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ON THE GEOMETRY OF THE CROSS-CAP IN MINKOWSKI
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Abstract. We initiate in this paper the study of the geometry of the cross-cap in
Minkowski 3-space R

3
1. We distinguish between three types of cross caps according to their

tangential line being spacelike, timelike or lightlike. For each of these types, the principal
plane which is generated by the tangential line and the limiting tangent direction to the curve
of self-intersection of the cross-cap plays a key role. We obtain special parametrisations for
the three types of cross-caps and consider their affine properties. The pseudo-metric on the
cross-cap changes signature along a curve and the singularities of this curve depend on the
type of the cross-cap. We also study the binary differential equations of the lightlike curves
and of the principal curves in the parameters space and obtain their topological models as well
as the configurations of their solution curves.

1. Introduction. Whitney showed that maps R2 → R
3 can have a stable local sin-

gularity under smooth changes of coordinates in the source and target. A model of this local
singularity under these changes of coordinates is given by (x, y) �→ (x, xy, y2). The image of
this map is a singular surface called a cross-cap (it is also called a surface with a pinch-point
or a Whitney umbrella).

Because the cross-cap is a stable singular surface, it is natural to seek to understand its
geometry. The extrinsic differential geometry of the cross-cap in the Euclidean 3-space is
investigated in [6, 8, 9, 10, 13, 20, 25, 27], and in [13] the authors considered its intrinsic
properties. For instance, it is shown in [6, 27] that there are generically two types of cross-
caps, labelled hyperbolic cross-cap and elliptic cross-cap (Figure 1 left and center), and these
are characterised by the singularity type of their parabolic set in the source (see also §4 for
another characterisation and [18, 20] for applications to the geometry of surfaces in R

4). The
change from an elliptic to a hyperbolic cross-cap occurs at a parabolic cross-cap, Figure 1
right.

We initiate in this paper the study of the geometry of the cross-cap in the Minkowski
3-space R

3
1. At the cross-cap point, the tangent plane to the surface degenerates to a line

which we call, following [13], the tangential line of the cross-cap. This line together with the
limiting direction to the curve of self-intersection of the cross-cap span the principal plane
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FIGURE 1. Hyperbolic, elliptic and parabolic cross-caps.

of the cross-cap. The type (spacelike, timelike, lightlike) of the tangential line and of the
principal plane play a key role in this paper.

We obtain in §3 parametrisations of the cross-cap in simplified forms using smooth
changes of coordinates in the source and Lorentzian transformations in the target. From these
parametrisations we get pairs of quadratic forms (Q1,Q2) in (x, y). We show in §4 that the
G = GL(2,R) × GL(2,R)-class of (Q1,Q2) determines if the cross-cap is elliptic, hyper-
bolic or parabolic and obtain affine invariant properties of the cross-cap (such us its Dupin
indicatrices and its focal conic).

In §5, we study the induced metric on the cross-cap and determine the generic topological
configurations of the lightlike curves in the source (which we call pre-lightlike curves). We
study in §6 the lines of principal curvature in the source (which we call pre-principal curves).
The pre-lightlike and pre-principal curves are solutions binary differential equations (BDEs).
These are implicit differential equations written in the form

a(x, y)dx2 + 2b(x, y)dxdy + c(x, y)dy2 = 0 .

Some of the configurations in §5 and in §6 are obtained in §7 using the blowing-up
technique on general BDEs. The configurations of the solution curves of the BDEs in this
papers have all been checked using Montesinos program [17]. The solutions of a BDE form
a pair of foliations in the region in R

2 where (b2 − ac)(x, y) > 0 (the set where (b2 −
ac)(x, y) = 0 is the discriminant of the BDE). In all the figures in this paper, we draw one
foliation in continuous line and the other in dashed line. The discriminant curve is drawn in
thick black.

The results in this paper are summarised below, where the triple (a, b, c) in the fourth
and last columns are the coefficients of the BDE of the pre-lightlike curves and pre-principal
curves. The discriminant of the pre-lightlike curves (resp. pre-principal curves) is denoted by
PLD (resp. PLPL) and its column indicates the singularity type of its defining equation.

