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Abstract—We consider array geometries whose direction-of-ar-
rival (DOA) estimation performance is isotropic. An isotropic
array is one whose Cramér–Rao bound (CRB) on the DOA of a
single source is uniform for all angles. For both planar arrays
and volume arrays we derive necessary and sufficient conditions
on array element locations so that the array is isotropic. We also
present several designs of isotropic planar and volume arrays. The
results apply to both narrowband and wideband scenarios.We
analyze the special case where a planar array is used to estimate
the DOA of three-dimensional (3-D) source. Finally, we compare
isotropic array performance to the best possible array perfor-
mance.

Index Terms—Array geometry, DOA estimation, isotropic, wide-
band.

I. INTRODUCTION

T HE LOCATION of the elements in an array strongly
affects the direction-of-arrival (DOA) estimation per-

formance of the array. There has been a considerable amount
of work done on the design of arrays to achieve or optimize
desired performance goals that include terms such as cost,
space, error variance, or resolution limits [1]–[6]. Much of
the array design literature is devoted to linear arrays (or
combination of linear arrays), perhaps because they are simple
to analyze and because computationally efficient and effective
DOA estimation algorithms are available for such arrays. On
the other hand, linear arrays have nonuniform performance;
the DOA estimation performance degrades considerably near
endfire.

Several different performance and design criteria have been
introduced to be used in obtaining optimal arrays. Performance
comparisons of some common array geometries are presented
in [7] and [8]. In [9], the authors introduce a measure of sim-
ilarity between array response vectors and show that the sim-
ilarity measure can be tightly bounded below. The array with
the highest bound is optimum in the sense that it has the best
ambiguity resolution. In [10], a sensor locator polynomial is in-
troduced for array design. A polynomial is constructed using
prespecified performance levels, such as detection-resolution
thresholds and Cramér–Rao Bounds (CRBs) on error variance
and its roots are the sensor locations of the desired linear or
planar array. In [11], differential geometry is used to charac-
terize the array manifold, and an array design framework based
on these parameters is proposed.
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In this paper, we concentrate on arrays that have uniform per-
formance over the whole field of view. We consider both planar
and volume array geometries that have isotropic DOA estima-
tion performance. For planar arrays, the arrays are isotropic
in the sense that the CRB on the DOA estimation of a single
source is uniform for all source arrival angles from 0 to 2.
For volume arrays, we use the bound on the mean square an-
gular error (MSAE) as the criterion. The MSAE is a scalar
measure of the error between true and estimated unit bearing
vectors pointing toward the source, and its bound is computed
from the CRB. The array is said to be isotropic if the bound on
the MSAE is constant for all azimuth and elevation angles in

. Since the CRB and bound on the
MSAE are independent of any particular estimator and ML es-
timators asymptotically achieve these bounds, they are useful
criteria for array design. Our results apply to both narrowband
and wideband signals.

Arrays with uniform performance have been studied in var-
ious contexts. In his dissertation, MacDonald [12] considers
isotropic arrays and presents conditions for isotropic perfor-
mance. Hawkes and Nehorai [13] use the bound on the asymp-
totic mean square angular error to define an isotropic array.
They derive the angle CRB for a single far-field source and
give sufficient conditions on array geometry for the bound of
the MSAE to be constant for all DOAs. Mirkin and Sibul [14]
and Nielson [15] consider conditions on the array geometry for
which the single source azimuth and elevation CRBs are uncou-
pled. Mirkin and Sibul [14] also derive a sufficient condition for
isotropic planar array performance.

The present paper can be considered an extension and gen-
eralization of [12]–[15]. We provide necessary and sufficient
conditions on isotropic array performance for both planar and
volume arrays, thereby unifying and extending the results in
[12]–[15]. In doing so, we summarize the results from [12],
which are apparently not widely known in the array signal
processing community. In addition, we develop a geometric
interpretation of the isotropy condition that provides additional
insight into the geometry of isotropic arrays and provides new
methods for designing isotropic arrays. Finally, we provide
simple bounds for comparing the performance of the optimal
isotropic arrays to that of the optimal (anisotropic) array.

