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On the Geometlg of Piecewise Circular 
Curves 

Thomas Banchoff and Peter Giblin 

In this article we would like to promote a class of plane curves that have a number 
of special and attractive properties, the piecewise circular curves, or PC curves. 
(We feel constrained to point out that the term has nothing to do with Personal 
Computers, Privy Councils, or Political Correctness.) They are nearly as easy to 
define as polygons: a PC curve is given by a finite sequence of circular arcs or line 
segments, with the endpoint of one arc coinciding with the beginning point of the 
next. These curves are more versatile than polygons in that they can have a 
well-defined tangent line at every point: a PC curve is said to be smooth if the 
directed tangent line at the end of one arc coincides with the directed tangent line 
at the beginning of the next. (In particular, in a smooth PC curve, no arc 
degenerates to a single point.) 

In the literature of descriptive geometry and more recently in computer graph- 
ics, PC curves have been used to approximate smooth curves so that the approxi- 
mation is not only pointwise close, as in the case of an inscribed polygon, but also 
has the property that the tangent lines at the points of the smooth curve are 
approximated by the tangent lines of the PC curve. Given a pair of nearby points 
on a smooth curve together with their tangent directions, there will not in general 
be a single circular arc through the points with those directions at its endpoints, 
but there will be a family of biarcs meeting these boundary conditions, PC curves 
composed of two tangent circular arcs. (See [M-N] for a discussion of this 
construction.) 

EXAMPLES OF PC CURVES. PC curves arise naturally as the solutions of a 
number of variational problems related to isoperimetric problems. A classical 
problem is to find the curve of shortest length enclosing a fixed area, and the 
solution is a circle. If the curve is required to surround a fixed pair of points, then 
the curve of shortest length enclosing a given area will be either a circle or a lens 

formed by two arcs of circles of the same radius meeting at the two points. More 
generally Besicovitch has shown that a curve of fixed length surrounding a given 
convex polygon and enclosing the maximum area must be a PC curve with all radii 
of arcs equal [Be]. One such curve is the Reuleaux "triangle", a three-arc PC curve 
enclosing an equilateral triangle, with each radius equal to the length of a side of 
the triangle. Such three-arc PC curves, and many far more elaborate examples can 
be found in the tracery of gothic windows [A]. 

If we require that a curve of fixed length L surround a given pair of discs of the 
same radius, then, for a certain range of values of L, the curve that encloses the 
greatest area is a smooth convex PC curve consisting of two arcs on the boundary 
circles of the discs and two arcs of equal radius tangent to both discs. Such four-arc 
convex PC curves have long been used in engineering drawing for approximating 
ellipses, and we call such a curve a PC ellipse [FIGURE 1]. One special PC ellipse is 
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Figure 1 

the boundary of the smallest convex set containing the two discs, called the convex 
envelope of the two discs, consisting of two semicircles and two line segments. (We 
thank Salvador Segura for pointing out the importance of PC curves in such 
isoperimetric problems.) 

The collection of PC curves is invariant not only under Euclidean motions and 
scaling, but also under inversion with respect to a circle. 

PARALLEL CURVES OF PC CURVES. The Reuleaux triangle is a non-smooth 
PC curve of constant width, so that every strip containing the curve and bounded 
by a pair of parallel lines through points of the curve has the same width. [FIGURE 
2a]. We can obtain a smooth PC curve of constant width by taking an outer parallel 
curve of the Reuleaux triangle, i.e. the boundary of the parallel region, the locus of 
all points within a fixed distance of the points of Reuleaux triangle [FIGURE 2b]. 

This construction points out one of the main properties of PC curves: since the 
parallel curves of circular arcs are circular arcs, the parallel curves of a PC curve 

\ (a) (b) 

Figure 2 
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are PC curves. As an example, consider a convex PC ellipse. If we increase all of 
the radii by the same amount, keeping the same centers for the arcs, we obtain an 
outer parallel curve which is also a PC ellipse. This situation is in contrast with the 
case of an actual ellipse, for which the exterior parallel curves are not conic 
sections but rather algebraic curves of fourth degree. 

Consideration of parallel curves is especially important in computer graphics, in 
particular in robotics, where it is necessary to find the centers of all discs of a fixed 
radius touching a given curve. In this subject, parallel curves are often called offset 

curves, obtained by moving away from the curve a given distance. For a curve 
defined by an algebraic equation, the offset curves are also algebraic, but the 
degrees of the offset curve is in general much higher [R-R]. 

