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1. Introduction. Geometric differential operators on complete noncompact Riemann-

ian manifolds were extensively studied due to their applications to physics, geometry,

number theory, and numerical analysis. Still, their properties are not as well understood

as those of differential operators on compact manifolds, one of the main reasons being

that differential operators on noncompact manifolds do not enjoy some of the most

useful properties enjoyed by their counterparts on compact manifolds.

For example, elliptic operators on noncompact manifolds are not Fredholm in gen-

eral. (We use the term “elliptic” in the sense that the principal symbol is invertible

outside the zero section.) Also, one does not have a completely satisfactory pseudodif-

ferential calculus on an arbitrary complete noncompact Riemannian manifold, which

might allow us to decide whether a given geometric differential operator is bounded,

Fredholm, or compact (see however [2] and the references therein).

However, if one restricts oneself to certain classes of complete noncompact Riemann-

ian manifolds, one has a chance to obtain more precise results on the analysis of the

geometric differential operators on those spaces. This paper is the first in a series of

papers devoted to the study of such a class of Riemannian manifolds, the class of Rie-

mannian manifolds with a “Lie structure at infinity” (see Definition 3.1). We stress here

that few results on the geometry of these manifolds have a parallel in the literature, al-

though there are a fair number of papers devoted to the analysis on particular classes

of such manifolds [12, 13, 15, 16, 17, 38, 39, 55, 57, 64, 67, 70, 74, 75, 76, 78]. The

philosophy of Cordes’ comparison algebras [14], Kondratiev’s approach to analysis on

singular spaces [38], Parenti’s work on manifolds that are Euclidean at infinity [64], and

Melrose’s approach to pseudodifferential analysis on singular spaces [55] have played

an important role in the development of this subject.

A manifoldM0 with a Lie structure at infinity has, by definition, a natural compactifi-

cation to a manifold with cornersM =M0∪∂M such that the tangent bundle TM0 →M0
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extends to a vector bundle A→M with some additional structure. We assume, for ex-

ample, that the Lie bracket of vector fields on M0 defines, by restriction, a Lie algebra

structure on the space of sections of A such that the space � := Γ(A) of sections of A
identifies with a Lie subalgebra of the Lie algebra of all vector fields on M0. The pair

(M,�) then defines a Lie structure at infinity on M0. A simple, nontrivial class of mani-

folds with a Lie structure at infinity is that of manifolds with cylindrical ends. LetM0 be

a manifold with cylindrical ends. In this case, the compactificationM is a manifold with

boundary and � consists of all vector fields tangent to the boundary ofM . This example

plays a prominent role in the analysis of boundary value problems on manifolds with

conical points [38, 40, 56, 58, 71, 72]. See the above references for earlier results.

Let (M,�) be a Lie structure at infinity on M0, � = Γ(A). The choice of a fiberwise

scalar product onA gives rise to a fiberwise scalar product g on TM0, that is, a Riemann-

ian metric on M0. Since M is compact, any two such metrics g1 and g2 are equivalent

in the sense that there exists a positive constant C > 0 such that C−1g1 ≥ g2 ≥ Cg1.

One can thus expect that the properties of the Riemannian manifold (M0,g) obtained

by the above procedure depend only on the Lie structure at infinity on M0 and not on

the particular choice of a metric on A. However, as shown in the following example, a

metric on M0 does not determine a Lie structure at infinity on M0.

Example 1.1. We compactify R by including +∞ and −∞:

R :=R∪{+∞,−∞}. (1.1)

We defineϕ : [−1,+1]→R,ϕ(t)= log(t+1)−log(1−t),ϕ(±1)=±∞. The pullback of

the differentiable structure on [−1,1] defines a differentiable structure on R. On R we

consider the Lie algebra of vector fields that vanish at ±∞. The product of these com-

pactifications of R defines a Lie structure on M0 := Rn, in which the compactification

M is diffeomorphic to the manifold with corners [−1,1]n and the sections of A are all

vector fields tangent to all hyperfaces. (The resulting Lie structure at infinity is that of

the b-calculus (see Example 2.5)). Alternatively, one can consider the radial compacti-

fication of Rn. The resulting Lie structure at infinity is described in Example 2.6, which

is closely related to the so-called scattering calculus [57, 64].

We thus see that Rn fits into our framework and is in fact a manifold with a Lie

structure at infinity for several distinct compactifications M .

Thus, although our motivation for studying manifolds with a Lie structure at infin-

ity comes from analysis, this class of manifolds leads to some interesting questions

about their geometry, and this paper (the first one in a series of papers on this sub-

ject [2, 3, 4]) is devoted mainly to the issues and constructions that have a strong

Riemannian geometric flavor. It is important to mention here that only very few results

on the geometry of particular classes of Riemannian manifolds with a Lie structure at

infinity were proved before, except some special examples (e.g., compact manifolds and

manifolds with cylindrical ends). For example, we prove that M0 is complete and has

bounded curvature in the sense that the Riemannian curvature R and all its covariant

derivatives ∇kR, with respect to the Levi-Civita connection, are bounded. Also, under
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some mild assumptions on (M,�), we prove that (M0,g) has positive injectivity radius,

and hence M0 has bounded geometry. This is very convenient for the analysis on these

manifolds. The main technique is based on generalizing the Levi-Civita connection to

an “A∗-valued connection” on A. An A∗-valued connection on a bundle E →M is a dif-

ferential operator ∇ : E→ E⊗A∗ that satisfies all the usual properties of a connection,

but with A replacing the tangent bundle, see Definition 2.20. This concept was first in-

troduced in a slightly different form in [25] by Evens et al. The right approach to the

geometry of manifolds with a Lie structure at infinity requires the replacement of the

tangent bundle by A. This was noticed before in particular examples, see, for instance,

[12, 45, 55, 57, 59].

The Lie structure at infinity on M0 allows us to define a canonical algebra of dif-

ferential operators on M0, denoted by Diff (�), as the algebra of differential opera-

tors generated by the vector fields in � = Γ(A) and multiplication by functions in

�∞(M). If E0,E1 →M are vector bundles onM , then one can similarly define the spaces

Diff (�;E0,E1) (algebras if E0 = E1) of differential operators generated by � and acting

on sections of E0 with values sections of E1. All geometric operators on M0 (de Rham,

Laplace, and Dirac) will belong to one of the spaces Diff (�;E0,E1), for suitable bun-

dles E0 and E1. The proof of this result depends on our extension of the Levi-Civita

connection to an A∗-valued connection.

Many questions on the analysis on noncompact manifolds or on the asymptotics

of various families of operators can be expressed in terms of Diff (�). We refer to

[16, 18, 32, 42, 43, 45, 50, 53, 55, 57] for just a few of the many possible examples in

the literature. Indeed, let ∆= d∗d∈Diff (�) be the scalar Laplace operator onM0. Then

∆ is essentially selfadjoint on �∞c (M0) by old results of Gaffney [26] and Roelcke [68].

Assume that M0 has positive injectivity radius, then P(1+∆)−m/2 and (1+∆)−m/2P
are bounded operators on L2(M0), for any differential operator P ∈Diff (�) of order at

most m. Cordes [13, 14] defined the comparison algebra A(M,�) as the norm-closed

algebra generated by the operators P(1+∆)−m/2 and (1+∆)−m/2P , with P ∈ Diff (�)
a differential operator of order at most m. The comparison algebra is useful because

it leads to criteria for differential and pseudodifferential operators to be compact or

Fredholm between suitable Sobolev spaces [2, 4, 42].

We expect manifolds with a Lie structure at infinity and especially the analytic tools

(pseudodifferential and asymptotic analysis) that we have established in [2, 4] to play

an important role for solving some problems in geometric analysis simultaneously for

a large class of manifolds. Indeed, in special cases of manifolds with a Lie structure

at infinity, the solutions to quite a few interesting problems in geometric analysis rely

heavily on those methods. For instance, consider asymptotically Euclidean manifolds, a

special case of Example 2.6. In general relativity, one is interested in finding solutions to

the Einstein equations whose spatial part is asymptotically Euclidean. Integration of the

first nontrivial coefficient in the asymptotic development of the metric at infinity yields

the so-called “mass” of the solution [8]. The positive mass theorem states that any non-

flat asymptotically Euclidean Riemannian manifold with nonnegative scalar curvature

has positive mass. An elegant proof of the positive mass theorem by Witten (see [65])

uses Sobolev embeddings on such manifolds. The positive mass theorem provides the
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final step in the proof of the Yamabe conjecture on compact manifolds [69]: any con-

formal class on a compact manifold M admits a metric with constant scalar curvature.

In order to prove the conjecture in the locally conformally flat case, one replaces the

metric g on M by a scalar-flat metric u·g on M \{p}, where u is a function u(x)→∞
for x→ p, and a neighborhood of p provides the asymptotically Euclidean end, and one

applies the positive mass conjecture to this. On most noncompact manifolds, the Yam-

abe problem is still unsolved. However, special cases have been solved, for example, on

manifolds with cylindrical ends [1].

Both the geometry and the analysis of asymptotically hyperbolic manifolds have been

the subject of articles on general relativity and the analysis of 3-manifolds, see [5, 6].

One can prove rigidity theorems [7] for asymptotically hyperbolic ends, or existence

results for asymptotically hyperbolic Einstein metrics [47]. Similar rigidity problems

for asymptotically complex hyperbolic ends are the subject of [10, 11, 30].

Another example is the construction of manifolds with special holonomy SU(m),
Sp(m), and G2 where the analysis of weighted function spaces on manifolds which are

quasi-asymptotically locally Euclidean [34, 35, 36] has been used.

In summary, our present program will lead to a unified approach to the analysis on

various types of manifolds with a “good” asymptotic behavior at infinity.

We now discuss the contents of each section. In Section 2 we introduce and study

structural Lie algebras of vector fields and the equivalent concept of boundary tangen-

tial Lie algebroids. A structural Lie algebra of vector fields on a manifold with cornersM
gives rise to a canonical algebra Diff (�) of differential operators. We include numerous

examples.