The organization of the paper is as follows. In Section II,
we describe the system model and state our assumptions. Sec-
tion III discusses the planar array scenario; we define the per-
formance and isotropy conditions, give necessary and sufficient
conditions on the array geometry for isotropic performance, and
present several isotropic planar array design methods. In Sec-
tion IV, we study the three-dimensional (3-D) arrays; we define
the isotropy condition for this case, give necessary and suffi-
cient conditions on the 3-D array for isotropic performance, and
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Fig. 1. Three-dimensional coordinate system showing the bearing vector
u(�;  ) for a signal arriving from azimuth� and elevation .

provide some design methods. We also consider the isotropic
performance when a planar array is used to estimate the DOA
of a 3-D source. Section V presents a performance comparison
between isotropic array and an array designed for optimal per-
formance for a single source direction; we provide a bound on
performance loss imposed by the isotropy condition for the ge-
ometry considered. Section VI concludes the paper.

II. SYSTEM MODEL

We assume an array of identical isotropic sensors located
at for . We will consider both planar arrays in which

and volume arrays in which .
Following [16], we adopt a system model describing a source

impinging on the array. A single far-field source , which
is, in general, wideband, impinges on the array from direction

, where denotes the azimuth angle measured coun-
terclockwise from the -axis on the – plane, and denotes
the elevation angle measured from the– plane (see Fig. 1).
The noise at the sensors is assumed to be independent, zero
mean, Gaussian, and independent of the source signal. The ob-
servation time is partitioned into intervals of length and
a -point discrete Fourier transform is applied to each interval.
Then [16]

(1)

where , are vectors, and is a scalar.
The elements of , , and are the discrete
Fourier coefficients of the sum of the sensor outputs, the noise,
and the signal source at the discrete frequency, respectively.
In addition

(2)

where is the propagation delay associated
with the th sensor, is the speed of propagation, and is
the unit vector pointing toward the signal source (see Fig. 1). For
a planar signal arriving from angle, , and we denote

with ; in this case

(3)

For the 3-D case where a signal arrives from azimuth angle
and elevation angle , , where

(4)

Assuming is long enough, the vectors are uncor-
related.

III. PLANAR ARRAYS

In this section, we consider the special case of a planar array
with elements on the plane at locations .
The array is used to estimate the DOA of a wideband signal,
which is coplanar with the array and arrives at an angle.

A. Single-Source CRB

For the system model described in Section II and under the
planar array and coplanar signal assumptions, the CRB for the
source DOA estimate is given by [16]

CRB

(5)

Here, is the derivative of with respect to the
DOA angle , is the projection
matrix onto the subspace orthogonal to the column space of,

is the spatial covariance matrix
of the impinging signals at frequency , and denotes the
Hadamard product.

For the model given by (1) and (2), we find

CRB (6)

(7)

(8)

(9)

where is the centroid of the array, i.e.,

(10)

In (7), is the signal power, and is the noise power at fre-
quency interval .

We see that the CRB is a product of two terms. The first
( ) depends only on the source DOAand the array ge-
ometry through the matrix ; the second ( ) depends on source
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Fig. 2. Geometrical interpretation ofG(B; �) as the moment of inertia of the
projected points of array locations onto the line orthogonal tou(�).

and noise powers as a function of frequency. This is an impor-
tant property because the impact of the array geometry on the
CRB is the same, regardless of whether the source spectrum is
narrowband or wideband, and regardless of the source signal
and noise spectral densities. Thus, the results that follow apply
to a broad class of array signal processing scenarios. Note that
the matrix B is the 2 2 moment of inertia matrix of the array
points. Any two array geometries that have the same moment of
inertia matrices also have identical CRB performance.

