array and rotated version of the array are superimposed. Con-
and (19) follows. m sider anV/2 element subarray, wheré is even, with arbitrary
Finally, letg = [g1, ..., gn]T, Whereg; = x; + jy; isthe lo- sensor locations. Let the origin be the centroid of these points,

cation of theith sensor in the complex plane. Then, from the is@nd define a seconly/2-element subarray by rotating the first
morphism between con;l\;olex numbers and vectors, for an aryparray by eithe90° or —90°. Then, thelV-element superpo-
centered at the origitd;_, g; = 0), (16) holds if and only if ~ sition of these two subarrays is an isotropic array.
An intuitive explanation of the rotated geometry design fol-
glg=0 (22) lows from the subarray ellipses. Lef = [r1, 72+ 7n/2] =
) ) ) o _[r., ry]*, wherer, andr, are 1x (N/2), represent the ele-
meaning (22) is an equivalent necessary and sufficient conditi nt locations for the first subarray, and et denote the ele-
for is_otrop_y. The c_omplex-plane formulation_of array ?Iemeri_’\tlentlocations of the rotated subarray. Defhe= (1/N)ryrT
Iocqtlons is use_d in [1_4] and forms the basis of the |sotrop5}]d32 = (1/N)r_rT. Then, the ellipses correspondingig
design method in Section Il-E4. and B, are orthogonal (see Fig. 5), and the concatenation re-
. . sults in the sumB = By + Bs = kl. Specifically, letr, =
E. Isotropic Planar Array Design Examples [r., ry]7; then, the+90° rotated subarray element locations are
The constraintB = kI, leaves several degrees of freedom, — [—7y, r.]T and
in which to design isotropic arrays; several design examples are
presented below. The first two design methods are found in [12]; B i[r . [TT} 1 {rm —ry} [ oo ]
the remaining methods appear to be new. - N L T N _.T
1) Regular Polygon DesignsDefine acircularly symmetric l

8 =N

7"y Tz T T

Y

subarray as one in whicN > 3 sensors are equally spaced on a _ 1

rzr;{ +ry7“3 rxrg - ryrf ",
circle with nonzero radius. A single sensor located at the origin N '

T T T T
TyTy —TaTy  TyTy +rery
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Fig. 5. Six-element isotropic array (black and gray points) formed from \
rotating a randomly generated three-element subarray (gray points)°by 90 ©
Ellipses B, and B, corresponding to the original and rotated subarray,

respectively, are also shown.
Fig. 6. Seven-element isotropic array formed from an arbitrary five-element
subarray (black points) by adding two elements (gray points). The ellipse that

Hence, any geometry formed following this procedure f&§Presents in (27)is also shown.

isotropic. For a-90° rotation,r, = [r,, —r.]* and the proof

follows similarly. Then, from (27) and (28), the moment of inertia matrix for the
An example six-element array, generated by randomly sd-€lement array is

lecting the locations of the first three elements, is shown in

N

i 1

Fig. 5. _ _ B=_— Z rrf
More generally, one can take any arbitrary subarray of size N =

N/m and combine it§, 27 /m, ...2x(m — 1)/m rotated ver- R

. . . . . 1 (= T T A=A
sions about any arbitrary point (not just the center of gravity); =5 Arere] + Ageses +2 5 €262
the resultingV elements form an isotropic array. This array is
also a superposition ofi N/m-element circularly symmetric A\ T T
geometries, however, and is equivalent to the design in Sec- =N (@1@1 + 6262) = kI
tion 11I-E1.