Then, in Section 3, we specialize in the case that the constraints are only on the

boundary. This special case is called a “manifold with a Lie structure at infinity.” The

Lie structure at infinity defines a Riemannian metric on the interior of the manifold.

This metric is unique up to bi-Lipschitz equivalence. Hence, the Lie structure at infinity

is a tool for studying a large class of open Riemannian manifolds. We are interested in

the analysis on such open manifolds.

Section 4 is devoted to the study of the geometry of Riemannian manifolds with a Lie

structure at infinity. We will prove that these manifolds are complete and have bounded

curvature (together with all its covariant derivatives). This depends on an extension

of the Levi-Civita connection to an A∗-valued connection, the appropriate notion of

connection in this setting. Then we investigate the question of whether a Riemannian

manifold with a Lie structure at infinity has positive injectivity radius.

In Section 5, we introduce Dirac and generalized Dirac operators and prove that they

belong to Diff (�;W), where W is a Clifford module. The same property is shared by all

geometric operators (Laplace, de Rham, and signature) on the open manifold M0.

2. Structural Lie algebras and Lie algebroids. We introduce in this section the con-

cept of structural Lie algebras of vector fields, which is then used to define manifolds

with a Lie structure at infinity.

2.1. Projective modules. In this subsection, we recall some well-known facts about

projective modules over �∞(M), whereM is a compact manifold, possibly with corners.
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Let V be a �∞(M)-module with module structure �∞(M)×V 	 (f ,v)� fv ∈ V . Let

x ∈M and denote by px the set of functions on M that vanish at x ∈M . Then pxV is

a complex vector subspace of V and V/pxV is called the geometric fiber of V at x. In

general, the geometric fibers of V are complex vector spaces of varying dimensions.

A subset S ⊂ V will be called a basis of V if every element v ∈ V can be written

uniquely as v =∑s∈S fss, with fs ∈ �∞(M), #{s ∈ S | fs ≠ 0} <∞. (In our applications,

S will always be a finite set, so we will not have to worry about this last condition.) A

�∞(M)-module is called free (with basis S) if it has a basis S. Unlike the general case,

the geometric fibers of a free module have constant dimension, equal to the number of

elements in the basis S. Note, however, that if f : V →W is a morphism of free modules,

the induced map between geometric fibers may have nonconstant rank. For example,

it is possible that f is injective, but the induced map on the geometric fibers is not

injective on all fibers. An example is provided by M = [0,1], V = W = �∞([0,1]), and

f given by the multiplication by the coordinate function x ∈ [0,1]. Then f is injective,

but the induced map on the geometric fibers at 0 is 0.

A �∞(M)-module V is called finitely generated projective if, by definition, there exists

another moduleW such that V⊕W is free with a finite basis. We then have the following

fundamental theorem of Serre and Swan (see [37]).

Theorem 2.1 (Serre and Swan). If V is a finitely generated projective module over

�∞(M), then the set E := ∪x∈M(V/pxV)×{x}, the disjoint union of all geometric fibers

of V , can be endowed with the structure of a finite-dimensional, smooth vector bundle

E → M such that V � Γ(M ;E). The converse is also true: Γ(M ;E) is a finitely generated

projective �∞(M)-module for any finite-dimensional, smooth vector bundle E→M .

Suppose now that V is a �∞(M)-module and thatM is connected. Then V is a finitely

generated projective �∞(M)-module if and only if there exists k ∈ Z+ satisfying the

following condition: for any x ∈M , there exist ϕ ∈ �∞(M), ϕ(x) = 1, and k-elements

v1, . . . ,vk ∈ V with the property that, for any w ∈ V , we can find f1,f2, . . . ,fk ∈ �∞(M)
such that

ϕ
(
f1v1+f2v2+···+fkvk−w

)= 0 in V, (2.1)

and, moreover, the germs of f1, . . . ,fk at x are uniquely determined. A module V satis-

fying condition (2.1) above is called locally free of rank k, and what we are saying here is

that “locally free of rank k, for some k,” is equivalent to “finitely generated projective.”

It is crucial here that the number of elements k is the same for any x ∈M . In case M is

not connected, the number k needs only to be constant on the connected components

of M .

Remark 2.2. The introduction of projective modules over C∞(M) in partial differ-

ential operators on noncompact manifolds was pioneered by Melrose [54] in the early

1980s.

2.2. Manifolds with corners and structural Lie algebras. We now fix our terminol-

ogy and recall the definitions of the main concepts related to manifolds with corners.
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In the following, a manifold will always stand for a C∞-manifold possibly with corners.

In contrast, a smooth manifold is a C∞-manifold without corners. By definition, for every

point p in a manifold with cornersM , there are a coordinate neighborhood Up of p and

diffeomorphismϕp to [0,∞)k×Rn−k, withϕp(p)= 0 such that the transition functions

are smooth (including on the boundary). The number k here clearly depends on p, and

will be called the boundary depth of p. Hence points in the interior have boundary depth

0, points on the boundary of a manifold without corners have boundary depth 1, and

so forth. Roughly speaking, the boundary depth counts the number of boundary faces

p is in.

Moreover, we assume that each hyperface H of M is an embedded submanifold and

has a defining function, that is, there exists a smooth function xH ≥ 0 on M such that

H = {xH = 0
}
, dxH ≠ 0 on H. (2.2)

This assumption is just a simplifying assumption. We can deal with general manifolds

with corners using the constructions from [59]. Note that a priori we do not fix a par-

ticular system of defining functions, but only use their existence occasionally.

If F ⊂M is an arbitrary face of M of codimension k, then F is an open component of

the intersection of the hyperfaces containing it. Any set x1, . . . ,xk of defining functions

of the hyperfaces containing F is called a set of defining functions of F ; thus, F is a

connected component of {x1 = x2 = ··· = xk = 0}. This statement obviously does not

depend on the choice of the defining functions xj , j = 1, . . . ,k. We will denote by ∂M
the union of all nontrivial faces of M . Usually, we will denote by M0 the interior of M ,

that is, M0 :=M\∂M .

A submersion f :M → N, between two manifolds with corners M and N, is a differ-

entiable map f such that df is surjective at all points and df(v) is an inward pointing

tangent vector of N if and only if v is an inward pointing vector M . It follows then that

the fibers f−1(y) of f are smooth manifolds without corners and that f preserves the

boundary depth (i.e., the number of boundary faces a point p is in.) If x is a defining

function of some hyperface of N, then x1 = x ◦f is such that {x1 = 0} is a union of

hyperfaces of M and dx1 ≠ 0 on {x1 = 0}.
Example 2.3. LetA→M be a smooth vector bundle. The sphere bundle ofA, denoted

by S(A), is defined, as usual, as the set of (positive) rays in the bundle A, that is, S(A)=
(A\{0})/R+. If we fix a smooth metric on A, then S(A) identifies with the set of vectors

of length one in A. Moreover, S(A)→M turns out to be a submersion of manifolds with

corners.

A submanifold with corners N of a manifold with corners M is a submanifold N ⊂M
such that N is a manifold with corners, and each hyperface H of N is a connected

component of a set of the form H′ ∩N, where H′ is a hyperface of M intersecting N
transversally.

The starting point of our analysis is a Lie algebra of vector fields on a manifold with

corners. For reasons that will be clearer later, we prefer to keep this concept as general

as possible, even if for the analysis on noncompact manifolds, only certain classes of

Lie algebras of vector fields will be used.
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Definition 2.4. A structural Lie algebra of vector fields on a manifoldM (M possibly

with corners) is a subspace � ⊂ Γ(TM) of the real vector space of vector fields on M
with the following properties:

(i) � is closed under Lie brackets;

(ii) � is a finitely generated projective �∞(M)-module;

(iii) the vector fields in � are tangent to all faces in M .

By (ii) we mean that � is closed for multiplication by functions in �∞(M) and the in-

duced �∞(M)-module structure makes it a finitely generated projective �∞(M)-module.

Given a structural Lie algebra � of vector fields on a manifold with corners, we call

the enveloping algebra Diff (�) of � the algebra of �-differential operators on M . Note

that any �-differential operator P ∈ Diff (�) can be realized as a polynomial in vector

fields in � with coefficients in �∞(M) acting on the space �∞(M).
We give some examples for structural Lie algebras of vector fields. Some of these

examples can also be found in [57]. We also give descriptions of the structural vector

fields in local coordinates, because this will be helpful in the applications of the theory

developed here. All of the following examples model the analysis on some noncompact

manifold, except for the last one, which models the analysis of adiabatic families.

The following example is the simplest and most studied so far; however, it is quite

important for us because it models the geometry of manifolds with cylindrical ends,

and hence it is easier to grasp.

Example 2.5. Let M be a manifold with corners and

�b = {X ∈ Γ(TM) :X is tangent to all faces of M}. (2.3)

Then �b is a structural Lie algebra of vector fields, and any structural Lie algebra of

vector fields onM is contained in �b, by condition (iii) of the above definition. A vector

field X ∈ �b is called a b-vector field X. Fix x1, . . . ,xk and y ∈ Rn−k local coordinates

near a point p on a boundary face of codimension k, with xj defining functions of the

hyperfaces through p. Then any b-vector field X is of the form

X =
k∑
j=1

aj(x,y)xj∂xj +
n−k∑
j=1

bj(x,y)∂yj (2.4)

on some neighborhood of p, with the coefficients aj and bj smooth everywhere (in-

cluding the hyperfaces xj = 0), for all j. This shows that the Lie algebra of b-vector

fields is generated in a neighborhood U of p by x∂x and ∂y as a �∞(M)-module. The

differential operators in Diff (�b) are called Fuchs-type operators, totally characteristic,

or simply, and perhaps more systematically, b-differential operators. The structural Lie

algebra �b and the analysis of the corresponding differential and pseudodifferential

operators are treated in detail for instance in [20, 23, 33, 48, 56, 57, 73].