We note that the array performance criterion we have chosen
does not take into account potential array ambiguities that arise
when the array manifold from two different DOAs are close to
one another (see [9] for a discussion of this topic). Ambiguities
are less of a problem for wideband arrays because the frequency
diversity eliminates many DOA ambiguities [17].

B. Geometric Interpretation

We can write explicitly in the following form:

(11)

where is a projection matrix. Equation
(11) admits the following geometric interpretation [12]. Project
the sensor points onto a line orthogonal to the DOAand
passing through the centroid; then, is the moment of
inertia of these projected points (see Fig. 2).

C. Beamwidth Interpretation

The parametric CRB measure of performance is also directly
related to the nonparametric array beamwidth. To see this, con-
sider an array that employs delay-and-sum weights, that is, the
signals at each sensor are delayed to time-align signals arriving
from angle , and then, these signals are summed to form
the array output. Then, the complex-valued array response as

a function of spatial angle and at frequency and corre-
sponding wavelength is given by

(12)

(13)

A Taylor series approximation of the array gain about
the angle yields (to second order)

(14)

Using (14), the half-power beamwidth of the array is given by
and is thus linearly proportional to the

square-root of the CRB for estimating [see (6)]. Thus, the
parametric CRB performance measure also has a nonparametric
interpretation of array beamwidth.

D. Isotropic Planar Arrays

From (8), we see that , as well as the single-source
CRB, is independent of translation of the array element loca-
tions; therefore, without loss of generality, we assume that the
array is centered at the origin ( ). Under this as-
sumption, in (9) simplifies to

(15)

We are interested in planar array geometries whose single-
source CRB is independent of signal arrival angle. We refer
to such arrays asisotropic arrays. The following result gives
necessary and sufficient conditions on the element locations of
an array so that the array is isotropic.

Theorem 1: Let an -element planar array have elements
located at and be centered at the origin (that is,

). Then, the array is isotropic if and only if

(16)

where is given by (15), is the 2 2 identity matrix, and
is a positive constant.

Proof: Since is symmetric and non-negative definite,
we can write

(17)

where and where is the eigenvalue corre-
sponding to eigenvector . Substituting (3) and (17) into (8)
gives

(18)

where is the angle between and .
We find from (18) that is constant for all if and only
if .

A geometric interpretation of Theorem 1 follows from (17);
using the decomposition given in (17),can be represented as
an ellipse in (see Fig. 3). If (i.e., the array is planar
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Fig. 3. Ellipse representation of the symmetric, nonnegative definite matrix
B.

isotropic), the ellipse representation of in Fig. 3 is a circle
with radius .

Theorem 1 appears in [12]. The eigenvalue approach used in
the proof appears to be new and leads to both a simpler proof
and some new methods for designing isotropic arrays that are
presented below.

Corollary 1: If an array is isotropic, then

(19)

Proof: Substitution of (16) and (3) into (8) yields
. In addition, with , (15) gives

(20)

Thus

(21)

and (19) follows.
Finally, let , where is the lo-

cation of the th sensor in the complex plane. Then, from the iso-
morphism between complex numbers and vectors, for an array
centered at the origin , (16) holds if and only if

(22)

meaning (22) is an equivalent necessary and sufficient condition
for isotropy. The complex-plane formulation of array element
locations is used in [14] and forms the basis of the isotropic
design method in Section III-E4.

E. Isotropic Planar Array Design Examples

The constraint leaves several degrees of freedom
in which to design isotropic arrays; several design examples are
presented below. The first two design methods are found in [12];
the remaining methods appear to be new.