The tangential line is timelike or spacelike

Tg. line Pr. plane PLD Pre-lightlike curves PLPL Pre-principal curves

Timelike Timelike A+
1 (−x2 − y2, 0, 1) A−

3 (y3,− 1
2x + by2, y)

Spacelike

Timelike A−
1 (x2 − y2, 0, 1) A−

3 (y3,− 1
2x + by2, y)

Spacelike A−
1 (−x2 + y2, 0, 1) A+

3 (−y3,− 1
2x, y)

Lightlike A−
1 (xy + y3, 0, 1) A4 (xy + y3 + y4,− 1

2x, y)
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The tangential line is lightlike

Pr. plane d0 PLD Pre-Lightlike curves PLPL Pre-Principal curves

Timelike

(xy,−x2,−3xy + y2)

D±
4 A2 (x2,±y, x) X1,0 (xy,−x2, 3xy + 3y2)

(xy, x2,−3xy + y2)

Lightlike D−
4 A2 (y2, 1

2x, y) X±
1,1 (x2 + xy2 + y3, xy,∓x2 − 2y2)

Above, d0 is the distance squared function with centre the cross-cap-point, Tg. is short
for tangential and Pr. for principal. See Table 2 for the configurations of the pre-lightlike
curves and Table 3 for those of the pre-principal curves.

Acknowledgment. We are deeply indebted to the referee for his thorough reading of the first ver-
sion of the paper and for his many constructive comments and suggestions. The idea of considering and
presenting the results in terms of the principal plane is his.

2. Preliminaries. The Minkowski space (R3
1, 〈, 〉) is the vector space R

3 endowed
with the metric given by the pseudo-scalar product

〈u, v〉 = −u0v0 + u1v1 + u2v2 ,

for any vectors u = (u0, u1, u2) and v = (v0, v1, v2) in R
3 (see for example [21], p55). We

say that a non-zero vector u ∈ R
3
1 is spacelike if 〈u, u〉 > 0, lightlike if 〈u, u〉 = 0 and timelike

if 〈u, u〉 < 0. The norm of a vector u ∈ R
3
1 is defined by ‖u‖ =

√
|〈u, u〉|.

The vector product in R
3
1 of u and v is defined by

u × v =
−e1 e2 e3

u0 u1 u2

v0 v1 v2

where e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is the canonical basis in R
3.

A plane {v ∈ R
3
1 | 〈v, u〉 = 0} is said to be spacelike (resp. lightlike, timelike) if its

pseudo-normal vector u is timelike (resp. lightlike, spacelike).
We have the following pseudo-spheres in R

3
1 with centre p ∈ R

3
1 and radius r > 0,

H 2(p,−r) = {u ∈ R
3
1 | 〈u − p, u − p〉 = −r2} ,

S2
1 (p, r) = {u ∈ R

3
1 | 〈u − p, u − p〉 = r2} ,

LC∗(p) = {u ∈ R
3
1 | 〈u − p, u − p〉 = 0} .

We denote by H 2(−r) and S2
1 (r) the pseudo-spheres centred at the origin in R

3
1.

We consider the set C of smooth map-germs R2, 0 → R
3
1 with a cross-cap singularity at

the origin endowed with the Whitney C∞-topology. We say that a property of the cross-cap
is generic if it is satisfied by map-germs in a residual subset of C.
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Let φ : U ⊂ R
2 → R

3
1 be a representative of a map-germ with a cross-cap singularity at

the origin and denote its image by M . Let

E = 〈φx , φx〉 , F = 〈φx , φy〉 , G = 〈φy , φy〉

denote the coefficients of the first fundamental form of M (the subscripts denote partial deriva-
tives).

We label the Pre-Locus of Degeneracy (PLD) the set of point (x, y) ∈ U where (F 2 −
EG)(x, y) = 0, and by the Locus of Degeneracy (LD) its image by φ. The LD is the locus
of points on M where the induced metric is degenerate.

We decompose U = U1 ∪ U2 ∪ PLD, where φ(U1) is the Riemannian part of M and
φ(U2) is its Lorentzian part. One can define the de Sitter Gauss map U1 → S2

1 (1) on the
Lorentzian part of the surface and the hyperbolic Gauss map U2 → H 2(−1) on its Riemann-
ian part. Both maps are given by N = φx × φy/||φx × φy ||. The map Ap(u) = −dNp(u) is a
self-adjoint operator on M \ LD. We denote by

l = −〈Nx , φx〉 = 〈N, φxx〉,
m= −〈Nx , φy〉 = 〈N, φxy〉,
n = −〈Ny , φy〉 = 〈N, φyy〉

the coefficients of the second fundamental form on M\LD. At points on the LD, we multiply
the above coefficients by ||φx × φy || and set

l̄ = 〈φx × φy, φxx〉 , m̄ = 〈φx × φy, φxy〉 , n̄ = 〈φx × φy , φyy〉 .