4) Completion of Arbitrary Arrays:We propose another de- | "€ |ast two array elements are placed along the minor axis of
the ellipse corresponding 8 to make the moment of inertia in

sign method where alN -element isotropic array is formed from AN N ;
an arbitrary( N — 2)-element array by adding two elements. A€ ¢2 direction equal to the moment of inertia in thedirec-
sume that locations of the fir§lV — 2) sensors are given, and!°" thus making3 = k1. An example seven-element isotropic

letrn_, andry denote the locations of the remaining two serfray formed from a randomly selected set of five elements is

sors. Settind ™V —0andeTa = 0 [see (22)] gives shown in Fig. 6.
M= 4 79 [ (@2 gv 5) X-Shaped Isotropic ArraysWe define an X-shaped

geometry as a set of four sensors with distadcnd angles

= +a, £(r — «) from the origin. One can combine two or more
gN-1+ 9N == Z gt (25) properly-selected X-shaped geometries so that the resulting
=1 4n-element array (fon = 2, 3, ...) is isotropic. It is easy to
) 5 N-2 5 verify that any pair of X-shaped geometries with parameters
IN-1t 9N =~ Z 9r - (26)  (d;, o), i = 1, 2 that satisfyd? cos(2a1) + d2 cos(2a) = 0
=1 is an isotropic array.

The solutions to (25) and (26) uniquely determine the IocationsA special case is the superposition of X-shaped geometries

of the last two sensors such that the resultivigelement array are those whose eIement; lie along two I.|r.1es. For two superim-
is isotropic. posed X-shaped geometries, we constdaisin(a;) = ¢ for all

For the case that the centroid of th¥ — 2) is the origin, the i F(_)r example, an eight-eleme_nt iS.OtrOpiC array with elements
above solution has an intuitive geometric explanation. Let havingy-values oft1 is shown in Fig. 7.

IV. THREE-DIMENSIONAL ARRAYS

N-2 3 T

. A0 . . .

B= E il =[er  ea) { v } [614 (27) In this section, we consider an array that has elements located
=1 0 A2l ley in R? and is used to estimate the DOA of a wideband far-field

~ R source. The source direction is parameterized by [¢, ¥]7,
and assuma; > A,. Then, it follows from (25) and (26) that where¢ € [0, 27) andy € (—(x/2), 7/2) denote its azimuth
and the elevation. The single source CRB for the direction of
. . arrival is the 2x 2 matrix
A1 — A2
2

€. (28)

TNo1= TN =% CRB(f) = [G(B, 6)P]" (29)



1474 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

.\ ............................ 6?‘/@)/. A geometnc |nterpretat|on Of MSAEIS g|Ven |n [13].
B. Isotropic Three-Dimensional Arrays
S We adopt MSAE; as a performance criterion and define a
A 3-D array to be isotropic if the associated MSAE constant
for all [¢, ]T € [0, 27) x (—=(x/2), 7/2). The following the-
orem defines the set of all isotropic 3-D arrays.
Theorem 2: Let an N-element volume array have elements
P ; ) located at; = = [z, vi, z;]T and be centered at the origin (that
@ S D Y is, Et 1 7 = 0). Then, the array is isotropic if and only if
Fig. 7. Eight-element isotropic array formed by combining two X-shaped B =kI; (35)
geometries.
whereB is given by (9), and: is a positive constant.
G(B, 0) = Jo(u)T BJs(u) (30) Proof: Consider the eigendecomposition
. . . . )\1 0 0 e{
whereJg(u) is the 3x 2 Jacobian matrix ofi(#) in (4):
B = [81 €9 63] 0 /\2 0 eg (36)

To(u) = [ %53 2500 0 0 Al el
—sin(¢) cos(y)  —cos(¢)sin(y)) whereey, es, andes are orthonormal eigenvectors, and >
= | cos(¢)cos(p) —sin(¢)sin(y) | BL) ), > Ay > 0 are the corresponding eigenvalues. Note that
0 cos(1)) B =kIzifandonly if \; = \» = A3 = k.
Consider a source signal with = 1 [cf. (7)], whose DOA is
in the same direction as, i.e.,f = 6,, whereu(f;) = e;. It
follows from (30) and (31) that

where B is given by (9), and where; = [z;, v;, 2] is the
location of sensot in R3. As in the planar case, the CRB is
a product of two terms: The firs&{( B, 6)) depends only on the

source DOA vectof and the array geometry through thex3 Ay cos?(y) 0
matrix B; the second term depends on source and noise powers G(B, ) = { 0 )\J @37)
as a function of frequency. ) )