1) Regular Polygon Designs:Define acircularly symmetric
subarray as one in which sensors are equally spaced on a
circle with nonzero radius. A single sensor located at the origin

Fig. 4. Seven-element isotropic planar array obtained as the superposition of
a four- and a three-element circularly symmetric array.

is also in this class. Then, it follows that (15) and (16) are satis-
fied for any circularly symmetric subarray or any superposition
of circularly symmetric subarrays. An example geometry, where
a four- and a three-element subarray are combined to form a
seven-element array, is given in Fig. 4. Notice that radii of the
subarrays may be equal or unequal, and the orientation angles
of the two subarrays are arbitrary.

2) Isotropic Transformation:Given any -element array
centered at the origin whose array moment of inertia matrix
is given by (17) with , then an isotropic array can be
found by either “stretching” the array in the direction or
by shrinking it in the direction. Specifically, if the sensor
locations are transformed from

(23)

to

(24)

for any constant , then the transformed array is isotropic.
3) Rotated Geometries:We propose a design method where

an array and rotated version of the array are superimposed. Con-
sider an element subarray, where is even, with arbitrary
sensor locations. Let the origin be the centroid of these points,
and define a second -element subarray by rotating the first
subarray by either or . Then, the -element superpo-
sition of these two subarrays is an isotropic array.

An intuitive explanation of the rotated geometry design fol-
lows from the subarray ellipses. Let

, where and are 1 , represent the ele-
ment locations for the first subarray, and let denote the ele-
ment locations of the rotated subarray. Define
and . Then, the ellipses corresponding to
and are orthogonal (see Fig. 5), and the concatenation re-
sults in the sum . Specifically, let

; then, the rotated subarray element locations are
and
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Fig. 5. Six-element isotropic array (black and gray points) formed from
rotating a randomly generated three-element subarray (gray points) by 90.
Ellipses B and B corresponding to the original and rotated subarray,
respectively, are also shown.

Hence, any geometry formed following this procedure is
isotropic. For a rotation, and the proof
follows similarly.

An example six-element array, generated by randomly se-
lecting the locations of the first three elements, is shown in
Fig. 5.

More generally, one can take any arbitrary subarray of size
and combine its rotated ver-

sions about any arbitrary point (not just the center of gravity);
the resulting elements form an isotropic array. This array is
also a superposition of -element circularly symmetric
geometries, however, and is equivalent to the design in Sec-
tion III-E1.

4) Completion of Arbitrary Arrays:We propose another de-
sign method where an -element isotropic array is formed from
an arbitrary -element array by adding two elements. As-
sume that locations of the first sensors are given, and
let and denote the locations of the remaining two sen-
sors. Setting and [see (22)] gives

(25)

(26)

The solutions to (25) and (26) uniquely determine the locations
of the last two sensors such that the resulting-element array
is isotropic.

For the case that the centroid of the is the origin, the
above solution has an intuitive geometric explanation. Let

(27)

and assume . Then, it follows from (25) and (26) that

(28)

Fig. 6. Seven-element isotropic array formed from an arbitrary five-element
subarray (black points) by adding two elements (gray points). The ellipse that
represents~B in (27) is also shown.

Then, from (27) and (28), the moment of inertia matrix for the
-element array is

The last two array elements are placed along the minor axis of
the ellipse corresponding to to make the moment of inertia in
the direction equal to the moment of inertia in thedirec-
tion, thus making . An example seven-element isotropic
array formed from a randomly selected set of five elements is
shown in Fig. 6.

5) X-Shaped Isotropic Arrays:We define an X-shaped
geometry as a set of four sensors with distanceand angles

from the origin. One can combine two or more
properly-selected X-shaped geometries so that the resulting

-element array (for ) is isotropic. It is easy to
verify that any pair of X-shaped geometries with parameters

, that satisfy
is an isotropic array.

A special case is the superposition of X-shaped geometries
are those whose elements lie along two lines. For two superim-
posed X-shaped geometries, we constrain for all
. For example, an eight-element isotropic array with elements

having -values of 1 is shown in Fig. 7.