Example 2.6. LetM be a compact manifold with boundary and x :M →R+ a bound-

ary defining function. Then the Lie algebra �sc := x�b does not depend on the choice

of x and the vector fields in �sc are called scattering vector fields; with respect to

local coordinates (x,y) near the boundary, scattering vector fields are generated by
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x2∂x and x∂y . An analysis of the scattering structure can be found in [57]. Since this

structure models the analysis on asymptotically Euclidean spaces, let us be a little bit

more precise and recall some basic definitions. A Riemannian metric g on the inte-

rior of M is called a scattering metric if, close to the boundary ∂M , it is of the form

g = dx2/x4+h/x2, where h is a smooth, symmetric 2-tensor onM which is nondegen-

erate when restricted to the boundary. Then scattering vector fields are exactly those

smooth vector fields on M that are of bounded length with respect to g, and the corre-

sponding Laplacian ∆g is an elliptic polynomial in scattering vector fields. As a special

case of this setting, note that the radial compactification map

RC :RN �→ SN+ := {ω= (ω0,ω′)∈ SN :ω0 ≥ 0
}

: z � �→ (
1+|z|2)−1/2(1,z) (2.5)

identifies the Euclidean space RN with the interior of the upper half-sphere SN+ such

that the Euclidean metric lifts to a scattering metric on SN+ .

The following example is one of the examples that we are interested in using in

applications.

Example 2.7. Let M be a manifold with boundary ∂M , which is the total space of a

fibration π : ∂M → B of smooth manifolds. We let

�e = {X ∈ Γ(TM) :X is tangent to all fibers of π at the boundary} (2.6)

be the space of edge vector fields. In order to show that this is indeed a structural

Lie algebra of vector fields, we have to show that it is closed under Lie brackets. Let

i : ∂M →M be the inclusion. Assume that X,Y ∈�e. Because

[X,Y]|∂M =
[
X|∂M,Y |∂M

]
, (2.7)

the commutator is again tangent to the fibers of π . If (x,y,z) are coordinates in a

local product decomposition near the boundary, where x corresponds to the boundary

defining function, y corresponds to a set of variables on the base B lifted through π ,

and z is a set of variables in the fibers ofπ , then edge vector fields are generated by x∂x ,

x∂y , and ∂z. Using this local coordinate description is another way to see immediately

that the space of edge vector fields is in fact a Lie algebra. More importantly, it shows

that it is a projective �∞(M)-module. The analysis of the Lie algebra �e is partly carried

out in [50] and more recently in [45].

A special case of the edge structure is of particular importance for the analysis on

hyperbolic space, so it deserves its own name.

Example 2.8. Let M be a compact manifold with boundary and let �0 be the edge

vector fields corresponding to the trivial fibration π = id : ∂M → ∂M , that is, we have

�0 =
{
X ∈ Γ(TM) :X|∂M = 0

}
(2.8)
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which explains the name 0-vector fields for the elements in �0. With respect to local

coordinates (x,y) near the boundary, 0-vector fields are generated by x∂x and x∂y .

Recall that a Riemannian manifold (M0,g0) is called conformally compact provided it is

isometric to the interior of a compact manifoldM with boundary equipped with a metric

g = �−2h in the interior, where h is a smooth metric on M and � :M →R+ a boundary

defining function. Note that 0-vector fields are the smooth vector fields on M that are

of bounded length with respect to g; moreover, the Laplacian ∆g0 is given as an elliptic

polynomial in 0-vector fields. A particular example of conformally compact spaces is of

course the hyperbolic space with compactification given by the ball model. Conformally

compact spaces arise naturally in questions related to the Einstein equation [5, 47, 52],

and the “AdS/CFT-correspondence.” An analysis of 0-vector fields and the associated 0-

differential and pseudodifferential operators was carried out for instance in [41, 50, 66].

Criteria for the Fredholmness of operators in Diff (�0), which is crucial in the approach

to the study of Einstein’s equations on conformally compact manifolds used in the

above-mentioned papers, were established for instance in [41, 42, 44, 45, 50, 51, 57, 66].

The structural Lie algebra of vector fields in the next example is a slight variation of

the Lie algebra of edge vector fields; however, it is worth pointing out that this slight

variation leads to a completely different analysis for the associated (pseudo)differential

operators.

Example 2.9. LetM be as in Example 2.7 and let x :M →R+ be a boundary defining

function. Then �de := x�e is a structural Lie algebra of vector fields; the corresponding

structure is called the double-edge structure. With respect to local product coordinates

as in Example 2.7, double-edge vector fields are generated by x2∂x , x2∂y , and x∂z. The

analysis of the double-edge structure, which is in fact much simpler than the corre-

sponding analysis of the edge structure, can be found for instance in [43].

The following example appears in the analysis of holomorphic functions of several

variables.

Example 2.10. Let M be a smooth compact manifold with boundary ∂M and let

Θ ∈ �∞(M,Λ1T∗M) be a smooth 1-form such that i∗Θ ≠ 0, where i : ∂M ↩ M is the

inclusion of the boundary. Moreover, let x be a boundary defining function. Then

�Θ := {V ∈�b : V = 0 at ∂M, Θ(V)∈ x2�∞(M)
}

(2.9)

is a structural Lie algebra of vector fields called the Θ-structure. For a local description

as well as for an analysis of the Θ-structure, we refer to [24].

All the above examples of structural Lie algebras of vector fields model the analysis

on certain noncompact manifolds (giving rise to algebras of differential operators that

replace the algebra of totally characteristic differential operators) on manifolds with

cylindrical ends. The following example, however, models the analysis of a family of

adiabatic differential operators.

Example 2.11. Let N be a closed manifold that is the total space of a locally trivial

fibration π : N → B of closed manifolds, let TN/B → N be the vertical tangent bundle,
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and let M :=N×[0,∞)x . Then

�a := {V ∈ Γ(TM) : V(x)∈ TN ∀x ∈ [0,∞), V(0)∈ Γ(TN/B)} (2.10)

is a structural Lie algebra of vector fields called the adiabatic algebra. If (y,z) are local

coordinates on N, where again the set of variables y corresponds to variables on the

base B lifted through π , and z are variables in the fibers, then adiabatic vector fields

are generated by x∂y and ∂z. The adiabatic structure has been studied and used for

instance in [60, 61].

We will sometimes refer to a structural Lie algebra of vector fields simply as Lie

algebra of vector fields, when no confusion can arise. Because � is a finitely gener-

ated projective �∞(M)-module, using the Serre-Swan theorem [37] (recalled above, see

Theorem 2.1), we obtain that there exists a vector bundle

A=A� �→M such that �� Γ(A�

)
, (2.11)

naturally as �∞(M)-modules. We will identify from now on � with Γ(A�). The following

proposition is due to Melrose [54].

Proposition 2.12. If � is a structural Lie algebra of vector fields, then there exists a

natural vector bundle map � :A� → TM such that the induced map �Γ : Γ(A�)→ Γ(TM)
identifies with the inclusion map.

Proof. Let m ∈M . Then the fiber Am at m of A = A� →M identifies with �/pm�,

where pm is the ideal of �∞(M) consisting of smooth functions on M that vanish atm.

Recall now that � consists of vector fields on M . Then the map Am → TmM sends the

class of X ∈� to the vector X(m)∈ TmM .

Remark 2.13. The condition in Definition 2.4 that � has to be projective is essential.

As an example, consider M = [0,1] and let

� := {f(t)∂t : f : [0,1] �→R smooth, f (1)= 0,

tk
(
dmf/dtm

)
�→ 0 as t �→ 0 ∀k,m∈N∪{0}}. (2.12)

Then � is a �∞(M)-module. However, � is not a projective �∞(M)-module, as we can

see by contradiction. Assume � were projective. Then there is a bundle A over [0,1]
with � = Γ(A). Let s be a trivialization of A, that is, s(t) = f(t)∂t with f as above.

Hence f̃ (t)= (1/t)f (t) also decays sufficiently fast; however,

Γ(A) �	 1
t
s(t)= f̃ (t)∂t ∈�. (2.13)

It is convenient for the following discussion to recall the definition of a Lie algebroid.

General facts about Lie algebroids can be found in [18, 49] (a few basic facts are also

summarized in [63]).
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Definition 2.14. A Lie algebroid A over a manifoldM is a vector bundle A overM ,

together with a Lie algebra structure on the space Γ(A) of smooth sections of A and

a bundle map � : A→ TM , extended to a map �Γ : Γ(A)→ Γ(TM) between sections of

these bundles, such that

(i) �Γ ([X,Y])= [�Γ (X),�Γ (Y)],
(ii) [X,fY] = f[X,Y]+(�Γ (X)f)Y , for any smooth sections X and Y of A and any

smooth function f on M .

The map �Γ is called the anchor of A. If, in addition,

(iii) all vector fields �Γ (Γ(A)) are tangential to the faces,

then the Lie algebroid A→M is called a boundary tangential Lie algebroid.

We thus see that there exists an equivalence between the concept of a structural

Lie algebra of vector fields � = Γ(A�) and the concept of a boundary tangential Lie

algebroid � : A→ TM such that �Γ : Γ(A)→ Γ(TM) is injective and has range in �b. In

order to shorten our notation, we will write Xf instead of �Γ (X)f for the action of the

sections of a Lie algebroid on functions if the meaning is clear from the context.

2.3. Constructing new Lie algebroids from old ones. Let f :N →M be a submersion

of manifolds with corners in the above sense (which implies in particular that any fiber

is a smooth manifold). Let A=A� be a boundary tangential Lie algebroid over M .

Definition 2.15. The thick pullback f #A is the vector bundle over N which at the

point p ∈N is defined to be

f #Ap := {(v,w) | v ∈Af(p), w ∈ TpN, f∗(w)= �(v)
}
, (2.14)

equipped with the vector bundle structure induced by f∗(A)⊕TN.

Projection to the first component yields a surjective linear map f #Ap → Af(p), de-

noted in the following by f∗, and projection onto the second component yields a linear

map f #Ap → TpN, denoted by f #�.