The Gaussian curvature K of M at p = φ(q) ∈ M \ LD is given by

K(q) = det(Ap) =
ln − m2

EG − F 2
(q) .

The (closure of) the pre-parabolic set is defined as the set of points in U where (l̄n̄ −
m̄2)(q) = 0. Its image under φ is defined as the parabolic set on M (this is the closure of the
set of points where the Gaussian curvature vanishes).

We are interested in the singularities of the zero set of a germ of a function f : R2, 0 →
R, 0. For this reason, we consider the action of the contact group K on the set of germs of
functions f : R

2, 0 → R, 0. Two germs, at the origin, of functions f, g are K-equivalent
if g(x, y) = k(x, y)f (h−1(x, y)), where h : R2, 0 → R

2, 0 is a germ of a diffeomorphism
and k : R2, 0 → R is a germ of a function not vanishing at the origin. If two germs are K-
equivalent, then their zero sets are diffeomorphic. We shall use in this paper representatives
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of the following K orbits of this action (see [1]):

Ak x2 ± yk+1 , k ≥ 0

Dk x2y ± yk−1 , k ≥ 4

X1,0

{

x4 + ax2y2 + y4 , a2 − 4 �= 0

xy(x2 + bxy + y2) , b2 − 4 < 0

X1,1 x4 ± x2y2 + ay5 , a �= 0 .

In the complex case, the singularity X1,0 has one normal form given by x4 + ax2y2 +
y4, a2 − 4 �= 0. However, this form does not include the case when the quartic has two real
roots. This case is represented by the normal form xy(x2 + bxy + y2), b2 − 4 < 0.

3. Special parametrisations of the cross-cap. It is shown in [27] that a parametri-
sation of a cross-cap in Euclidean 3-space can be taken, by a suitable choice of coordinates in
the source and Euclidean transformations the target, in the form

(1) φ(x, y) = (x, xy + p(y), y2 + ax2 + q(x, y)) ,

where p ∈ M3(y) and q ∈ M3(x, y) (M(u) denotes the maximal ideal in the ring of germs
of functions in u). We have the following result on parametrisations of a cross-cap in R

3
1

depending on the type of its tangential line (spacelike, timelike or lightlike). We remark that
the proof is different from that given in [27] for the parametrisation (1) of the cross-cap in
Euclidean 3-space.

THEOREM 3.1. Let φ : R
2, 0 → R

3, 0 be a germ of a parametrisation of a cross-

cap in R
3
1. There is a Lorentzian transformation T in R

3
1 and a germ of a diffeomorphism

ρ : R2, 0 → R
2, 0 such that T ◦ φ ◦ ρ is expressed as follows:

(a) When the tangential line is timelike:

(2) (x, y2 + p(x), q(x, y)) .

(b) When the tangential line is spacelike:

(3) (y2 + p(x), x, q(x, y)) .

(c) When the tangential line is lightlike:

(4) (x, ax + y2 + p(x), bx + q(x, y))

where p ∈ M2(x), q ∈ M2(x, y) and a, b are constants with a2 + b2 = 1.

PROOF. (a) When the tangential line is timelike, we can make a Lorentzian transfor-
mation in the target and take it to be along (1, 0, 0). We can then write the new parametri-
sation in the form φ(x, y) = (x, f (x, y), g(x, y)), where f and g are germs of functions

with zero 1-jets. As the singularity is a cross-cap, we have ∂2f

∂y2 (0, 0) �= 0 or ∂2
g

∂y2 (0, 0) �= 0.

We can suppose that ∂2f

∂y2 (0, 0) �= 0 (if it vanishes, we make the Lorenztian transformation

(u, v,w) �→ (u,w, v) in the target to get back to the case where it does not vanish).
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We consider f (x, y) as a 1-parameter unfolding of the function f (0, y). Since
∂2f

∂y2 (0, 0) �= 0, f (x, y) is R+-equivalent to the germ y2, that is, there exist a germ of a

diffeomorphism H : R2, 0 → R
2, 0 of the form H(x, y) = (h(x), k(x, y)) and a germ of a

function c such that
y2 = f (h(x), k(x, y)) + c(x)

(see [1]). We have φ ◦ H(x, y) = (h(x), y2 − c(x), g(h(x), k(x, y))).
Let K be a change of coordinates in the source with K(s, t) = (x, y) = (h−1(s), t).

Then
φ ◦ H ◦ K(s, t) = (u, v2 − c(h−1(s)), g(s, k(h−1(s), t))) .