IV. THREE-DIMENSIONAL ARRAYS

In this section, we consider an array that has elements located
in and is used to estimate the DOA of a wideband far-field
source. The source direction is parameterized by ,
where and denote its azimuth
and the elevation. The single source CRB for the direction of
arrival is the 2 2 matrix

CRB (29)
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Fig. 7. Eight-element isotropic array formed by combining two X-shaped
geometries.

(30)

where is the 3 2 Jacobian matrix of in (4):

(31)

where is given by (9), and where is the
location of sensor in . As in the planar case, the CRB is
a product of two terms: The first ( ) depends only on the
source DOA vector and the array geometry through the 33
matrix ; the second term depends on source and noise powers
as a function of frequency.

A. Performance Criterion

Estimation of the source azimuth and elevation angles is
equivalent to estimation of the vector :
uniquely specifies via (4), and an estimate
uniquely specifies a similar vector. Let be the angle between
the vectors and ; since both and are unit vectors, we
have

(32)

The mean-square angular error (MSAE) is a scalar measure
of estimator performance in estimating a geometrical vector and
defined as the expectation of [18]. The MSAE has two de-
sirable properties: It is independent of the choice of the refer-
ence coordinate frame, and it does not suffer from the singu-
larity inherent in spherical coordinates as . The
lower bound of the MSAE provides a performance criterion for
a set of estimators that satisfies certain mild conditions that are
similar to those needed for the CRB. A derivation for the lower
bound of the MSAE and a detailed discussion of the conditions
for the applicability and tightness of the bound can be found in
[19]. Assuming is the number of observations, the asymptotic
normalized MSAE is defined as

MSAE (33)

The MSAE is bounded below by MSAE, which is given by

MSAE MSAE CRB CRB (34)

A geometric interpretation of MSAEis given in [13].

B. Isotropic Three-Dimensional Arrays

We adopt MSAE as a performance criterion and define a
3-D array to be isotropic if the associated MSAEis constant
for all . The following the-
orem defines the set of all isotropic 3-D arrays.

Theorem 2: Let an -element volume array have elements
located at and be centered at the origin (that
is, ). Then, the array is isotropic if and only if

(35)

where is given by (9), and is a positive constant.
Proof: Consider the eigendecomposition

(36)

where , , and are orthonormal eigenvectors, and
are the corresponding eigenvalues. Note that

if and only if .
Consider a source signal with [cf. (7)], whose DOA is

in the same direction as , i.e., , where . It
follows from (30) and (31) that

(37)

MSAE (38)

Similarly, if the same signal has DOA such that ,
we find MSAE , and if its DOA is
such that , then MSAE . We
see that MSAE is equal for if and only
if or, equivalently, if and only if with

.
Corollary 2: The function corresponding to an

isotropic volume array with has the form

(39)

where

(40)

Proof: Substitution of and (31) into (30) gives
(39). In addition, inserting in (15) yields

(41)

Finally, using (41), we have

(42)

from which (40) follows.
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We remark that isotropy is also a necessary and sufficient
condition for the 2 2 CRB matrix to be of the form

CRB (43)

In this case, the CRB is diagonal, and the term cancels
the compression of azimuth due to elevation angle. Said
another way, for an isotropic array, the CRB DOA uncertainty
ellipse for a source, when mapped onto the unit sphere, is a circle
whose radius is independent of the source DOA.

In [13], the authors give sufficient conditions on the array
geometry so that MSAE is independent of the source signal
DOA. Theorem 2 extends this result by proving that these con-
ditions are also necessary. The theorem also extends results in
[15] by establishing a link between isotropic arrays and array
geometries for which CRB is diagonal.

C. Three-Dimensional Isotropic Array Designs

Analogously to the planar case, there are several ways to de-
sign isotropic volume arrays. Four such design methods are out-
lined below. The regular polyhedral design is mentioned in [12];
the remaining design methods appear to be new.