We obtain the commuting diagram

f #Ap
f#�

f∗

TpN

f∗

Af(p)
�

Tf(p)M.

(2.15)

For example, f #TM = TN.

Lemma 2.16. The thick pullback f #A is a boundary tangential Lie algebroid over N
with anchor map given by f #�.

Proof. Let ΓvertTN denote the bundle of vertical sections X, that is, f∗X = 0. This

bundle coincides by definition with the analogously defined bundle of vertical sections
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of A. The rows of the following commutative diagram are exact:

0 Γvert
(
f #A

)
�

Γ
(
f #A

)
Γ(A)⊗C∞(M) C∞(N) 0

0 Γvert(TN) Γ(TN) Γ(TM)⊗C∞(M) C∞(N) 0.

(2.16)

The vertical arrows are inclusions. The horizontal arrows of the second row are Lie

algebra homomorphisms. The space Γ(A) is by definition a Lie subalgebra of Γ(TM),
thus Γ(A)⊗C∞(M)C∞(N) is a Lie subalgebra of Γ(TM)⊗C∞(M)C∞(N). A standard diagram

chase then implies that Γ(f #A) is also a Lie subalgebra of Γ(TN).
The fact that A is projective (resp., boundary tangential) immediately implies that

Γ(f #A) is also projective (resp., boundary tangential).

Let g and h be two Lie algebras. Suppose that there is given an action by derivations

of g on h:

ϕ : g �→Der(h). (2.17)

Then we can define the semidirect sum g�ϕh as follows. As a vector space, g�ϕh= g⊕h,

and the Lie bracket is given by

[(
X1,Y1

)
,
(
X2,Y2

)]
:= ([X1,X2

]
,ϕX1

(
Y2
)−ϕX2

(
Y1
)+[Y1,Y2

])
, (2.18)

for any X1,X2 ∈ g and Y1,Y2 ∈ h. We will usually omit the index ϕ denoting the action

by derivations in the notation for the semidirect sum.

We want to use this construction to obtain new Lie algebroids from old ones. Assume

then that we are given two Lie algebroids A,L → M over the same manifold and that

Γ(A) acts by derivations on Γ(L). Denote this action by ϕ, as above. We assume that

the action of Γ(A) on Γ(L) is compatible with the �∞(M)-module structure on Γ(L) in

the sense that

ϕX(fY)=X(f)Y +fϕX(Y), (2.19)

for any X ∈ Γ(A), Y ∈ Γ(L), and f ∈�∞(M). Assume, for simplicity, that the structural

map (anchor) L → TM is zero, then we can endow Γ(A⊕ L) = Γ(A)⊕ Γ(L) with the

semidirect sum structure obtained from Γ(A) � Γ(L) such that A⊕ L becomes a Lie

algebroid denoted by A�L, and called the semidirect product of L by A [31]. Thus

Γ(A�L)= Γ(A)�Γ(L). (2.20)

In the language of Lie algebroids, the action of Γ(A) on Γ(L) considered above is called

a representation of A on L. In a similar way, the action of Γ(A) on Γ(L) by derivation,

considered above, deserves to and will be called a representation by derivations of A
on L. If A→M is a tangential Lie algebroid, then A�L→M will also be one.
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2.4. Differential operators. From now on we will assume that A denotes the vector

bundle determined by the structural Lie algebra � and vice versa.

Definition 2.17. Let Diff (�) denote the algebra of differential operators generated

by �, where the vector fields are regarded as derivations on functions.

We also want to study differential operators with coefficients in vector bundles. Let

E1 →M and E2 →M be two vector bundles. Embed Ei ↩M×CNi , i = 1,2. Denote by ei
a projection in MNi(�

∞(M)) whose (pointwise) range is Ei. Then we define

Diff
(
�;E1,E2

)
:= e2MN2×N1

(
Diff (�)

)
e1. (2.21)

This definition of Diff (�;E1,E2) is independent of the choices of the embeddings Ei↩
M ×CNi and of the choice of ei. Elements of Diff (�;E0,E1) will be called differential

operators generated by �. In the special case E1 = E2 = E, we simply write Diff (�;E),
the algebra of differential operators on E generated by �.

It is possible to describe the differential operators in Diff (�;E) locally on M as fol-

lows.

Lemma 2.18. A linear map D : Γ(E) → Γ(E) is in Diff (�;E) if and only if, for any

trivialization E|U �U×CN , above some open subset U ⊂M , the restrictionD|U : Γ(E|U)�
�∞(U)⊗Cm → Γ(E|U) can be written as a linear combination of compositions of operators

of the form X⊗1 and f , with X ∈ Γ(A) and f a smooth endomorphism of the vector

bundle E|U .

Proof. In a trivialization of E above some open subset, we can assume that e is a

constant matrix.

Example 2.19 (de Rham differential generated by �= Γ(A)). We define for a section

ω of ΛqA∗

(dω)
(
X0, . . . ,Xk

)= q∑
j=0

(−1)jXj
(
ω
(
X0, . . . , X̂j , . . . ,Xk

))
+

∑
0≤i<j≤q

(−1)i+jω
([
Xi,Xj

]
,X0, . . . , X̂i, . . . , X̂j , . . . ,Xk

)
.

(2.22)

This is well defined as Γ(A) is closed under the Lie bracket. By choosing a local basis of

A we see that this defines a differential operator Γ(ΛqA∗)→ Γ(Λq+1A∗) generated by

�= Γ(A), the de Rham differential.

Assume now that A|M0 = TM0. The vector bundles ΛqT∗M0 extend to bundles ΛqA∗

on M . The Cartan formula (see, e.g., [9]) says that on M0 the de Rham differential is the

de Rham differential of ordinary differential geometry.

Definition 2.20. Let E→M be a vector bundle. An A∗-valued connection on E is a

differential operator

D : Γ(E) �→ Γ(E⊗A∗) (2.23)
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such that, for any X ∈ Γ(A), the induced operator DX : Γ(E)→ Γ(E) satisfies the usual

properties of a connection:

DX(fξ)= fDX(ξ)+X(f)ξ, (2.24a)

DfXξ = fDX(ξ). (2.24b)

It is clear from (2.24a) that the operator DX is of first order.

Our definition of an A∗-valued connection is only slightly more restrictive than that

of A-connection introduced in [25]. (In that paper, Evens et al. considered (2.24b) only

up to homotopy.)

Clearly, if D and D′ are A∗-valued connections on E and, respectively, E′, then D′′ :=
D⊗1+1⊗D′ is an A∗-valued connection on E⊗E′.

See also [21, 22].

3. Lie structures at infinity. In this section, we introduce the class of manifolds

with a Lie structure at infinity, and we discuss some of their properties. Our definition,

Definition 3.1, formalizes some definitions from [57].

In some of the first papers on the analysis on open manifolds using Lie algebras of

vector fields, for example [13, 14, 16, 76], the vector fields considered were required

to vanish at infinity. In order to obtain more general results, and in agreement with

the more recent papers on the subject (see, e.g., [15, 57, 62, 77]), we do not make this

assumption. As a consequence, the comparison algebras that result from our setting

do not have in general the property that the commutators are compact.

3.1. Definition. In the following, ∂M denotes the union of all hyperfaces of a mani-

fold with corners M .

Definition 3.1. A Lie structure at infinity on a smooth manifoldM0 is a pair (M,�),
where

(i) M is a compact manifold, possibly with corners, and M0 is the interior of M ;

(ii) � is a structural Lie algebra of vector fields;

(iii) �� : A� → TM induces an isomorphism on M0, that is, ��|M0 : A�|M0 → TM0 is a

fiberwise isomorphism.

IfM0 is compact without boundary, then it follows from the above definition thatM =
M0 and A� = TM , so a Lie structure at infinity on M0 gives no additional information

on M0. The interesting cases are thus the ones when M0 is noncompact. Note that all

Examples 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10 are in fact Lie structures at infinity on the

interior of M .

Here is now an explicit test for a Lie algebra of vector fields � on a compact mani-

fold with corners M to define a Lie structure at infinity on the interior M0 of M . This

characterization of Lie structures at infinity is in the spirit of our discussion of local

basis (see (2.1) and the discussion around it).

Proposition 3.2. The Lie algebra � ⊂ Γ(M ;TM) defines a Lie structure at infinity

on M0 if and only if the following conditions are satisfied:
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(i) �⊂�b, with �b defined in (2.3), and �∞(M)�⊂�;

(ii) if x ∈M0, U is a compact neighborhood U of x in M0, and Y is a vector field on

M0, then there exists X ∈� such that X|U = Y |U ;

(iii) ifx ∈ ∂M=M\M0, then there aren linearly independent vector fieldsX1,X2, . . . ,Xn
∈�, n= dimM , defined on a neighborhood U of x such that for any X ∈�, there

exist smooth functions f1, . . . ,fn ∈�∞(U) uniquely determined by

X =
n∑
k=1

fkXk on U ; (3.1)

(iv) there are functions fijk ∈ �∞(U) (in particular smooth on the boundary ∂M∩U )

such that the vector fields Xj from (iii) satisfy [Xi,Xj]=
∑n
k=1fijkXk on U .

Proof. The proof is an immediate translation of the definition of a manifold with a

Lie structure at infinity using the description of projective �∞(M)-module given at the

end of Section 2.1 (especially (2.1)).

3.2. Riemannian manifolds with Lie structures at infinity. We now consider Rie-

mannian metrics on A→M .

Definition 3.3. A manifoldM0 with a Lie structure at infinity (M,�), together with

a Riemannian metric on A=A�, that is, a smooth positive definite symmetric 2-tensor

g on A, is called a Riemannian manifold M0 with a Lie structure at infinity.

In particular g defines a Riemannian metric on M0. The geometry of these metrics

will be the topic of the next section. Note that the metrics on M0 that we obtain are

not restrictions of Riemannian metrics onM . In the following section, we will prove for

example that (M0,g) is a complete Riemannian metric. Any curve joining a point on the

boundary ∂M to the interior M0 is necessarily of infinite length.