If instead of increasing all radii of arcs of a PC ellipse, we decrease all radii by 
the same amount, keeping the same centers, we obtain the family of inner parallel 

curves. As in the case of the ordinary ellipse, for sufficiently small radius, the inner 
parallel curves remain smooth, and in the PC case, they remain PC ellipses. For an 
ellipse, after a certain distance the inner parallel curve develops four cusps where 
the directed tangent line reverses direction. Similarly, at a distance equal to the 
smaller radius, the parallel PC curve degenerates into a lens, and just after this we 
obtain a four-arc PC curve with cusps, where two arcs come together at the same 
tangent line but with different directions. Beyond a certain distance, the parallel 
curve of an ellipse is again a convex curve (but not a conic section). For a convex 
PC ellipse, the inner parallel curve at distance equal to the larger radius is a lens, 
and after that, it is again a convex PC ellipse. 

EVOLUTE POLYGONS OF PC CURVES. In the case of an ellipse, the cusps of 
parallel curves trace out the evolute curve, consisting of the locus of centers of 
curvature of the ellipse. For a PC ellipse, the cusps of the parallel curves trace out 
the edges of a polygon with vertices at the centers of the arcs, called the evolute 

polygon of the PC curve [FIGURE 3]. If the radius of the inner parallel curve equals 

Figure 3 
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the radius of one of the arcs of a PC curve, then that arc degenerates to a single 
point. We say that a PC curve is non-degenerate if all arcs have non-zero length. 
Almost all parallel curves of a PC curve are non-degenerate. 

We can obtain smooth PC curves by starting with a sequence of circles, each 
one tangent to its successor. The points of tangency divide each circle into two 
arcs, and choosing one arc from each circle gives a PC curve with a well-defined 
tangent line at each node where two successive arcs meet. If we wish the resulting 
PC curve to be smooth, then once we have chosen an arc from the first circle, the 
arcs on all subsequent circles are uniquely determined. If the last circle is tangent 
to the first, then this construction gives a closed PC curve. If each of the circles is 
externally tangent to the next, then the resulting PC curve which will be smooth if 
the number of arcs is even [FIGURE 4], while if the number of arcs is odd, then we 
inevitably obtain a cusp when we return to the starting point. 

Figure 4 

If two successive circles are externally tangent, then the node of the PC curve 
will either be a smooth infAlection point [FIGURE Sa] if the tangent lines have the 
same direction or an ordinary cusp [FIGURE 5b] if the directions are different. In 
each of these cases, the two arcs lie on opposite sides of their common tangent line 
at the node. If two circles are internally tangent, then the two arcs at the node lie 
on the same side of their common tangent line, and we obtain either a smooth 
locally convex point [Figure Sc] if the tangent lines have the same direction or a 
rhamphoid cusp [FIGURE Sd] if the directions are different. 

(a) (b) (c) (d) 

F;gure S 

Once we begin to consider curves with cusps, we can obtain many of them from 
the same collection of successively tangent circles. Selecting one of the two 
possible arcs of each of the circles, we get 2n such curves if there are n circles. If n 
is odd, we obtain two such curves with cusps at all nodes [FIGURE 6a-d]. 
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(a) (b) 3 

(c) (d) 

Figure 6 

THREE-ARC PC CURVES. If two of the circles are inside a third, we can form 
eight PC curves in this way, leading to three distinct types, each of which appears 
in a classical guise. If the inner circles have half the radius of the outer one, then 
one such curve is the Yin-Yang curve, with one convex smooth node, one inflection 
node, and one node which is a rhamphoid cusp [FIGURE 7a]. From the same set of 
circles we can form the PC cardioid with two smooth convex points and one 
ordinary cusp. This curve appears in the work of the eighteenth century Jesuit 
geometer Roger Boscovich as an example of a non-centrally symmetric curve with 

J_l 
:wit t 

(a) (b) 

Figure 7 
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a center of length, so that every line through this center cuts the curve into two 
pieces of equal length [FIGURE 7b]. A third type of PC curve determined by these 
three circles is the arbelos, or shoemaker's knife, with two rhamphoid cusps and 
one ordinary cusp. This curve was originally studied by Archimedes and Pappus, 
and it has inspired numerous articles in recreational mathematics, for example 
[Ba], [Ga], and [H]. 

EVOLUTES, INVOLUTES, AND OSCULATING CIRCLES. The sequence of cen- 
ters of the circular arcs of a PC curve determines the evolute polygon of the curve. 
For a PC ellipse, the evolute polygon is a rhombus, and we can find non-convex PC 
curves with the same rhombus as its evolute polygon [FIGURE 4 and FIGURE 8]. 
Any parallel curve of either of these PC curves will be a PC curve with the same 
evolute polygon. 