MSAEg(61) = — + — 38
A. Performance Criterion 5(0h) A2 Az (38)

Estimation of the source azimuth and elevation angles Smilarly, if the same signal has DO such that(6;) = es,
equivalent to estimation of the vectar(d): § = [p, ¥]" we find MSAE(f2) = 1/A1 4+ 1/X3, and if its DOA is=63
uniquely specifiesu(d) via (4), and an estimaté = [¢, ¢)] such that(f3) = e, then MSAB3(f3) = 1/A1 + 1/X2. We
uniquely specifies a similar vectar Let § be the angle between see that MSAE(f) is equal ford € {6, 6., 63} if and only
the vectorsu and; since bothu and« are unit vectors, we if Ay = Ay = A3 or, equivalently, if and only ifB = kI3 with

have k=M. [ |
- Corollary 2: The function G(B, §) corresponding to an
cos(6) = u' . (32) isotropic volume array witlB = k15 has the form
The mean-square angular error (MSAE) is a scalar measure G(B, 0) = k cos?tp 0 (39)
of estimator performance in estimating a geometrical vector and P 0 1

defined as the expectation 6 [18]. The MSAE has two de-
sirable properties: It is independent of the choice of the refé¥here
ence coordinate frame, and it does not suffer from the singu- 1
larity inherent in spherical coordinates @as— =+(x/2). The k=35 > il (40)
lower bound of the MSAE provides a performance criterion for i=1
a set of estimators that satisfies certain mild conditions that are  proof: Substitution ofB = kI; and (31) into (30) gives
similar to those needed for the CRB. A derivation for the lowgBg). |n addition, inserting? = k15 in (15) yields
bound of the MSAE and a detailed discussion of the conditions
for the applicability and tightness of the bound can be found in
[19]. AssumingK is the number of observations, the asymptotic k=5 Z o} = N Z vi = N Z 2 (41)
normalized MSAE is defined as =t =1 =t
Finally, using (41), we have

MSAE. = lim KEo*. 33) N
The MSAE,, is bounded below by MSAE, which is given by N z_; Irill™ =+ Z Tty +a) =3k (42)

MSAE., > MSAEp = cos?(1/)CRB(¢) + CRB(¢)). (34) from which (40) follows. [ |
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We remark that isotropy is also a necessary and sufficieflie idea is to form two rotated//3-element sets whose cor-

condition for the 2x 2 CRB matrix to be of the form responding outer product matrices (similaftabove) are, re-
spectively
1 0 . ~
CRB<9: [‘Z’DZL sty . 43) A2 00
0 Pk B,=E|0 X 0]|ET (46)
I 0 A
In this case, the CRB is diagonal, and thie:os? 1) term cancels and ~
thecos 1) compression of azimuth due to elevation angl&aid (A3 0 0]
another way, for an isotropic array, the CRB DOA uncertainty Bs=E|0 X\ o0]|E". (47)
ellipse for a source, when mapped onto the unit sphere, is a circle 0 0 X

whose radius is independent of the source DOA. - -
In [13], the authors give sufficient conditions on the arrayhen, theV-element array has an outer product matrix given by

geometry so that MSAE is independent of the source signal

DOA. Theorem 2 extends this result by proving that these con- B =Bi+By+Bs = (A + Ay + A\s)Is.

ditions are also necessary. The theorem also extends results in

[15] by establishing a link between isotropic arrays and arrdjhe rotated subarrays are found as follows: #f =

geometries for which CR®) is diagonal. [r1, ..., rny3] are the elements of the given subarray and

FEis defined as in (45), then

C. Three-Dimensional Isotropic Array Designs
7o =EJETH (48)

Analogously to the planar case, there are several ways to de-

sign isotropic volume arrays. Four such design methods are out- 73 =EJTETH (49)

lined below. The regular polyhedral design is mentioned in [12];

the remaining design methods appear to be new. where
1) Polyhedral Designs:Arrays formed by placing the sensor

elements at vertices of any regular polyhed¥ar,a superposi-

tion of such arrays, result in three dimensional isotropic arrays.