We revert back to the original notation and write x for s and y for t , so that the cross-cap
is parametrised in the form

(x, y2 + p(x), q(x, y)) ,

where p and q are germs of functions with zero 1-jets.
(b) We can take, by applying a Lorentzian transformation in the target if necessary, the

spacelike tangential direction along (0, 1, 0) and write φ(x, y) = (f (x, y), x, g(x, y)), where

f and g are germs of functions with zero 1-jets. As for the case (a), we have ∂2f

∂y2 (0, 0) �= 0

or ∂2
g

∂y2 (0, 0) �= 0. We can suppose that ∂2f

∂y2 (0, 0) �= 0 (if it vanishes, we make the Lorentzian

transformation (u, v,w) �→ (u cosh(t)+w sinh(t), v, u sinh(t)+w cosh(t)) in the target, for

any t �= 0, and get back to the case where ∂2f

∂y2 (0, 0) �= 0). We then proceed as for the case

(a).
(c) When the tangential direction is lightlike we can take a parametrisation of the surface

in the form φ(x, y) = (x, ax + f (x, y), bx + g(x, y)), where f and g have zero 1-jets and

a, b are constants with a2 + b2 = 1. As for the case (a), we can assume that ∂2f

∂y2 (0, 0) �= 0 (if

it is, we make the Lorenztian transformation (u, v,w) �→ (u,w, v) and it becomes non-zero).
We then proceed as in (a). ✷

In the rest of the paper, we write the homogeneous parts of degree n of p and q in
Theorem 3.1 in the form

pn0x
n ,

qn0x
n + qn1x

n−1y + · · · + qnny
n ,

with q21 �= 0 as the surface has a cross-cap singularity.
Let η denotes the null direction at the cross-cap (for the parametrisations in Theorem

3.1, η = (0, 1)). The principal plane at the cross-cap parametrised by φ : R2, 0 → R
3, 0

is defined in [13] as the plane spanned by the tangential direction at the cross-cap together
with the direction η2φ(0, 0). The principal plane is in fact the plane spanned by the tangential
direction and the limiting tangent direction to the curve of self-intersection of the cross-cap
surface at the cross-cap point ([13], Proposition 9).

PROPOSITION 3.2. (i) When the tangential direction is timelike the limiting tangent

direction to the curve of self-intersection is spacelike, so the principal plane is timelike.
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(ii) When the tangential direction is spacelike the principal plane is lightlike (resp.

spacelike, timelike) if and only if the limiting tangent direction to the curve of self-intersection

is lightlike (resp. spacelike, timelike). For a parametrisation as in (3), the limiting tangent

direction to the curve of self-intersection is lightlike if and only if q2
22 − 1 = 0. It is spacelike

(resp. timelike) if and only if q2
22 − 1 > 0 (resp. q2

22 − 1 < 0).
(iii) When the tangential direction is lightlike the principal plane (resp. limiting tangent

direction to the curve of self-intersection) is either timelike or lightlike (resp. spacelike). The

principal plane is lightlike if and only if the limiting tangent direction to the curve of self-

intersection is pseudo-orthogonal to the tangential direction. For a parametrisation as in (4),
the principal plane is lightlike if and only if bq22 + a = 0.

PROOF. As observed above, the principal plane is generated by the tangential direction
and the limiting tangent direction to the curve of self-intersection of the cross-cap surface at
the cross-cap point ([13], Proposition 9). The property of the principal plane and of the limit-
ing tangent direction to the curve of self-intersection being spacelike, timelike or lightlike is
invariant under Lorentzian transformations and reparametrisations of the surface. Therefore,
we can take a parametrisation of the cross-cap as in (2), (3) or (4).

A point p is on the curve of self-intersection if there exists two distinct points (x1, y1)

and (x2, y2) in the source such that p = φ(x1, y1) = φ(x2, y2). For φ as in (2), (3) or (4),
one can show that x1 = x2 = 0 and y2 = −y1, so the double point curve in the source is
parametrised by (0, y) and its image, the curve of self-intersection on the cross-cap, is given
by φ(0, y). For φ as in (3), the limiting tangent direction to the curve of self-intersection is
along (1, 0, q22) and for φ as in (2) and (4) it is along (0, 1, q22).

The pseudo-normal direction to the principal plane is along (0,−q22, 1) for φ as in (2),
along (q22, 0, 1) for φ as in (3) and along (−aq22 + b,−q22, 1) for φ as in (4). The result
follows by comparing the type (spacelike, timelike or lightlike) of this vector to that of the
limiting tangent direction to the curve of self-intersection. For example, for (4) the pseudo
normal to the principal plane is parallel to

v = (1, a, b) × (0, 1, q22) = (−aq22 + b,−q22, 1)

and we have
〈v, v〉= −(−aq22 + b)2 + q2

22 + 1

= (1 − a2)q2
22 + 2abq2

22 + 1 − b2

= b2q2
22 + 2abq2

22 + a2

= (bq22 + a)2 ≥ 0 .