Figure 8 

If we start with a sequence of circles, each one internally tangent to its successor 
and contained within it, then we obtain a PC spiral. The evolute polygon of the 
spiral will be a locally convex polygonal arc, and we may recover the spiral by a 
"string construction". We think of a string attached at one end of the polygonal 
arc and pulled tightly along it. As we unwind the string, keeping it tightly along the 
polygon at all times, the endpoint of the string traces out a PC curve with the 
polygon as evolute polygon [FIGURE 9]. By using a longer string, we may construct 
a parallel PC curve with the same evolute polygon. Such PC spirals have been used 

Figure 9 
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by several authors in computer-aided design as a means of approximating curves 
with increasing curvature [M-P]. 

For a smooth curve with continually increasing curvature, the best approximat- 
ing circle at a point, called the osculating circle at the point, is defined by the 
properties that it is tangent to the curve at the point and it crosses from one side of 
the curve to the other near that point. The evolute curve is then the locus of 
centers of osculating circles at the points of the curve. At a node of a convex PC 
curve, the circles which are tangent to the curve at the node and which cross from 
one side of the curve to the other near the point have their centers on the segment 
joining the centers of the two arcs that meet at the node [FIGURE 10]* For this 
reason we may consider the evolute polygon as the locus of centers of "osculating 
circles" of the PC curve. At an inflection node, the circles tangent to the curve that 
cross from one side of the curve to the other have their centers on the line 
containing the centers of the arcs meeting at the node, but on the two rays that are 
the complement of the segment joining the two centers. In this case, the focal 
polygon is said to go to infinity. 

/ V J 

. 

Figure 10 

For a smooth spiral with continually increasing curvature, the radii of the 
osculating circles continually decrease, and conversely. A point where the curva- 
ture stops increasing and begins decreasing or conversely is called a vertex. For a 
PC curveX a uertex arc is an arc such that both adjacent arcs either are inside the 
cirdle of the arc or outside it. For a conlwex PC ellipse, each arc is a vertex arc. 

FOUR-ARC PC CURVES. In the remainder of this article, we will discuss some 
results about closed four-arc PC curves, and point out an interesting connection 
between these and four-bar linkages in the plane. In effect, we show that all closed 
four-arc PC curves can be generated in a simple way from a very special class of 
"collapsed" quadrilaterals. 

Let us establish some notational conventions. Let Ci be a circle with center ci, 
i= 1,2,3,4, each Ci being tangent to Ct+1. (We adopt the convention that all 
subscripts are to be reduced modulo 4, so for example C4 iS the same as C0). Our 
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C4 Co c2 

Figure 11 

PC curve C will be made from successive arcs of the Ci, so that the quadrilateral C1C2C3C4 iS the evolute polygoIl of C. The nodes of C will be denoted Pi, with Pi as the node where Ci_1 meets Ci [FIGURE 11]. Finally the side-lengths of the evolute polygon will be denoted by li: this is the distance between ci_l and Ci. In the example of FIGURE 11 it is clear, by splitting each Zi into a sum of two radii, that 11 + 14 - 12 + 13. Whenever we have a PC curve based on the above quadrilateral, we must have some relation of the form 

14- +11 + 12 i 137 
(l) for some choice of plus or minus signs. Suppose we start with two circles, C1 and C3. What choice do we have for the centers of the remaining two circles? If, for example, the circles C1 and 63 are external to each other, as in FIGURE 12aS then a circle C2 tangent to both has 112-131 equal to the sum or difference of the radii of C1 and C3. Thus? by a standard property of hyperbolas, the center of C2 (and likewise of C4) lies on one of two hyperbolas with foci at cl and C3. For one hyperbola, C1 and C3 are both outside or both inside C2; for the other hyperbolay one is outside and one is inside. If the radii of C1 and C3 are equal, then one of the hyperbolas degenerates to a straight line. If C1 and C3 are differently placed (for example if one is inside the other), or if one of the circles becomes a straight line (a "circle of infinite radius?s), then there may be changes in the locus of possible centers for C2. However, as the reader may verifyS this locus always consists of tnvo conic sections, i.e. an ellipse, a parabola, a hyperbola, or a straight line. A particularly interesting construction which can be carried out for any PC curve CJr is to consider the full locus of centers of bitangent circles, i.e. circles tangent to C in at least two places. This locus, which necessarily includes the centers of the arcs making up C, is the symmetzy set of C. By the above remarks, the symmetry set consists of arcs of conic sections; in fact, two consecutive arcs will always meet with a common tangent line. In the final section of this paper, we give an intriguing example of a four-arc PC cuwe which has an isobted poant on its symmetry set; a full discussion of symmetry sets of PC curves appears in [Ba-G2]. Suppose now that we have four circles with each tangent to the next. As pointed out above, exactly two of the sixteen possible PC curves made up from arcs of these four circles are smooth. 