The result also holds for arrays whose elements are positioned

at the vertices of t_he any o_f the 13 semirv_egular polyhedra. T_he4) Completions of Arbitrary ArraysWe propose a design
result can be obtameq by direct computation of (15) to esta_bl_lﬁpethod in which three elements are added to an arbitrary
that B = kI for (semi)regular polyhedra centered at the or|g|(1N — 3)-element subarray to make the resultifgelement

and with vertices:;. o array isotropic. Let theV — 3 element locations be given such
2) Transformation-Based DesignsSSimilarly to the planar iht their centroid is at the origin. Define

case, a given array with moment of inertia matixvith eigen-

01 0
J=10 0 1]. (50)
1 00

decomposition . N-3
B = Z rrf
=1
B = )\1616{ + )\2626%1 + )\3636%1 (44) AL O 0 8{
_ ‘ T
can be transformed to an isotropic array by stretching or =ler e el | 0 Ao 0 Fes (1)
shrinking the array in the unit directions defined by the eigen- 0 0 As] [ed

vectors. .
3) Rotation-Based Designsive propose a design to gen_where)\1 > X2 > A3 > 0. Then, the three additional elements

erate anV-element 3-D isotropic array from rotations of an ari—'lgr:n iuztﬁiane spanned bies, e3}. It is straightforward to
bitrary array ofN/3 elements that are centered at the origin. Let fy

; rN—2 = 20,63 (52)
N/3
~ 1 /
B, = N ZrlrlT rn—1 =—ae3+ Vb —aley (53)
=1
5\1 0 T TN =—ae3 — vV b2 — a2 €2 (54)

(45)  where

E 0 0 )\3 €3
a=31y/2(0 = \3) b=1/a2+ 1 (M =\
2 3 1 3)s 2 ( 1 2)

then the resultingv-element array is isotropic witB = %Ig,.
IThere are five regular polyhedra: the tetrahedron, cube, octahedron, doc]gc)-‘l = A2 > A3, then only two additional elements are needed

ahedron, and icosahedron. at locationst /(A1 — A3)/2es.

o
[e]
=

o
Q
|

= [81 €9 83] 0 /\2
~—_———
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D. Isotropic Planar Arrays for a 3-D Source Corollary 3: For a planar isotropic array as defined in The-

In this section, we consider the special case in which a pIar?;{Fm 3. the CRB matrix of the source DOA is given by
array is used to estimate the elevation and azimuth of a 3-D

. . . 1
source. The planar array is obtained by setting- 0 for each —
element at location;, i € [1, N]; thus, from (15), we have CRB(#) = L o|oes 2 ) (60)
Pk
0 —_—
By 0 sin® (1))
B= (55)
0 0

where is the elevation angle of the source, and

whereB,, is a2 x 2 matrix. 1N
Mirkin and Sibul [14] derive conditions on a planar array ge- k=— Z [|7:]I2. (61)
ometry that ensures that the azimuth and elevation are uncou- 2N =
pled in the CRB. An uncoupled CRB is desirable because the
azimuth estimation error is independent of whether or not the Proof: Substitution of (55) and (56) into (29) and (30)
elevation of the source is known. They show that the CRB @gives (60). Equation (61) can be shown using the same argu-
uncoupled if and only if the array is (planar) isotropic. In thignent as in Corollary 1. [
section, we establish that in this case, the CRB is also indepenWe thus see from Theorem 3 and Corollary 3 that an isotropic
dent of azimuth, and it depends on elevation and array elemgkanar array yields a CRB matrix in which the azimuth and el-
locations in a simple way. evation estimates are uncoupled, and conversely. Moreover, the
Theorem 3: Consider anV-element planar array centered aERB variances in the azimuth and elevation directions are in-
the origin and with elements locatedrat= [z;, ;, 0] fori = dependent of azimuth and depend on elevation in a simple geo-
1,..., N. Consider a source signal arriving from (sphericalpetric way.
directiond = [¢, ], where|| € (0, 7/2). Then, the CRB
matrix for 6 is diagonal and independent of azimuyihif and V. COMPARISON OFOPTIMAL AND |SOTROPICGEOMETRIES