Example 3.4 (manifolds with cylindrical ends). A manifoldM with cylindrical ends is

obtained by attaching to a manifold M1 with boundary ∂M1 the cylinder (−∞,0]×∂M1,

using a tubular neighborhood of ∂M1, where the metric is assumed to be a product

metric. The metric on the cylinder is also assumed to be the product metric. Let t
be the coordinate of (−∞,0]. By the change of variables x = et , we obtain that M is

diffeomorphic to the interior of M1 and � = �b. Other changes of variables lead us

to different Lie structures at infinity. Similarly, products of manifolds with cylindrical

ends can be modeled by manifolds with corners and the structural Lie algebra of vector

fields �b. This applies also to manifolds that are only locally at infinity products of

manifolds with cylindrical ends.

3.3. Bi-Lipschitz equivalence. It turns out that the metric on a manifold with a Lie

structure at infinity is essentially unique, namely, any two such metrics are bi-Lipschitz

equivalent (see the corollary below).

Lemma 3.5. Assume that a manifold M0 which is the interior of a compact manifold

with corners M carries two Lie structures at infinity, (M,�1), and (M,�2), satisfying

�1 ⊂ �2. Furthermore, let gj be Riemannian metrics on A�j , j = 1,2. Then there is a
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constant C such that

g2(X,X)≤ Cg1(X,X) ∀X ∈ TM0. (3.2)

Proof. The pullback of g2 to A�1 is a nonnegative symmetric two-tensor on A�1 .

The statement then follows from the compactness of M .

As a consequence, the volume element of g2 is bounded by a multiple of the vol-

ume element of g1. Furthermore, we have inclusions of Lp-functions: Lp(M0,g1) ↩
Lp(M0,g2).

Corollary 3.6. If two Riemannian metrics g1, g2 on M0 are Riemannian metrics

for the same Lie structure at infinity (M,�), then they are bi-Lipschitz, that is, there is a

constant C > 0 with

C−1g2(X,X)≤ g1(X,X)≤ Cg2(X,X) (3.3)

for all X ∈ TM0. In particular, C−1d2(x,y) ≤ d1(x,y) ≤ Cd2(x,y), where di is the

metric on M0 associated to gi.

Proof. The first part is clear. The proof of the last statement is obtained by com-

paring the metrics on a geodesic for one of the two metrics.

4. Geometry of Riemannian manifolds with Lie structures at infinity. We now dis-

cuss some geometric properties of Riemannian manifolds with a Lie structure at infinity.

We begin with a simple observation about volumes.

4.1. Volume. Let dvol be the volume element on M0

Proposition 4.1. Let M0 be a Riemannian manifold with Lie structure (M,�,g) at

infinity. Let f ≥ 0 be a smooth function on M . If
∫
M0
f dvol<∞, then f vanishes on each

boundary hyperface of M . In particular, the volume of any noncompact Riemannian

manifold with a Lie structure at infinity is infinite.

Proof. Because of Lemma 3.5, we can assume that Γ(A) are the vector fields tangen-

tial to the boundary. For simplicity in notation, we assume thatM is a compact manifold

with boundary. Let dvol′ be the volume element on M associated to some metric on M
that is smooth up to the boundary. Then dvol≥ Cx−1dvol′ for any boundary defining

function x and a constant C .

So, if f is nonzero on ∂M with defining function x, then

∫
M0

f dvol≥
∫
M
fx−1dvol′ = ∞. (4.1)

4.2. Connections and curvature. Most of the natural differential operators between

bundles functorially associated to the tangent bundle extend to differential operators

generated by �, with the tangent bundle replaced by A. The main example is the Levi-

Civita connection.
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Lemma 4.2. LetM0 be a Riemannian manifold with a Lie structure (M,�,g) at infinity.

Then the Levi-Civita connection ∇ : Γ(TM0)→ Γ(TM0⊗T∗M0) extends to a differential

operator in Diff (�;A,A⊗A∗), also denoted by∇. In particular,∇X ∈Diff (�;A), for any

X ∈ Γ(A), and it satisfies

∇X(fY)=X(f)Y +f∇X(Y), X〈Y ,Z〉 = 〈∇XY ,Z〉+〈Y ,∇XZ〉, (4.2)

for all X,Y ,Z ∈ Γ(A) and f ∈ �∞(M). Moreover, the above equations uniquely deter-

mine ∇.

Proof. Suppose X,Y ∈ � = Γ(A) ⊂ Γ(TM). We will define ∇XY on M0 using the

usual Levi-Civita connection ∇ on TM0. We need to prove that there exists X1 ∈ Γ(A)
whose restriction to M0 is ∇XY .

Recall (e.g., from [9]) that the formula for ∇XY is given by

2
〈∇XY ,Z〉= 〈[X,Y],Z〉−〈[Y ,Z],X〉+〈[Z,X],Y〉

+X〈Y ,Z〉+Y 〈Z,X〉−Z〈X,Y 〉. (4.3)

Suppose X,Y ,Z ∈ Γ(A) in the above formula. We see then that the function 2〈∇XY ,Z〉,
which is defined a priori only on M0, extends to a smooth function on M . Since the

inner product 〈·,·〉 is the same on A and on TM0 (where they are both defined), we see

that the above equation determines ∇XY as a smooth section of A. This completes the

proof.

The above lemma has interesting consequences about the geometry of Riemannian

manifolds with Lie structures at infinity.

Using the terminology ofA∗-valued connections (see Definition 2.20), Lemma 4.2 can

be formulated as saying that the usual Levi-Civita connection on M0 extends to an A∗-

valued connection onA. Similarly, we getA∗-valued connections onA∗ and on all vector

bundles obtained functorially from A. We use this remark to obtain a canonical A∗-

valued connection on the bundles A∗⊗k⊗Λ2A∗⊗End(A). (Here E⊗k denotes E⊗···⊗E,

k-times, as usual.)

We define the Riemannian curvature tensor as usual:

R(X,Y) :=∇X∇Y −∇Y∇X−∇[X,Y] ∈ Γ
(
End

(
TM0

))
, (4.4)

where X,Y ∈ Γ(TM0). We will regard R as a section of Λ2T∗M0⊗End(TM0). Then the

covariant derivatives ∇kR ∈ Γ(T∗M⊗k
0 ⊗Λ2T∗M0⊗End(TM0)) are defined.

Corollary 4.3. If M0 and ∇ are as above (Lemma 4.2), then the Riemannian cur-

vature tensor R(X,Y) extends to an endomorphism of A, for all X,Y ∈ Γ(A). Moreover,

each covariant derivative∇kR extends to a section of A∗⊗k⊗Λ2A∗⊗End(A) overM and

hence they are all bounded on M0.

Proof. Fix X,Y ∈ Γ(A). Then [X,Y]∈ Γ(A), and hence

∇X,∇Y ,∇[X,Y] ∈Diff (�;A), (4.5)
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by Lemma 4.2. It follows that R(X,Y)∈Diff (�;A). Since R(X,Y) induces an endomor-

phism of TM0 and M0 is dense in M , it follows that R(X,Y)∈ End(A).
Once we have obtained that R ∈ Γ(Λ2A∗⊗End(A)), we can apply the A∗-valued Levi-

Civita connection to obtain

∇kR ∈ Γ(A∗⊗k⊗Λ2A∗⊗End(A)
)
. (4.6)

The boundedness of ∇kR follows from the fact that M is compact.

The covariant derivative

∇X : Γ
(
A⊗k⊗A∗⊗j) �→ Γ(A⊗k⊗A∗⊗(j+1)), X ∈ Γ(A), (4.7)

will be called, by abuse of notation, theA∗-valued Levi-Civita connection, for any k and j.
Sometimes, when no confusion can arise, we will simply call this A∗-valued connection

∇ the Levi-Civita connection.

4.3. Ehresmann connections

Definition 4.4. Let πN : N → M be a submersion of manifolds with corners, and

let A → M be a boundary tangential Lie algebroid. Smooth sections of the bundle∧p πN#A→N are called A∗-valued p-forms on N.

The fiber of A in p ∈M is denoted by Ap .

Definition 4.5. An Ehresmann connection on πN : N → M with respect to A is a

smooth field x � τx , x ∈ N, of n-dimensional subspaces of πN#A such that (πN)∗ :

πN#A→A restricts to an isomorphism τx →AπNx , for all x ∈N, the inverse ((πN)∗)−1 :

AπNx → τx is called a horizontal lift.

We chose the terminology “Ehresmann connection” to honor the important work of

Ehresmann on the subject [19].

Example 4.6. (a) Let π : V →M be a vector bundle. The definition of an Ehresmann

connection generalizes the notion of A∗-valued connection (in the sense of vector bun-

dle connections). In fact, let ∇ be an A∗-valued connection. Then we obtain the Ehres-

mann connection as follows: for X0 ∈ V , p = π(X0), we extend X0 to a local section

X :U → V , where U is a neighborhood of p in M . We define the horizontal lift

HX0 :Ap �→
(
π#A

)
X0
, Y � �→ (

X∗
)
p(Y)−∇YX, (4.8)

where ∇YX ∈ Vp ⊂ (π#A)X0 . It is easy to check that this map does not depend on the

extension X of X0, that HX0 is injective, and that we have (π∗)X0 ◦HX0 = id.

Then τX0 := imHX0 is an Ehresmann connection on V . The associated Ehresmann con-

nection completely characterizes the A∗-valued connection. However, there are Ehres-

mann connections on V that do not come from A∗-valued connections (they are not

“compatible” with the vector space structure).

(b) If the A∗-valued connection is metric with respect to a chosen metric on V , then

the Ehresmann connection is tangential to the sphere bundle in V with respect to that

metric.
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4.4. Geodesic flow. For any boundary tangential Lie algebroid A equipped with a

metric, let S(A) be the unit tangent sphere in A,

S(A) := {v ∈A | ‖v‖ = 1
}
. (4.9)

The canonical projection map π : S(A)→M is a submersion of manifolds with corners.