[May 
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2-13 = rl-r3 

(a) 

13-12-rl + r3 

(b) 

Figure 12 

In the case of four externally tangent circles (as in FIGURE 4), it is clear that the 

arcs making up one of these smooth PC curves must alternate between clockwise 

and counter-clockwise orientation. With the usual convention that clockwise curves 

have negative curvature and counter-clockwise curves have positive curvature, this 

implies that each of the four arcs is a vertex arc, as defined previously. The reader 

may like to verify that, with configurations other than externally tangent circles, all 

four arcs remain vertex arcs so long as the PC curve remains smooth and does not 

intersect itself. This establishes a version of the Four Vertex Theorem for four-arc 

PC curves. More generally, one can show that any smooth closed PC curve which 

does not intersect itself has at least four vertex arcs. This can be proved using an 

argument analogous to that of Osserman, for the classical Four Vertex Theorem 

[O]. 

PC CURVES AND FOUR-BAR LINKAGES. It is instructive to regard the evolute 

polygon as a linkage in the plane. This amounts to thinking of the edges as rigid 

411 
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rods connected at the endpoints c'. We usually take cl and C4 as fixed in position 
in the plane and we allow the other three rods to turn about their endpoints. As 
the quadrilateral changes in shape, so will any PC curve with this quadrilateral as 
its evolute. We may note that a collection of four tangential circles centered at the 
vertices ci will roll on each other without slipping as the linkage changes shape. 

The theory of four-bar linkages has been studied extensively. In that theory, it is 
shown that a linkage can move continuously from any position into a collapsed 
position, where all the centers are on a straight line (and hence all nodes lie on the 
same line, too), provided that some relation of the form (1) holds (where 14 iS the 
length of the fixed rod). In certain cases, namely 

14 = 11 + 12 + 13 and 14 = -1l + 12 -13 

there is only one possible position for the linkage and that is when it is in a 
collapsed position, so the result holds automatically in these cases. We state and 
prove the result below, using an elementary argument; for a more general setting 
of this result, see for example [G-N]. 

For us, the main significance of the collapsing lemma is a sort of converse 
construction: 

Proposition A. Every closed four-arc PC curve can be obtained by starting with one 
based on a collapsed quadrilateral and "uncollapsing" it, keeping the radii of the 
circles unchanged as the quadrilateral moves away from the collapsed position. 

Note that since the radii remain unchanged, so do the edge lengths and the PC 
curve remains closed as the quadrilateral uncollapses. The proposition is an 
immediate consequence of the following lemma: 

Collapsing Lemma. Any quadrilateral satisfying (1) can be continuously collapsed 
so that its four vertices are collinear. 

Proof of Lemma: Let us fix 14 = 1 and take cl-(0,0), C4 = (1,0), c2 = 
(I cos t, I sin t) as in FIGURE 13a. The condition for C3 to exist for this position of 
C2 iS 112 -131 < d 412 + 13, where d is the distance from c2 to C4. This is 

Cl=(0,0) 14=l c4=(1,0) 

3 

(a) (b) 

Figure 13 
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equivalent to 

112 + 1 _ (l2 + 13)2 < 211 cos t < 112 + 1-(12-13)2. 
The allowable values of t are therefore those points on the unit circle between 

two vertical lines, one or both of which may actually miss the circle [FIGURE 13b]. 
We need only check that 

(i) if 11 + 12 + 13 = 1, then t = 0 is an allowable value, that is, 211 < 112 + 1 - 
(12- 13); 

(ii) if -11 + 12 + 13 = 1, then t = X is an allowable value, that is, 112 + 1 - 
(12 + 13)2 < -211. 

Since, in (i), (11 - 1)2 = (12 + 13)2, and, in (ii), (11 + 1)2 = (12 + 13)2 the results 
are immediate. 