1) Polyhedral Designs:Arrays formed by placing the sensor
elements at vertices of any regular polyhedron,1 or a superposi-
tion of such arrays, result in three dimensional isotropic arrays.
The result also holds for arrays whose elements are positioned
at the vertices of the any of the 13 semiregular polyhedra. The
result can be obtained by direct computation of (15) to establish
that for (semi)regular polyhedra centered at the origin
and with vertices .

2) Transformation-Based Designs:Similarly to the planar
case, a given array with moment of inertia matrixwith eigen-
decomposition

(44)

can be transformed to an isotropic array by stretching or
shrinking the array in the unit directions defined by the eigen-
vectors.

3) Rotation-Based Designs:We propose a design to gen-
erate an -element 3-D isotropic array from rotations of an ar-
bitrary array of elements that are centered at the origin. Let

(45)

1There are five regular polyhedra: the tetrahedron, cube, octahedron, dodec-
ahedron, and icosahedron.

The idea is to form two rotated -element sets whose cor-
responding outer product matrices (similar toabove) are, re-
spectively

(46)

and

(47)

Then, the -element array has an outer product matrix given by

The rotated subarrays are found as follows: If
are the elements of the given subarray and

is defined as in (45), then

(48)

(49)

where

(50)

4) Completions of Arbitrary Arrays:We propose a design
method in which three elements are added to an arbitrary

-element subarray to make the resulting-element
array isotropic. Let the element locations be given such
that their centroid is at the origin. Define

(51)

where . Then, the three additional elements
lie in the plane spanned by . It is straightforward to
verify that if

(52)

(53)

(54)

where

then the resulting -element array is isotropic with .
If , then only two additional elements are needed
at locations .
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D. Isotropic Planar Arrays for a 3-D Source

In this section, we consider the special case in which a planar
array is used to estimate the elevation and azimuth of a 3-D
source. The planar array is obtained by setting for each
element at location , ; thus, from (15), we have

(55)

where is a matrix.
Mirkin and Sibul [14] derive conditions on a planar array ge-

ometry that ensures that the azimuth and elevation are uncou-
pled in the CRB. An uncoupled CRB is desirable because the
azimuth estimation error is independent of whether or not the
elevation of the source is known. They show that the CRB is
uncoupled if and only if the array is (planar) isotropic. In this
section, we establish that in this case, the CRB is also indepen-
dent of azimuth, and it depends on elevation and array element
locations in a simple way.

Theorem 3: Consider an -element planar array centered at
the origin and with elements located at for

. Consider a source signal arriving from (spherical)
direction , where . Then, the CRB
matrix for is diagonal and independent of azimuthif and
only if

(56)

for some positive constant.
Proof: Let in (55) have the eigendecomposition

(57)

where . Note that and can be written as

(58)

for some . Then, from (30) and (31), we have

(59)

where

and where . We thus see that for
, is diagonal and indepen-

dent of if and only if .

Corollary 3: For a planar isotropic array as defined in The-
orem 3, the CRB matrix of the source DOA is given by

CRB (60)

where is the elevation angle of the source, and

(61)

Proof: Substitution of (55) and (56) into (29) and (30)
gives (60). Equation (61) can be shown using the same argu-
ment as in Corollary 1.

We thus see from Theorem 3 and Corollary 3 that an isotropic
planar array yields a CRB matrix in which the azimuth and el-
evation estimates are uncoupled, and conversely. Moreover, the
CRB variances in the azimuth and elevation directions are in-
dependent of azimuth and depend on elevation in a simple geo-
metric way.

V. COMPARISON OFOPTIMAL AND ISOTROPICGEOMETRIES

In this section, we compare the performance of an isotropic
array with that of an array optimized to have minimum DOA
variance for a source at a single direction. We consider a simple
case of an -element planar array whose elements are con-
strained to lie on a disk of radius. It can be shown that the
array configuration that minimizes the CRB for a source arriving
at an angle , which we call the -optimal array, is obtained
by placing all elements at locations [see Fig. 8(a)].
The corresponding value of from (8) is for even
and for odd. This array configuration is not
a good practical choice because several elements are at iden-
tical locations; in practice, one would need to separate the array
elements, say, by spreading them out along the disk boundary.
While this array is optimal for sources at arriving at angle,
its performance degrades as the DOA deviates from, as seen
in Fig. 8(c).