Thus, the principal plane is timelike or lightlike. It is lightlike if and only if bq22 + a =
〈(1, a, b), (0, 1, q22)〉 = 0. ✷

4. Affine properties of the cross-cap. We take the parametrisations of the cross-cap
as in (2), (3) and (4). Let π denotes the projection of the tangent space of R3

1 to the quotient
space R3

1/R.φx(0, 0). We associate to the parametrisations (2), (3) and (4) the pair of quadratic
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TABLE 1. The G-orbits of pairs of quadratic forms.

G-orbit Name

(y2 + x2, xy) hyperbolic

(y2 − x2, xy) elliptic

(x2, xy) parabolic

(x2 ± y2, 0) inflection

(x2, 0) degenerate inflection

(0, 0) degenerate inflection

forms

j2(π ◦ φ) = (Q1(x, y),Q2(x, y)) = (y2 + p20x
2, q20x

2 + q21xy + q22y
2) .

We consider the action of the group G = GL(2,R) × GL(2,R) on the pairs of binary
forms j2(π ◦ φ) = (Q1,Q2), where GL(2,R) denotes the general linear group (see for
example [11]). If H = (h, k) ∈ G, then H. (Q1,Q2) = k ◦ (Q1 ◦ h−1,Q2 ◦ h−1). The
G-orbits are listed in Table 1.

LEMMA 4.1. For φ as in (2), (3) or (4), j2(π ◦ φ) = (Q1,Q2) is

hyperbolic ⇔ q2
21p20 + (q22p20 − q20)

2 > 0 ,

elliptic ⇔ q2
21p20 + (q22p20 − q20)

2 < 0 ,

parabolic ⇔ q2
21p20 + (q22p20 − q20)

2 = 0 .

PROOF. The action in the target by (u, v) �→ (u, v − q22u) gives

(Q1,Q2) ∼G (y2 + p20x
2, (q20 − p20q22)x

2 + q21xy) .

The action by (x, y) �→ (x, y − q20−p20q22
q21

x) in the source followed by an action in the target

of the form (u, v) �→ (u − αv, 1
q21

v) gives

(Q1,Q2) ∼G

(

y2 +
q2

21p20 + (q22p20 − q20)
2

q2
21

x2, xy

)

and the result follows. ✷

A cross-cap is hyperbolic/elliptic/parabolic if the K-singularity type of its pre-parabolic
set is A+

1 /A−
1 /A2 ([6, 27]). We call here a parabolic cross-cap a cross-cap whose pre-parabolic

set has an A≥2-singularity. The singularity of the pre-parabolic set depends on the contact of
the surface with planes, so is affine invariant (in particular, they do not depend on the metric in
the ambient space). We have the following for the cross-cap in R

3
1; see [20] for an analogous

result for a cross-cap in Euclidean 3-space.

PROPOSITION 4.2. The cross-cap is hyperbolic/elliptic/parabolic if and only if its as-

sociated pair of quadratic forms (Q1,Q2) is elliptic/hyperbolic/parabolic.
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PROOF. The 2-jet of m̄2 − n̄l̄ for the three cross-caps in Theorem 3.1 is given by

−4q21(p20q21x
2 + 2(q22p20 − q20)xy − q21y

2) .

We have q21 �= 0, so the discriminant of the above quadratic form is given, up to a
non-zero factor, by q2

21p20 + (q22p20 − q20)
2. The result follows by Lemma 4.1. (When

q2
21p20 + (q22p20 − q20)

2 = 0, the parabolic set has an Ak-singularity, with k ≥ 2, as the
j2(m̄2 − n̄l̄) cannot be identically zero.) ✷

In view of Proposition 4.2, we label the property hyperbolic/elliptic/parabolic of a cross-
cap as its affine property. This property can also be detected by considering the follow-
ing curves in the source. We consider the intersection of the cross-cap parametrised by
φ : R2, 0 → R

3, 0 with the planes f (x, y, z) = ax + by + cz − d = 0, d �= 0, parallel
to a plane containing the unique tangent direction to the cross-cap. We analyse the limit of the
curves f ◦ φ(x, y) = 0 as d tends to zero and call them the Dupin indicatrices in the source

associated to the tangent plane ax + by + cz = 0. These are approximated by the zero set of
the 2-jet of f ◦ φ.