FIGURE 14a gives an example of a closed four-arc PC curve in which the four 
centers have become collinear. Despite its ordinary appearance, however, this 
construction is very special: in this case, the lengths satisfy 11 = 13 and 12 = 14, 

which implies that the quadrilateral of centers, before collapsing, was a parallelo- 
gram. As the quadrilateral unfolds, the PC curve evolves as shown in FIGURE 14b. 
On the other hand, whten no special relation holds among the li, besides (1), it 
turns out that, when the quadrilateral has collapsed, the PC curve has become 
degenerate. This is the content of the following result: 

(a, 

(b) 

Figure 14 

Proposition B. Suppose that the quadrilateral of centers collapses, with the four 
centers (and the four nodes) along a line. Suppose also that the four nodes Pi are all 
distinct. Then the quadrilateral is a parallelogram (i.e. 11 = 13 and 12 = 14). 
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Remark. It is "usually" true that, in the non-parallelogram case, all four nodes 
coincide. More precisely, if the centers ci are all distinct and there is no restriction 
on the placing of the first node P1, then either the quadrilateral is a parallelogram 
or all four nodes Pi coincide. 

Proof of Proposition B: Since the centers and nodes are along a line, we can take 
this line to be the x-axis and describe them by their x-coordinates. Since P2 + P1, 
we must have P2 = 2cl - P1 since c1 is the center of the segment from P1 to P2- 
Similarly p3 - 2c2 - 2cl + P1, and p4 = 2C3 - 2c2 + 2cl - P1 Going one more 
step brings us back to P1 This gives c1 + C3 = C2 + C4, which implies both 11 = 13 

(i.e., |c4 - Cll = tc3 - C21) and 12 = 14 (i.e., |C1 - C2| = |c4 - c31). The remark is 
proved by examining all possibilities for P2, p3, p4, given an initial P1 

When two consecutive nodes of a PC curve coincide, we can take the arc joining 
them either as a complete circle or as a mere point. FIGURE 15a-c shows a PC 
curve growing out of a collapsed polygon of centers where all but one of the arcs is 
taken as a point. 

(a) (b) 

(c) 

Figure 15 

CONCLUDING REMARKS. Many of the topics we have introduced in this paper 
can be taken much further. Here we mention some natural extensions. 

Closed PC curves with n arcs and a given evolute polygon fall into two classes, 
depending on whether the number of cusps is even or odd (smooth PC curves have 
zero cusps, an even number). 

If the number of cusps is even, there is always a relation between the side-lengths 
of the polygon of the form 

In +ll + 12 + *y + In-1 (2) 
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analogous to (1) above. Furthermore, in this case, the radii of the PC curve can be 
varied to give a family of parallel PC curves. Examples are given above in FIGURES 
1, 2b, 4, and 11. 

If the number of cusps is odd, there is no restriction on the sides. There is a 
unique closed curve with a given evolute polygon, and the radii cannot be varied. 
Examples are the three-arc PC curres in FIGURES S and 6. Note that three-arc PC 
curves always have an odd number of cusps. 

The extension of Proposition A and the Collapsing Lemma to PC curves with 
more than four arcs is straightforward but more complicated. We know of no easy 
proof that a polygon satisfying (2) for some choice of signs necessarily collapses 
continuously to a position where all the nodes are collinear. It would appear that 
this should be easier to achieve as n becomes larger, since the polygon becomes 
"floppier'7 as it has more degrees of freedom. 

Finally we mention one remarkable example of a symmetry set of a PC curve. 
The four-arc PC curve C in FIGURE 16a has a biosculating circle S, i.e. S is an 
osculating circle at two points p and q. By definition, the center of S is part of the 
symmetry set of C, but it is an isolated point of the symmetry set since there are no 
circles near S that are tangent to C at two points. If we perturb the curve C by 
moving the node at p slightly counter-clockwise round C1, and adjusting C4 and 
C3 accordingly, a family of bitangent circles appears to grow out from S. An 
enlarged picture of the locus of centers of curvature of these bitangent circles is 
shown in FIGURE 16b. If we move p the other way, all of these bitangent circles 
come together and disappear. In the study of symmetry sets of one-parameter 
families of plane curve$, this transition is called a moth. In [G-B] and [Br-G] there 
are extensive discussions of such transition phenomena for general smooth curves. 
Although many of the transitions for symmetry sets of general smooth curves 
already appear in the study of plane polygons, as in [Ba-Gl], not all of them do, 
and part of our motivation for studying PC curves was an attempt to find an 
elementary class of curves for which all general phenomena were already present. 