The minimum variance isotropic array is found by placing the
sensors on the boundary of the disk, for example, by spacing

them equally [see Fig. 8(b)]. Other spacings are possible de-
pending on the value of ; see the first design method in Sec-
tion III-E. We find from (19) that . Thus, the
isotropic array has DOA estimation variance that is twice the
variance from the best array. Fig. 8(c) compares the CRB per-
formances of the -optimal and the isotropic arrays.

A similar argument for volume arrays constrained to lie in a
sphere shows that the MSAEof the isotropic array is a factor
of 3 times the MSAE of the best array; this is a consequence
of (35) and the factor 1/3 in (40).

VI. CONCLUSION

We have studied 2-D and 3-D arrays that have isotropic per-
formance. For planar arrays, we have adopted the single source
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(a) (b)

(c)

Fig. 8. Comparison of a� -optimal array geometry and an isotropic array
geometry when the elements of a planar array are constrained to lie on a disk.
(a)� -optimal array geometry for a source at� = �(�=2). (b) Isotropic array
geometry. (c) Comparison of DOA estimation standard deviations for the two
array geometries.

wideband Cramér–Rao bound as the performance criterion and
have derived the necessary and sufficient conditions on the lo-
cation of sensor elements so that the CRB of the source direc-
tion-of-arrival estimate is constant for all arrival angles. These
conditions are valid regardless of the source’s frequency spec-
trum. We also presented five methods to design isotropic planar
arrays.

For 3-D arrays, we have used the bound on the asymptotic
mean square angular error (MSAE) as a measure for array
isotropy. We have derived necessary and sufficient conditions
on the array geometry that ensure that the MSAEis indepen-
dent of source azimuth and elevation arrival angle. When these
conditions are satisfied, the azimuth and elevation are uncoupled
in the CRB, and the CRB is independent of the source signal az-
imuth. We have also proven that when a planar array is used to
estimate the DOA of a 3-D signal, the associated CRB is uncou-
pled in azimuth and elevation if and only if it is planar isotropic.
An uncoupled CRB is desirable because the azimuth estimation
error is independent of whether or not the elevation of the source
is known [14].

Finally, a simple example comparing arrays optimized for a
single source direction versus isotropic arrays showed that the
isotropic planar array DOA variance is a factor of 2 times that
of the best array (three times for a 3-D array). This suggests

that isotropic arrays provide uniform performance at a modest
decrease in performance as compared with arrays tuned for best
performance at a single source direction.

The geometric interpretation of array isotropy provides in-
sight into extension of practical interest. For example, in appli-
cations for which one is interested in array performance over a
sector of DOAs, we see from the theorems that the conditions
for isotropy remain unchanged as long as the sector has nonzero
measure. In addition, arrays that are “almost isotropic” relate di-
rectly to the eigenvalue spread in the matrix.

The isotropic arrays considered are derived under the
assumptions of isotropic element gain and spatially isotropic
noise power. These assumptions are reasonable for many
acoustic or seismic array applications. Extensions to more
general conditions, and extensions that incorporate practical
array effects such as mutual coupling, would be of interest,
especially in electromagnetic array applications.

When designing isotropic arrays, an important practical issue
that should be taken into account is the minimum allowable dis-
tance between sensors. We have assumed the noise components
at the sensors are independent of each other; this assumption
is violated when the sensor distances become small (see [2]).
Our design methods do not guarantee that the resulting sensors
are sufficiently well-separated, so if the designs produce closely
spaced sensors, they should be modified accordingly.
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