Consider the case of the timelike tangential direction with φ as in (2) (the other two cases
follow similarly). Then a = 0 and the Dupin indicatrices in the source are given by

bQ1(x, y) + cQ2(x, y) − d = 0 .

We identify a quadratic form Q = Ax2+Bxy+Cy2 by its coefficients (A : B : C) in the
projective plane RP 2. We denote by Γ the conic {Q : B2−4AC = 0} of degenerate quadratic
forms. Then the G-orbit of a pair of quadratic forms (Q1,Q2) is completely determined by
the pencil bQ1(x, y) + cQ2(x, y) in RP 2. The pair (Q1,Q2) is hyperbolic (resp. elliptic) if
and only if its associated pencil intersects the conic Γ in 2 (resp. 0) points. It is parabolic if
the pencil is tangent to Γ .

PROPOSITION 4.3. (i) At a hyperbolic cross-cap, the Dupin indicatrices in the source

associated to any tangent plane are hyperbolae.

(ii) At an elliptic cross-cap, there are two tangent planes whose associated Dupin indi-

catrices is a pair of parallel lines. The remaining Dupin indicatrices are either hyperbolae or

ellipses.

(iii) At an parabolic cross-cap, there is a unique tangent plane whose associated Dupin

indicatrices is a pair of parallel lines. The remaining Dupin indicatrices are all hyperbolae.

REMARK 4.4. The height function on the cross-cap along a normal direction (a, b, c)

is given by 〈φ(x, y), (a, b, c)〉. On a hyperbolic cross-cap the singularities of the height func-
tion in any normal direction is A−

1 . On an elliptic cross-cap, there are two normal directions
along which the singularity of the height function is Ak, k ≥ 2, and for the remaining di-
rections it is A+

1 or A−
1 . On a parabolic cross-cap, there is a unique normal direction along

which the singularity of the height function is Ak, k ≥ 2, and for the remaining directions
it is A−

1 ([6, 27]). As the 2-jet of 〈φ(x, y), (a, b, c)〉 is the pencil associated to the pair of
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quadratic forms (Q1,Q2), the statement of Proposition 4.3 is a reformulation of the result on
the singularities height functions in terms of the Dupin indicatrices in the source.

We turn now to an aspect of the contact of a cross-cap parametrised by φ : R2, 0 → R
3, 0

with pseudo-spheres in R
3
1. This contact is measured by the K-singularity type of the pseudo-

distance squared function du : R2, 0 → R, given by

du(x, y) = 〈φ(x, y) − u, φ(x, y) − u〉 ,

with u ∈ R
3
1. Varying u gives the family d of pseudo-distance squared functions. We consider

the K-singularity type of du at the cross-cap point, that is, at the origin in the xy-plane.
The plane orthogonal to the tangential line at the cross-cap is called the normal plane to

the cross-cap. It is not difficult to show that the function du is singular at the origin if and only
if u is on the normal plane to the cross-cap.

THEOREM 4.5. (i) When the tangential line is spacelike or timelike the singularities

of du are always of type Ak , k ≥ 1. There is a conic in the normal plane of the cross-cap,
called the focal conic, where the singularities of du are of type Ak, k ≥ 2. The focal conic

contains the cross-cap point and is as follows:

an ellipse ⇔ j2(π ◦ φ) is elliptic ,

a hyperbola ⇔ j2(π ◦ φ) is hyperbolic ,

a parabola ⇔ j2(π ◦ φ) is parabolic .

(ii) When the tangential line is lightlike the singularity of d0 at the cross-cap point is of type

D4 if and only if

(5) Γ = (q2
21 − 4q20q22)b

2 − 4(p20q22 + q20)ab − 4a2p20 �= 0,

with the singularity being of type D−
4 if Γ > 0 and D+

4 if Γ < 0. The singularities of du,
u �= 0, are of type Ak , k ≥ 1. The focal conic is

an isolated point ⇔ j2(π ◦ φ) is elliptic ,

a pair of transverse lines ⇔ j2(π ◦ φ) is hyperbolic ,

a double line ⇔ j2(π ◦ φ) is parabolic .

PROOF. (i) We consider only the timelike tangential direction and take φ as in (2). The
case of the spacelike tangential direction follows similarly and we get the same conditions
which identify the focal conic. We write u = (u0, u1, u2), so

du(x, y) = −(u0 − x)2 + (u1 − y2 − p20x
2 − p(x))2

+
(

u2 − q20x
2 − q21xy − q22y

2 − q (x, y)
)2

.