(a) (b) 

Figure 16 

A full discussion of the symmetry sets of PC curves appears in [Ba-G2]. Many of 
the notions in this paper generalize to PC curves in space and in higher dimen- 
sions, and we intend to pursue these ideas in a subsequent paper. 
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Pascal's Theorem 
The proof of Pascal's Theorem mentioned in Professor van Yzeren's article (MONTHLY 100, PP 
930-931) is not my own but the proof I learned in 11th grade Descriptive Geometry and the 
Mathematisches-Naturwissenschaftliches Gymnasium of Basel, Switzerland. When I wrote the 
book I therefore assumed that the proof was part of everybody's general mathematical 
education. I am quite sure that this proof was absorbed by Swiss Type C (science, A is classical 
languages, B modern languages) students for at least 50 years It also appears in what was the 
standard Swiss high school text of I:)escriptive Geometry (Flukiger). I did check in Italian and 
German I:).G. texts, the Itallans do not have Pascalas theorem and a German University text does 
not prove it. Unfortunately, I do not have Austrian high school D.G. texts but l assume that at 
least pre-World War I Austrian texts did present a similar proof. To find out whether l:)r van 
Yzeren's proof was known somewhere one would have to comb through the sehool literature o£ 
the few countries that did require descriptive geometry in their high school curricuhlm. 

Unfortunately, New Math has succeeded in destroying much of European education almost as 
much as it did American education. 

H. Guggenheimer 
P.O. Box 401 

West Hempstead a NY 11552 

We would like to thank Davide Cervone for assistance in producing the computer-generated 
illustrations for this paper. 

REFERENCES 

[A] Artmann, Benno "The Cloisters of Hauterive" Math. Intelligencer 13:2 (1991) 44-49. 
[Ba-G1] Banchoff, T. and Giblin, P. "Global Theorems for Symmetry Sets of Smooth Curves and 

Polygons in the Plane" Proc. Royal Soc. of Edinburgh 106A (1987) 221-231. 
[Ba-G2] Banchoff, T. and Giblin, P. "Symmetry Sets of Piecewise Circular Curves" Proc. Royal Soc. of 

Edinburgh 123A (1993) 1135-1149. 
[Be] Besicovitch, A. S. "Variants of a Classical Isoperimetric Problem" Quart. J. Math. (2), 3 

(1952) 42-9. 
[Br-G] Bruce, J. W. and Giblin, P. "Growth, Motion and 1-Parameter Families of Symmetry Sets" 

Proc. Royal Soc. of Edinburgh 104A (1986) 179-204. 
[Ga] Gaba, M. G. "On a Generalization of the Arbelos" Amer. Math. Monthly 47 (1940) 19-24. 
[G-Br] Giblin, P. and Brassett, A. "Local Symmetry of Plane Curves" Arner. Math. Monthly 92:10 

(1985) 689-707. 
[G-N] Gibson, C. G. and Newstead, P. E. "On the Geometry of the Planar 4-Bar Mechanism" Acta 

Applicandae Mathematicae 7 (1986) 113-135. 
[H] Hood, Rodney "A Chain of Circles" The Mathematics Teacher (1961) 134-137. 
[M-P] Marciniak, K. and Putz, B. "Approximation of Spirals by Piecewise Circular Curves of Fewest 

Circular Arc Segments" Computer Aided Design, Vol. 16, No. 2 (1984) 87-90. 
[M-N] Martin, R. R. and Nutbourne, A. W. "Differential Geometry Applied to Curve and Surface 

Design" Vol. 1 (1988) Foundation Ellis Horwood. 
[O] Osserman, R. "The Four-or-More Vertex Theorem" Amer. Math. Monthly 92 (1985) 332-337. 
[R-R] Rossignac, J. R. and Requicha, A. A. G. Piecewise-Circular Curves for Geometric Modeling, 

IBM Journal of Research and Development (1987) 296-313. 
[S] Sabin, M. "The Use of Piecewise Forms in the Numerical Representation of Shape" Report 

no. 60, Computer and Automation Institute, Hungarian Academy of Science, Budapest 
(1977). 

Department of Mathematics Department of Pure Mathematics 
Brown Unaversity University of Liverpool 
Providence, ZU 02912 Liverpool L69 3BX 

England 

416 [May GEOMETRY OF PIECEWISE CIRCULAR CURVES 


	p. 403
	p. 404
	p. 405
	p. 406
	p. 407
	p. 408
	p. 409
	p. 410
	p. 411
	p. 412
	p. 413
	p. 414
	p. 415
	p. 416