only if In this section, we compare the performance of an isotropic

array with that of an array optimized to have minimum DOA
variance for a source at a single direction. We consider a simple
case of anN-element planar array whose elements are con-
strained to lie on a disk of radiuB. It can be shown that the
array configuration that minimizes the CRB for a source arriving
at an anglepy, which we call thepy-optimal array, is obtained
A0 07 el by placing all elements at locatiofig:’ (?o£7/2) [see Fig. 8(a)].
B=[e1 ez e3]| 0 Xy 0O |l (57) Thecorresponding value 6f(B, ¢) from (8)isN I for N even
and(N — (1/N))R for N odd. This array configuration is not
a good practical choice because several elements are at iden-
tical locations; in practice, one would need to separate the array

Bay = kI, (56)

for some positive constaiit
Proof: Let B in (55) have the eigendecomposition

0 0 0f [eF

wherel; > A; > 0. Note thate; ande, can be written as elements, say, by spreading them out along the disk boundary.
While this array is optimal for sources at arriving at angle
e1 = [cosa, sina, 01T, ey =[—sina, cosa, 0]7 (58) its performance degrades as the DOA deviates fpgnas seen
in Fig. 8(c).

The minimum variance isotropic array is found by placing the
N sensors on the boundary of the disk, for example, by spacing
them equally [see Fig. 8(b)]. Other spacings are possible de-

G(B, §) = {Gll Glﬂ (59) pending on the value aV; see the first design method in Sec-

’ Ga1 Ga tion lI-E. We find from (19) thaiG(B, ¢) = NR/2. Thus, the
isotropic array has DOA estimation variance that is twice the

where variance from the best array. Fig. 8(c) compares the CRB per-
formances of the,-optimal and the isotropic arrays.
5 . 5 A similar argument for volume arrays constrained to lie in a
G1 = cos” ¥ [Arsin® B+ s cos® 3] sphere shows that the MSAFof the isotropic array is a factor
G2 =G21 = sinep cos 1 [sin B cos B(A2 — A1)] of 3 times the MSAR; of the best array; this is a consequence
Gaa = sin? 1) [)\1 cos? 8+ Ao sin? /3] of (35) and the factor 1/3 in (40).

for somex € [0, 27). Then, from (30) and (31), we have

and where = a — ¢. We thus see that forp € VI. CONCLUSION

(=(w/2), 7/2) — {0}, G(B, ) is diagonal and indepen- We have studied 2-D and 3-D arrays that have isotropic per-
dent of¢ if and only if \; = Xs. m formance. For planar arrays, we have adopted the single source
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that isotropic arrays provide uniform performance at a modest
decrease in performance as compared with arrays tuned for best
performance at a single source direction.

The geometric interpretation of array isotropy provides in-
sight into extension of practical interest. For example, in appli-
cations for which one is interested in array performance over a
sector of DOAs, we see from the theorems that the conditions
for isotropy remain unchanged as long as the sector has nonzero
measure. In addition, arrays that are “almost isotropic” relate di-
rectly to the eigenvalue spread in the matBix

The isotropic arrays considered are derived under the
assumptions of isotropic element gain and spatially isotropic
noise power. These assumptions are reasonable for many
acoustic or seismic array applications. Extensions to more
1 general conditions, and extensions that incorporate practical
array effects such as mutual coupling, would be of interest,

41 especially in electromagnetic array applications.

When designing isotropic arrays, an important practical issue

1 thatshould be taken into account is the minimum allowable dis-
tance between sensors. We have assumed the noise components
1 at the sensors are independent of each other; this assumption
is violated when the sensor distances become small (see [2]).
] Our design methods do not guarantee that the resulting sensors
are sufficiently well-separated, so if the designs produce closely
"7 spaced sensors, they should be modified accordingly.