We have j1du(x, y) = −u2
0 + u2

1 + u2
2 + 2u0x, so du is singular at the origin if and only

if u0 = 0, that is, if and only if u is on the normal plane of the cross-cap.
We take now u0 = 0. Then the 2-jet of du, without the constant terms, is given by

(6) −(1 + 2u1p20 + 2u2q20)x
2 − 2u2q21xy − 2(u1 − u2q22)y

2 .
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The quadratic form (6) can never vanish identically as q21 �= 0, so the singularities of du

are always of type Ak, k ≥ 1.
The singularity of du is of type Ak , k ≥ 2, if and only if the quadratic form (6) is

degenerate, that is,

(7) 2p20u
2
1 + 2(q20 + p20q22)u1u2 +

(

2q20q22 − 1

2
q2

21

)

u2
2 + u1 + u2q22 = 0 .

The above equation is that of a non-degenerate conic (the focal conic), in the normal
plane (0, u1, u2). The discriminant of its quadratic part is

δ = p20q
2
21 + (q20 − p20q22)

2 .

The focal conic is a parabola if and only if δ = 0, equivalently, (Q1,Q2) is parabolic
(Lemma 4.1).

When δ �= 0, the linear terms in (7) can be removed by a translation to obtain a new
equation in the form

2p20U
2
1 + 2(q20 + p20q22)U1U2 +

(

2q20q22 − 1

2
q2

21

)

U2
2 = 1

8

q2
21

p20q
2
21 + (q20 − p20q22)2

.

This is a hyperbola if and only if p20q
2
21 + (q20 − p20q22)

2 > 0 and an ellipse if and
only if p20q

2
21 + (q20 − p20q22)

2 < 0. The interpretation of these inequalities in terms of
the pair of quadratic forms (Q1,Q2) is given in Lemma 4.1. (It is worth observing that for
a spacelike tangential direction, the focal conic is tangent to a lightlike line if and only if the
limiting tangent direction to the curve of self-intersection is lightlike.)

(ii) When the tangential direction is lightlike, we take φ as in (4), so that

du = −(u0 − x)2 + (u1 − ax − y2 − p20x
2 − p(x))2

+(u2 − bx − q20x
2 − q21xy − q22y

2 − q(x, y))2 .

We have j1du(x, y) = −u2
0 + u2

1 + u2
2 + 2(u0 − u1a − u2b)x, so du is singular at the

origin if and only if u0 − u1a − u2b = −〈(1, a, b), (u0, u1, u2)〉 = 0, that is, if and only if u

is on the lightlike normal plane of the cross-cap.
We suppose now that u0 = u1a + u2b. Then the 2-jet of du, without the constant term,

is given by

(8) −2(u1p20 + u2q20)x
2 − 2u2q21xy − 2(u2q22 + u1)y

2 .

The quadratic form (8) vanishes identically if and only if u1 = u2 = 0, that is, u = 0.
Then the 3-jet of d0, without the constant term, is given by 2x((ap20 + bq20)x

2 + bq21xy +
(a + bq22)y

2). Thus, d0 has a D4-singularity if and only if

Γ = (q2
21 − 4q20q22)b

2 − 4(p20q22 + q20)ab − 4a2p20 �= 0 .

Suppose that u �= 0. Then the singularity of du is of type Ak , k ≥ 1. It is of type Ak,
k ≥ 2 if and only if the quadratic form (8) is degenerate, that is, if and only if

(9) −4p20u
2
1 − 4(q20 + p20q22)u1u2 + (q2

21 − 4q20q22)u
2
2 = 0 .
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The focal conic given by (9) is an isolated point/a pair of transverse lines/a double line if
and only if q2

21p20 + (q22p20 − q20)
2 < 0/ > 0/ = 0, and by Lemma 4.1 this is equivalent to

j2(π ◦ φ) being elliptic/hyperbolic/parabolic. (Observe that (9) cannot vanish identically as
q21 �= 0.) ✷

We have the following result about more degenerate singularities of the distance squared
functions (these are not affine invariant).

PROPOSITION 4.6. When the tangential direction is timelike or a spacelike, there are

generically 1, 3 or 5 points on the focal conic where du generically has an A3-singularity at

the cross-cap point. One of these points is always at the cross-cap point.

When the tangential direction is lightlike, the cross-cap point is a D4-singularity of d0

when condition (5) is satisfied. Generically, there is one point ui (i = 1, 2) on each line of

the focal conic where dui has generically an A3-singularity at the cross-cap point.