Let π#A be the thick pullback of A.

The manifold (with corners) S(A) carries an Ehresmann connection and a horizontal

lift H given by the Levi-Civita connection on A.

Definition 4.7. The geodesic spray is defined to be the map

S(A)	X � �→HX(X)∈π#A, (4.10)

which defines a section S of π#A → S(A). The flow of this vector field is called the

geodesic flow.

Restricted to the interior of the manifold, these concepts recover the analogous con-

cepts of ordinary Riemannian geometry.

By definition, the image of S through the anchor map is a vector field along S(A) that

is tangential to all the boundary faces of S(A). These boundary faces are preimages of

the boundary faces of M under π .

Lemma 4.8. Let A be a boundary tangential Lie algebroid and let X ∈ Γ(A). Then X is

complete in the sense that the flow linesϕt of X are defined on R. The flowϕt preserves

the boundary depth. In particular, flow lines emanating from N0 :=N\∂N stay in N0.

Proof. For any boundary defining function xH , one has

d
dt

∣∣∣∣
t=0
xH
(
ϕt
)= dxH(X)= 0, (4.11)

hence the flow preserves the boundary depth. In particular, the flow preserves the

boundary. Let I = (a,b) be a maximal open interval on which one particular flow line is

defined. Let ti → b. Assume that b <∞. Since N is compact, after passing to a suitable

subsequence, we can assume that ϕti converges to p ∈N. In a neighborhood of p, the

flow exists, which contradicts the maximality of b. Hence b =∞. The proof for a=−∞
is similar.

By applying this lemma to the geodesic flow on N = S(A), we obtain two corollaries.

Corollary 4.9. Let M0 be a Riemannian manifold with a Lie structure (M,�,g) at

infinity. Then M0 is complete in the induced metric g.

Corollary 4.10. Let M0 be a Riemannian manifold with a Lie structure (M,�,g) at

infinity. Let X ∈ Ap , p ∈M . Then the boundary depth of exppAp equals the boundary

depth of p.
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4.5. Positive injectivity radius. We already know that Riemannian manifolds with

a Lie structure at infinity are complete and have bounded sectional curvature. For

many analytic statements, it is very helpful if we also know that the injectivity radius

inj(M0,g) = infp∈M0 injp is positive. For example, see [39], where a “uniform bounded

calculus of pseudodifferential operators” was defined on a manifold with bounded

geometry. Hebey [29, Corollary 3.19] proved Sobolev embeddings for manifolds with

bounded geometry, that is, complete Riemannian manifolds with positive injectivity

radius and bounded covariant derivatives ∇kR of the Riemannian curvature tensor R.

We will say more about this in a future paper.

Conjecture 4.11. Any Riemannian manifold with a Lie structure at infinity has

positive injectivity radius.

We now introduce two conditions on a Riemannian manifoldM0 with a Lie structure at

infinity (M,�), (see Definitions 4.12 and 4.16), and prove that if any of these conditions

holds, then the injectivity radius of M0 is positive.

Definition 4.12. A manifold M0 with a Lie structure at infinity (M,�) is said to

satisfy the local closed extension property for 1-forms if any p ∈ ∂M has a small neigh-

borhood U ⊂M such that any αp ∈A∗p extends to a closed 1-form on U .

Example 4.13. For the b-calculus, the local closed extension property holds because

in the notation of Example 2.5, the locally defined closed 1-forms dxj/xj and dyk span

A∗p = (TbpM)∗ for any p ∈ ∂M .

Theorem 4.14. Let M0 be a manifold with a Lie structure at infinity (M,�) which

satisfies the local closed extension property. Then for any Riemannian metric g on A, the

injectivity radius of (M0,g) is positive.

Proof. We prove the theorem by contradiction. If the injectivity radius is zero, then,

as the curvature is bounded, there is a sequence of geodesics loops ci : [0,ai] → M0,

parametrized by arc-length, with ai → 0. Because of the compactness of S(A), we can

choose a subsequence such that ċi(0) converges to a vector v ∈ S(A). Obviously, the

basepoint of v has to be in ∂M .

By the local closed extension property, there is a closed 1-form α on a small neigh-

borhood of the basepoint of v such that α(v) ≠ 0. On the other hand, because of the

closedness of α, we get, for sufficiently large i,

0=
∫ 1

0
α
(
ċi
(
ait

))
dt =

∫ 1

0
α
(
ϕait

(
ċi(0)

))
dt, (4.12)

where ϕt : S(A)→ S(A) denotes the geodesic flow. As i→∞, the integrand converges

uniformly to α(v), thus we obtain the contradiction α(v)= 0.

In the remainder of this subsection, we will prove another sufficient criterion.

Definition 4.15. Let ϕ : [0,∞)n−k×Rk → U ⊂M be a local parametrization of M ,

that is,ϕ−1 is a coordinate chart. Then, for v ∈Rn, the local vector fieldϕ∗(v), that is,
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the image of a constant vector field v on Rn, is called a coordinate vector field with

respect to ϕ.

Definition 4.16. A manifold M0 with a Lie structure at infinity (M,�) is said to

satisfy the coordinate vector field extension property if A� carries a Riemannian metric

g such that, for any p ∈ ∂M , there is a parametrization ϕ : [0,∞)n−k×Rk → U of a

neighborhood U of p such that

(i) for any v ∈Rn \{0}, the normalized coordinate vector field

Xv = ϕ∗(v)√
g
(
ϕ∗(v),ϕ∗(v)

) , (4.13)

which a priori is only defined on U∩M0, extends to a section of A|U ;

(ii) for linearly independent vectors v and w, Xv(p) and Xw(p) are linearly inde-

pendent.

Note that property (i) is equivalent to claiming that

fv := 1√
g
(
ϕ∗(v),ϕ∗(v)

) (4.14)

extends to a smooth function on M .

Theorem 4.17. Let M0 be a manifold with a Lie structure at infinity (M,�) that

satisfies the coordinate vector field extension property. Then, for any Riemannian metric

g on A, the injectivity radius of (M0,g) is positive.

The theorem will follow right away from Proposition 4.19 and Lemmas 4.23 and 4.24,

which we proceed to state and prove after the following definition.

Definition 4.18. For C ≥ 1 and ε > 0, (M0,g) is said to be locally C-bi-Lipschitz to

an ε-ball if each point p ∈M0 has a neighborhood that is bi-Lipschitz diffeomorphic to

a flat ball of radius ε with bi-Lipschitz constant C .

Proposition 4.19. Let (M0,g) be a complete Riemannian manifold with bounded

sectional curvature. Then the following conditions are equivalent:

(1) (M0,g) has positive injectivity radius;

(2) there are numbers δ1 > 0 and C > 0 such that any loop of length δ ≤ δ1 is the

boundary of a disk of diameter less than or equal to C ·δ;

(3) there are C > 0 and ε > 0 such that (M0,g) is locally C-bi-Lipschitz to a ball of

radius ε.

Proof. (1)⇒(3). Let � > 0 be the injectivity radius of (M0,g). Then B�/2(p) is C-bi-

Lipschitz to a flat ball with C independent from p.

(3)⇒(2). Under the condition of (3), any loop of length less than or equal to 2ε/C with

basepoint p lies completely inside Bε/C(p). On the other hand, Bε/C(p) is contained in

a neighborhood U of p which is C-bi-Lipschitz to a flat ball of radius ε. Inside a flat ball,

any short loop is the boundary of a disk of small diameter. Hence, (2) follows from (3)

with δ1 := 2ε/C and with the same C in (2) as in (3).
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(2)⇒(1). Because sectional curvature is bounded from above, there is a � > 0 such that

there are no conjugate points along curves of length smaller than �. For each p ∈M ,

the exponential map is a local diffeomorphism from B�(p) into M . We want to show

that the exponential map is injective on any ball of radius ε :=min{δ1/2,�/(4C)}. For

this we assume that expp(q1)= expp(q2), q1,q2 ∈ Bε(0)⊂ TpM . Then

t � �→
expp

(
tq1

)
, for 0≤ t ≤ 1,

expp
(
(2−t)q2

)
, for 1≤ t ≤ 2,

(4.15)

is a closed loop of length less than or equal to 2ε. Because of the conditions in the

proposition, this loop is the boundary of a disk of diameter less than or equal to �/2.

Because the exponential map is a local diffeomorphism, it is not difficult to see that

such disks lift to TpM . Hence, q1 = q2, which yields injectivity.

As a consequence of this proposition, the property of having positive injectivity ra-

dius is a bi-Lipschitz invariant inside the class of complete Riemannian manifolds with

bounded curvature.

Corollary 4.20. Let g1 and g2 be two complete metrics on M0 such that there is

C > 0 with

C−1g1 ≤ g2 ≤ Cg1,∣∣Rg1

∣∣<C, ∣∣Rg2

∣∣<C. (4.16)

Then (M0,g1) has positive injectivity radius if and only if (M0,g2) has positive injectivity

radius.

Proof. Proposition 4.19 gives necessary and sufficient criteria for positive injectiv-

ity radius, that are bi-Lipschitz equivalent.

Together with Corollary 3.6 we obtain the following corollary.

Corollary 4.21. Suppose thatM0 is a manifold with a Lie structure (M,�) at infinity

and let g and h be two metrics on A. Then (M0,g|M0) has positive injectivity radius if

and only if (M0,h|M0) has positive injectivity radius.

Definition 4.22. LetM0 be a Riemannian manifold with a Lie structure (M,�,g) at

infinity. We say that the Lie structure at infinity is controlled if for all p ∈ ∂M , there are

a parametrization ϕ : [0,∞)n−k×Rk → U around p, a δ > 0, and a constant C > 0 such

that, for all x ∈M0∩U and all v ∈Rn, the inequality

max
y∈Bδ(x)

gy
(
ϕ∗(v)y ,ϕ∗(v)y

)
<C min

y∈Bδ(x)
gy
(
ϕ∗(v)y ,ϕ∗(v)y

)
(4.17)

holds. Here Bδ(x) denotes the ball of radius δ around x with respect to the metric g.