() (b)

o
T

DOA variance

Optimal

. Isotropic

! 1

140 160

0 L L L L L L
0 20 40 60 80 100 120

Source angle ¢ in degrees
(©) The authors wish to thank Dr. C. Burmaster for bringing [12]

Fig. 8. Comparison of @,-optimal array geometry and an isotropic arraylO OUr attention.
geometry when the elements of a planar array are constrained to lie on a disk.

(a) ¢o-optimal array geometry for a sourcezat = +=(7/2). (b) Isotropic array
geometry. (c) Comparison of DOA estimation standard deviations for the two
array geometries.

180 ACKNOWLEDGMENT

REFERENCES
[1]

V. Murino, “Simulated annealing approach for the design of unequally
spaced arrays,” iRroc. Int. Conf. Acoust., Speech, Signal Process.

5, Detroit, MI, 1995, pp. 3627-3630.

A. B. Gershman and J. F. Bohme, “A note on most favorable array ge-
ometries for DOA estimation and array interpolatioliEE Signal Pro-
cessing Lett.vol. 4, pp. 232-235, Aug. 1997.

D. Pearson, S. U. Pillai, and Y. Lee, “An algorithm for near-optimal
placement of sensor element$£EE Trans. Inform. Theoryol. 36,

pp. 1280-1284, Nov. 1990.

H. Alnajjar and D. W. Wilkes, “Adapting the geometry of a sensor sub-
array,” inProc. Int. Conf. Acoust., Speech, Signal Process. 4, Min-
neapolis, MN, 1993, pp. 113-116.

X. Huang, J. P. Reilly, and M. Wong, “Optimal design of linear array
of sensors,” irProc. Int. Conf. Acoust., Speech, Signal Process. 2,
Toronto, ON, Canada, 1991, pp. 1405-1408.

C. W. Ang, C. M. See, and A. C. Kot, “Optimization of array geometry
for identifiable high resolution parameter estimation in sensor array

wideband Cramér—Rao bound as the performance criterion an
have derived the necessary and sufficient conditions on the lo-
cation of sensor elements so that the CRB of the source direc-

tion-of-arrival estimate is constant for all arrival angles. These[3]
conditions are valid regardless of the source’s frequency spec-

trum. We also presented five methods to design isotropic planarf4]
arrays.

For 3-D arrays, we have used the bound on the asymptoti%]
mean square angular error (MSAEas a measure for array
isotropy. We have derived necessary and sufficient conditions[G]
on the array geometry that ensure that the MgA& indepen-

2]

dent of source azimuth and elevation arrival angle. When these
conditions are satisfied, the azimuth and elevation are uncouple
inthe CRB, and the CRB is independent of the source signal az*
imuth. We have also proven that when a planar array is used to
estimate the DOA of a 3-D signal, the associated CRB is uncou8l
pled in azimuth and elevation if and only if it is planar isotropic.

An uncoupled CRB is desirable because the azimuth estimation]
error is independent of whether or not the elevation of the source
is known [14]. [10]

Finally, a simple example comparing arrays optimized for a

single source direction versus isotropic arrays showed that the
isotropic planar array DOA variance is a factor of 2 times that[ll]
of the best array (three times for a 3-D array). This suggests

7]

signal processing,” inProc. Int. Conf. Inform., Commun., Signal
Process.vol. 3, Singapore, 1997, pp. 1613-1617.

J.-W. Liang and A. J. Paulraj, “On optimizing base station antenna array
topology for coverage extension in cellular radio networks,Pioc.
IEEE 45th Veh. Technol. Con¥ol. 2, Stanford, CA, 1995, pp. 866—870.
Y. Hua, T. K. Sarkar, and D. D. Weiner, “An L-shaped array for es-
timating 2-D directions of wave arrival[EEE Trans. Antennas Prop-
agat, vol. 39, pp. 143-146, Feb. 1991.