Lemma 4.23. LetM0 be a manifold with a Lie structure at infinity (M,�) satisfying the

coordinate vector field extension property with the metric g. Then (M,�,g) is controlled.
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Proof. Let ϕ be a parametrization of a neighborhood U of p ∈ ∂M and let ϕ∗(v)
and ϕ∗(w) be arbitrary coordinate vector fields. Because of Property (i) in Definition

4.16, the (local) functions fv := 1/
√
g(ϕ∗(v),ϕ∗(v)) and fw := 1/

√
g(ϕ∗(w),ϕ∗(w))

extend to the boundary, and Xv := fvϕ∗(v) and Xw := fwϕ∗(w) are sections of A. For

linearly independent v and w, we calculate

[
Xv,Xw

]= [fvϕ∗(v),fwϕ∗(w)
]

=Xv(fw)ϕ∗(w)−Xw
(
fv
)
ϕ∗(v)

=Xv
(
logfw

)
Xw−Xw

(
logfv

)
Xv.

(4.18)

This is again a section of A, and because of property (ii) in Definition 4.16, Xv and

Xw are even linearly independent of the boundary ∂M . As a consequence, Xv(logfw)
is bounded. On the other hand, if v = w, then because fw extends to the boundary,

Xv(logfw)= fvϕ∗(v)(fv)/fv =ϕ∗(v)(fv) is also bounded. Hence, in both cases,

∣∣Xv( logg
(
ϕ∗(w),ϕ∗(w)

))∣∣≤ C. (4.19)

By summing up, one immediately sees that C can be chosen independently from the

choice of v . Hence, for fixed w, (4.19) holds uniformly for any unit vector X.

We take two arbitrary points y1,y2 ∈ Bδ(x), x ∈U∩M0. We can assume that Bδ(x)⊂
U . We join y1 and y2 by a path c : [0, δ̃]→M0, parametrized by arc-length, δ̃≤ 2δ. We

estimate

∣∣∣∣∣ log

(
gc(0)

(
ϕ∗(w)c(0),ϕ∗(w)c(0)

)
gc(δ̃)

(
ϕ∗(w)c(δ̃),ϕ∗(w)c(δ̃)

))∣∣∣∣∣
=
∣∣∣∣∣
∫ δ̃

0
∂ċ(t)

(
loggc(t)

(
ϕ∗(w)c(t),ϕ∗(w)c(t)

))
dt

∣∣∣∣∣≤ δ̃C.
(4.20)

Hence, the quotient is bounded by an expression that depends only on p, U , δ, and

global data. Thus, (M,�,g) is controlled.

Lemma 4.24. If the boundary tangential Lie algebroid is controlled, then there are

C > 0 and ε > 0 such that (M0,g) is locally C-bi-Lipschitz to a ε-ball.

Proof. On the ball Bδ(x), we regard two metrics: the original metric g and the

metric g̃ with gx = g̃x , and g̃x is constant in the local coordinate chart.

These metrics are bi-Lipschitz on B with a bi-Lipschitz constant C1. Thus, the ball B̃x
of radius δ/C1 around x with respect to the metric g̃ is a flat ball. Hence, (B̃x)x∈M0 are

neighborhoods that are uniformly bi-Lipschitz to δ/C1-balls. This completes the proof

of Theorem 4.17.

We continue with some examples and applications.

Example 4.25. Examples 2.5–2.10 satisfy the coordinate vector field extension prop-

erty and hence have positive injectivity radius.
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Example 4.26. Let M = [0,∞)×R×R 	 (t,x,y). The vector fields X = t2∂t , Y =
e−C/t∂x , and Z = e−C/t∂y span a free C∞(M)-module that is closed under Lie brackets.

Hence, it is a structural Lie algebra of vector fields �. We define a metric g by claiming

that X, Y , and Z are orthonormal, then (M,g,�) satisfies the coordinate vector field

extension property.

Example 4.27. Let M = [0,∞)×R×R 	 (t,x,y). The vector fields X = t2∂t , Y =
e−C/t(sin(1/t)∂x + cos(1/t)∂y), and Z = e−C/t(cos(1/t)∂x − sin(1/t)∂y

)
span a free

C∞(M)-module that is closed under Lie brackets. Hence it is a structural Lie algebra

of vector fields �. We define a metric by claiming that X, Y , and Z are orthonormal.

In this example, the normalized coordinate vector fields e−C/t∂x and e−C/t∂y are not

contained in �. Hence (M,�) does not satisfy the coordinate vector field extension

property. However, (M0 := M\∂M,g) is isometric to the interior of the previous ex-

ample. Corollary 4.20 together with Theorem 4.17 will show that (M0,g) has positive

injectivity radius, although the conditions in Theorem 4.17 are not satisfied for (M,�)
directly.

4.6. Adjoints of differential operators. In what follows, we will fix a metric on A,

thus we obtain a Riemannian manifold (M0,g) with a Lie structure at infinity, which

will remain fixed throughout this section.

We now discuss adjoints of operators in Diff (�). The metric on M0 defines a natural

volume element µ on M0, and hence it defines also a Hilbert space L2(M0,dµ) with

inner product (g1,g2) := ∫M0
g1g2dµ. The formal adjoint D� of a differential operator

D is then defined by the formula

(
Dg1,g2

)= (g1,D�g2
) ∀g1,g2 ∈�∞c

(
M0
)
. (4.21)

We would like to prove that D� ∈ Diff (�) provided that D ∈ Diff �. To check this, we

first need a lemma. Fix a local orthonormal basis X1, . . . ,Xn of A (on some open subset

of M). Then ∇XiX =
∑
cij(X)Xj for some smooth functions cij(X). Then div(X) :=

−∑cjj(X) is well defined and gives rise to a smooth function on M . See [27, Chapter

IV.A].

Lemma 4.28. Let X ∈ Γ(A) and f ∈�∞c (M0). Then

∫
M0

X(f)µ =
∫
M0

f div(X)µ. (4.22)

In particular, the formal adjoint of X is X� =−X+div(X)∈Diff (�).

Proof. We know (see [27, Example 4.6]) that

div(fX)= f div(X)−X(f). (4.23)

The divergence theorem (see, e.g., [27, Chapter IV.A]) states for X ∈ Γ(A) and compactly

supported functions f that
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0=
∫
M0

div(fX)µ =
∫
M0

f div(X)µ−
∫
M0

X(f)µ, (4.24)

so ∫
M0

X(f)µ =
∫
M0

f div(X)µ. (4.25)

Now, if we set f = g1g2, we see directly that∫
M0

g1X
(
g2
)
µ+

∫
M0

X
(
g1
)
g2µ =

∫
M0

X
(
g1g2

)
µ =

∫
M0

div(X)g1g2µ. (4.26)

This implies the formula for the adjoint of X.

Corollary 4.29. Let (M0,g) be a Riemannian manifold with a Lie structure at in-

finity. The algebra Diff (�) is closed under taking formal adjoints. Similarly, if E is a

Hermitian vector bundle on M , then Diff (�;E) is also closed under taking formal ad-

joints.

Proof. The formal adjoint of a vector field X ∈ �, when regarded as a differential

operator on M0, is given by X� = −X+div(X). The adjoint of f ∈ �∞(M) is given by

f� = f . Since Diff (�) is generated as an algebra by operators of the form X and f , with

X and f as above, and (D1D2)� =D�2D�1 , this proves that Diff (�) is closed under taking

adjoints.

If E is a Hermitian vector bundle, then we can choose the embedding E→M×�N to

preserve the metric. Then the projection e onto the range of E is a selfadjoint projec-

tion in MN(Diff (�)). The equation e∗ = e satisfied by e guarantees that Diff (�;E) :=
eMN(Diff (�))e is also closed under taking formal adjoints.

Similarly, we obtain the following easy consequence.

Corollary 4.30. If E0,E1 →M are Hermitian vector bundles, then the adjoint of an

operator P ∈Diff (�;E0,E1) is in Diff (�;E1,E0).

Proof. Write E := E0⊕E1 and use the resulting natural matrix notation for operators

in Diff (�;E).

5. Geometric operators. In this section, we see that the Hodge Laplacian (d+d∗)2
on forms and the classical Dirac operator on a Riemannian (spin) manifold M0 with a

Lie structure at infinity (M,�) are differential operators generated by � = Γ(A). (See

also [45] for some similar results.)

Both the classical Dirac operator and d+d∗ are generalized Dirac operators. We will

show that any generalized Dirac operator is a differential operator generated by �. Our

approach follows closely that in [28].

5.1. Hodge Laplacians. Recall from Example 2.19 that the de Rham differential de-

fines an element d∈Diff (�;ΛpA∗,Λp+1A∗).
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Proposition 5.1. On a Riemannian manifold M0 with a Lie structure at infinity

(M,�), the Hodge-Laplace operator

∆p = d∗d+dd∗ =
(
d+d∗)2 ∈Diff

(
�;ΛpA∗

)
, (5.1)

that is, it is a differential operator generated by �.

Proof. This follows directly from Corollary 4.30 and the construction in Example

2.19.

5.2. Principal bundles and connection 1-forms. Let E → M be a vector bundle of

rank k carrying a metric and an orientation. In this subsection, we will show that giving

a metric A∗-valued connection on E is equivalent to giving an A∗-valued connection

1-form on the frame bundle of E. Our approach generalizes the case of Riemannian

manifolds (see, e.g., [46, Chapter II, Section 4]), hence we will omit some details.

For simplicity, we will assume from now on that the vector bundle A → M is ori-

entable.