M. Gavish and A. J. Weiss, “Array geometry for ambiguity resolution
in direction finding,” IEEE Trans. Antennas Propagatol. 44, pp.
889-895, June 1996.

N. Dowlut and A. Manikas, “A polynomial rooting approach to super-
resolution array design[EEE Trans. Signal Processingol. 48, pp.
1559-1569, June 2000.

A. Manikas, A. Sleiman, and |. Dacos, “Manifold studies of nonlinear
antenna array geometriesEEE Trans. Signal Processingol. 49, pp.
497-506, Mar. 2001.



1478

(12]

(23]

(14]

(15]

[16]

(17]

(18]

(19]

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 6, JUNE 2003

V. H. MacDonald, “Optimum bearing estimation with passive sonar sy
tems,” Ph.D. dissertation, Yale Univ., 1971.

M. Hawkes and A. Nehorai, “Effects of sensor placement on acous
vector-sensor array performancéZEE J. Oceanic Engwvol. 24, pp.
33-40, Jan. 1999.

A. N. Mirkin and L. H. Sibul, “Cramér—Rao bounds on angle estimatiol
with a two-dimensional array/EEE Trans. Signal Processingol. 39,
pp. 515-517, Feb. 1991. Development Center, Rome, NY. From 1984 to

R. O. Nielsen, “Azimuth and elevation angle estimation with a three 1985, he was with the Eindhoven University of
dimensional array,lEEE J. Oceanic Engvol. 19, pp. 84-86, Jan. 1994. . Technology, Eindhoven, The Netherlands, as a

M. A. Doron and E. Doron, “Wavefield modeling and array processing. NATO Postdoctoral Fellow. Since 1985, he has been

IIl. Resolution capacity,1EEE Trans. Signal Processingol. 42, pp. with the Department of Electrical Engineering, The Ohio State University,
2571-2580, Oct. 1994. Columbus, where he is currently a Professor. From 1994 to 1995, he was on
J. S. Bergin and K. L. Bell, “Wideband direction of arrival estimationsabbatical leave as a visiting researcher with the System and Control Group,
for multiple aeroacoustic sources,”Rroc. Meet. MSS Specialty Group Uppsala University, Uppsala, Sweden. His research interests are in digital
Battlefield Acoust., Seismidsaurel, MD, 2000. signal processing and include parametric time series analysis, radar signal
A. Nehorai and E. Paldi, “Vector sensor processing for electromagneficocessing, sensor array processing, and sensor networks. He is coauthor,
source localization,” it€onf. Rec. Twenty-Fifth Asilomar Conf. Signalswith P. Stoica, oflntroduction to Spectral Analysi€Englewood Cliffs, NJ:

Syst. Computvol. 1, New Haven, CT, 1991, pp. 566-572. Prentice-Hall, 1997).

A. Nehorai and M. Hawkes, “Performance bounds for estimating vector Dr. Moses served on the Technical Committee on Statistical Signal and Array
systems,'IEEE Trans. Signal Processingol. 48, pp. 1737-1749, June Processing of the IEEE Signal Processing Society from 1991 to 1994. He is a
2000. member of Eta Kappa Nu, Tau Beta Pi, Phi Kappa Phi, and Sigma Xi.

Randolph L. Moses(S'78-M'85-SM’'90) received
the B.S., M.S., and Ph.D. degrees in electrical engi-
neering from Virginia Polytechnic Institute and State
University, Blacksburg, in 1979, 1980, and 1984, re-
spectively.

During the summer of 1983, he was a SCEEE
Summer Faculty Research Fellow at Rome Air

Ulku Baysal (S'98) was born in Amasya, Turkey,
in 1977. She received the B.S. degree from Middle
East Technical University, Ankara, Turkey, in 1999
and the M.S. degree from The Ohio State Univer-
sity (OSU), Columbus, in 2002, both in electrical en-
gineering. She is currently a Research Assistant at
OSU, where she is pursuing the Ph.D. degree.

Her research interests include digital signal pro-
cessing and sensor array processing.