Let P be a principalG-bundle. We denote the Lie algebra ofG by g. The most important

example will be the bundle of oriented orthonormal frames of the bundle E, denoted

by πP : PSO(E)→M , which is a principal SO(k)-bundle. Differentiating the action of G
gives rise to the canonical map

g �→ Γ(TP), V � �→ Ṽ . (5.2)

Definition 5.2. An A∗-valued connection 1-form ω is a g⊗A∗-valued 1-form on

PSO(A) satisfying the compatibility conditions

ω
(
Ṽ
)= V, g∗ω=Adg−1ω ∀V ∈ so(g). (5.3)

If g ⊂ so(k), we writeω= (ωij)with respect to the standard basis of so(k). In particular,

the ωij are A∗-valued 1-forms on PSO(A) satisfying ωij =−ωji.
Here “A∗-valued” is in the sense of Definition 4.4. Any A∗-valued connection 1-form

on P gives rise to a G-invariant Ehresmann connection on the bundle P via τ = {V ∈
πP #A | ω(V) = 0}. It is easy to check that this yields a one-to-one correspondence

between G-invariant Ehresmann connections and connection 1-forms.

Proposition 5.3. Let E → M be a vector bundle. For any A∗-valued connection 1-

form on PSO(E), there is a unique metric connection on E satisfying the formula

∇ei =
n∑
j=1

�∗ωji⊗ej, (5.4)

where � = (e1, . . . ,en) is a local section of PSO(E). Conversely, any metric connection on

E arises from such an A∗-valued connection 1-form.

Note that �∗ωij is a well-defined A∗-valued 1-form on M .

The proof is straightforward and runs completely analogous to [46, Chapter II, Propo-

sition 4.4] with ordinary 1-forms replaced by A∗-valued 1-forms. As a result, we can
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conclude that the Levi-Civita connection on A determines an SO(n)-invariant Ehres-

mann connection and an A∗-valued connection 1-form on PSO(A).

5.3. Spin structures and spinors. The results of the previous subsection now allow

us to define the classical Dirac operator in a coordinate-free definition manner.

Definition 5.4. A spin structure on (M,�) is given by a Spin(n)-principal bundle

PSpin over M together with bundle map θ : PSpin → PSO(A), that is, Spin(n) → SO(n)-
equivariant.

The (thick) pullback of any SO(n)-invariant Ehresmann connection on the principal

SO(n)-bundle PSO(A)→M with respect toA defines a Spin(n)-invariant Ehresmann con-

nection on PSpin →M with respect to A. Similarly, by using the standard identification

of the Lie algebra of SO(n) with the Lie algebra of Spin(n), any A∗-valued connection

1-form on PSO(A) pulls back to an A∗-valued connection 1-form on PSpin.

Definition 5.5. Let P be a principal bundle with respect to the Lie group G. Let g
and h denote the Lie algebras of G and H. Let � : G→H be an inclusion of Lie groups.

Then any A∗-valued connection 1-form on P defines an induced A∗-valued connection

1-form on P×�H via the formula

[X;Y] � �→ �∗
(
ω(X)

)+Y ∀X ∈ TP, Y ∈ TH. (5.5)

This definition does not depend on the choice of representative [X;Y] as the map is

invariant under the action of G on P×H.

Now, let σn : Spin(n)→ SU(Σn) be the complex spinor representation; for example,

the restriction of an odd irreducible complex representation of the Clifford algebra on

n-dimensional space [46]. The complex dimension of Σn is dn := 2[n/2].

Definition 5.6. LetM0 be an n-dimensional Riemannian manifold with a Lie struc-

ture at infinity (M,�,g) carrying a spin structure PSpin(A)→ PSO(A). The spinor bundle

is the associated vector bundle ΣM := PSpin(A)×σn Σn on M .

Any metric A∗-valued connection on A gives rise to an A∗-valued connection on ΣM
as follows: Proposition 5.3 defines anA∗-valued connection 1-form on PSO(A)which can

be pulled back to PSpin(A). With Definition 5.5 applied to � = σn : Spin(n)→ SU(dn) ⊂
SO(2dn), we obtain an A∗-valued connection 1-form on PSpin(A)×σn SO(2dn) compat-

ible with complex multiplication. Another application of Proposition 5.3 yields a com-

plex A∗-valued connection on ΣM .

In particular, the Levi-Civita connection on A defines then a metric connection on

ΣM , the so-called Levi-Civita connection.

Recall that the spinor representation Σn admits a Spin(n)-equivariant linear map

Rn⊗Σn �→ Σn, X⊗ϕ � �→X ·ϕ, (5.6)

satisfying

(
X ·Y +Y ·X+2g(X,Y)

)·ϕ = 0 (5.7)
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for all X,Y ∈Rn and all ϕ ∈ Σn, the so-called Clifford multiplication relations. By form-

ing the associated bundles, this gives rise to a bundle map A⊗ΣM → ΣM , called Clifford

multiplication. Equation (5.7) is satisfied for all X,Y ∈A,ϕ ∈ ΣM in the same basepoint.

5.4. Generalized Dirac operators. We now discuss Clifford modules in our setting.

Definition 5.7. A Clifford module over M is a complex vector bundle W → M
equipped with a positive definite product 〈·,·〉, antilinear in the second argument, an

A∗-valued connection ∇W , and a linear bundle map A⊗W → W , X⊗ϕ � X ·ϕ called

Clifford multiplication such that

(1) (X ·Y +Y ·X+2g(X,Y))·ϕ = 0,

(2) ∇W is metric, that is,

∂X〈ψ,ϕ〉 =
〈∇WX ψ,ϕ〉+〈ψ,∇WX ϕ〉 (5.8)

for X ∈ Γ(A), ϕ,ψ∈ Γ(W),
(3) Clifford multiplication with vectors is skew-symmetric, that is,

〈X ·ψ,ϕ〉 = 〈ψ,X ·ϕ〉 (5.9)

for ϕ,ψ∈ Γ(W), X ∈ Γ(A),
(4) Clifford multiplication is parallel, that is,

∇WX (Y ·ϕ)=
(∇WX Y )·ϕ+Y ·(∇WX ϕ) (5.10)

for X ∈ Γ(A), Y ∈ Γ(A), and ϕ ∈ Γ(W).
The generalized Dirac operator associated to a Clifford module W is the first-order

operator �DW obtained by the following composition:

Γ(W) ∇
W
����������������������������������������������������→ Γ(W ⊗A∗) id⊗#

������������������������������������������������������������������������������→ Γ(W ⊗A) ·
�����������������������→ Γ(W),

�DW := ·◦(id⊗#)◦∇W .
(5.11)

The last map is Clifford multiplication and # :A∗ →A is the isomorphism given by g.

The principal symbol of any generalized Dirac operator is elliptic, as for any nonzero

vector X, Clifford multiplication by X defines an invertible element of End(ΣM).

Example 5.8. For any p ∈M , we define the Clifford algebra Cl(Ap) as the universal

commutative algebra generated by Ap subject to the relation

X ·Y +Y ·X+2g(X,Y)1= 0. (5.12)

Let Cl(A) be the Clifford bundle of (A,g), that is, the bundle whose fiber at the point

p ∈M is the Clifford algebra Cl(Ap). The A∗-valued connection on A extends to an A∗-

valued connection on Cl(A). Let W = Cl(A), equipped with the module structure given

by left multiplication. After identifying with the canonical isomorphism Cl(A)�Λ∗(A),
ei1 ···eik � ebi1∧···∧ebi1 for an orthonormal basis (ei) with dual (ebi ), the generalized

Dirac operator on this bundle is the de Rham operator d+d∗.
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Example 5.9. If M is spin, then the spinor bundle from Definition 5.6 is also a Clif-

ford module. The corresponding Dirac operator is called the (classical) Dirac operator.

Example 5.10. IfM is even dimensional and if A carries a Kähler structure, then the

Dolbeault operator
√

2(∂+∂∗) acting on (0,∗)-forms is a generalized Dirac operator.

Example 5.11. Let W be any complex vector bundle with a positive definite scalar

product and a Clifford multiplication such that (2.1) and (2.11) of Definition 5.7 are

satisfied. Then there is always a connection ∇W on W satisfying the compatibility con-

ditions (2.3) and (2.17). This can be seen as follows: if M is spin, then we can write

W = ΣM⊗V, (5.13)

whereV is isomorphic to the homomorphisms fromΣM toW that are Cl(A)-equivariant.

The bundle V carries a compatible metric. After choosing any metric A∗-valued con-

nection ∇V on V , the product connection on W satisfies (2.3) and (2.17).

IfM is not spin, the connection can be constructed locally on an open covering in the

same way, and the locally defined connections can then be glued together to a globally

defined connection by using a partition of unity, hence we obtain the statement.

For any two sections σ1 and σ2 of W , we let

(
σ1,σ2

)
:=
∫
M

〈
σ1,σ2

〉
. (5.14)

This expression is not always defined. However, it is a well-defined scalar product on

generalized L2-spinor fields, that is, generalized spinor fields with
∫
M〈σi,σi〉<∞. It is

also well defined if one of the sections si or sj has compact support and the other is

locally L2.

For the benefit of the reader, we recall the following basic result (see, e.g., [28]).

Proposition 5.12 [28]. Generalized Dirac operators �D on complete Riemannian

manifolds are formally selfadjoint and essentially selfadjoint. More concretely, for smooth

sections σi,

(�Dσ1,σ2
)= (σ1, �Dσ2

)
(5.15)

if at least one of the sections σ1 or σ2 has compact support. The maximal extension and

the minimal extension of �D coincide. In particular, �D extends uniquely to a selfadjoint

operator densely defined on the L2-sections of W .

For any choice of a connection as in the above theorem, the resulting Dirac operator

is generated by �.

Theorem 5.13. Let W → M be a Clifford module. Then the Dirac operator on W is

generated by �:

�DW ∈Diff (�;W). (5.16)
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Proof. The Dirac operator is the composition of Clifford multiplication and the A∗-

valued connection∇W onW . Clifford multiplication is a zero-order differential operator

generated by �. TheA∗-valued connection∇W onW is a first-order differential operator

generated by �. Hence, the Dirac operator is also a first-order differential operator

generated by �.
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