The A2 and A3-singularities of du, u �= 0, at the cross-cap point are versally unfolded

by the family d . The singularity of d0 at the cross-cap point is not versally unfolded by the

family d .

PROOF. We take u on the focal conic. Then the 2-jet of du is a perfect square L2. The
singularity of du is of type Ak, k ≥ 3 if and only if L divides C, where C is the homogeneous
cubic part of du. When the tangential direction is timelike, we take L = u2q21x + 2(u1 −
u2q22)y (up to a constant factor) if u �= 0, see the proof of Theorem 4.5. (When u = 0, we
take L = −x2 and show that d0 has always an A3-singularity.) The cubic C divides L if and
only if C(2(u1 − u2q22),−u2q21) = 0, that is, if and only if

8p30u
4
1 −8(3p30q22 + q30)u

3
1u2 + 4(q21q31 − 6p30q

2
22 − 6q30q22)u

2
1u

2

+2(4q31q21q22 − q2
21q32 − 12q30q

2
22 − 4p30q

3
22)u1u

3
2

+(q3
21q33 + 4q31q21q

2
22 − 2q32q

2
21q22 − 8q30q

3
22)u

4
2 = 0 .

This is a homogeneous quartic in u1, u2, so is generically a union of 0, 2, 4 real lines
meeting at the origin. Thus, the singularity of du is of type Ak , k ≥ 3 if and only if u =
(0, u1, u2) is a point of intersection of these lines with the conic (7), so we get generically 1, 3
or 5 such points, and those away from the origin generically give singularities of type A3. We
proceed similarly for the case when the tangential direction is spacelike.

For the lightlike tangential direction, proceeding as above, we show that du has an Ak,
k ≥ 3-singularity if and only if u is a point of intersection of the conic (9) with the following
non-homogeneous quartic

Q(u0, u2) = (−8q30q
3
22 + 4q21q31q

2
22 + q33q

3
21 − 2q2

21q32q22)u
4
2

+(−2q2
21q32 + 8q21q31q22 − 8p30q

3
22 − 24q30q

2
22)u1u

3
2

+(−24p30q
2
22 − 24q30q22 + 4q21q31)u

2
1u

2
2

+(−24p30q22 − 8q30)u2u
3
1 − 8p30u

4
1

+(−2q2
21bq2

22 + 8bq20q
3
22 + 8ap20q

3
22 + 2q2

21aq22)u
3
2
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+(24ap20q
2
22 + 2q2

21a − 6q2
21bq22 + 24bq20q

2
22)u

2
2u1

+(24ap20q22 − 4q2
21b + 24bq20q22)u2u

2
1 + (8bq20 + 8ap20)u

3
1 .

Denote by u0 = λiu2, i = 1, 2, the lines of the conic (9). Then Q(λiu2, u2) =
u3

2(Aiu2 +Bi), i = 1, 2, where Ai and Bi depend on λi , pj0 and qjk, j, k = 2, 3. Generically,
Ai �= 0 and Bi �= 0, so we have a single point u �= 0 on each line of the focal conic where the
singularity of du at the origin is generically of type A3. (When u = 0, the singularity of type
D4.)

The statement about the versality of the family d follows by standard calculations and
are omitted (see for example [8] for detailed calculations for the cross-cap in Euclidean 3-
space). ✷

REMARK 4.7. Porteous defined ridge curves on a smooth surface in Euclidean 3-space
as the (closure of the) locus of points where the distance squared function du has an A3-
singularity for some u ∈ R

3. We can define in a similar way ridge curves on surfaces (smooth
or singular) in R

3
1. Then Proposition 4.6 gives the number of ridge curves on the cross-cap

passing through the cross-cap point.

5. The first fundamental form. Let E,F,G denote, as in §2, the coefficients of the
first fundamental form of a cross-cap parametrised by φ. The induced pseudo-metric on the
cross-cap is given by ds2 = Edx2 + 2Fdxdy + Gdy2. It is Riemannian at points where
F 2 − EG < 0, Lorentzian at points where F 2 − EG > 0 and degenerate at points where
F 2 − EG = 0. The Pre-Locus of Degeneracy (PLD) is defined as the set of points (x, y) in
the source where (F 2 − EG)(x, y) = 0.

PROPOSITION 5.1. (i) If the tangential line is timelike (resp. spacelike), then the

PLD has an A+
1 (resp. A−

1 )-singularity.

(ii) If the tangential line is lightlike, then the PLD has a singularity more degenerate

than A1. It has precisely an A2-singularity if and only if the distance squared function d0 has

a D4-singularity.

PROOF. (i) We compute the coefficients of the first fundamental form. Suppose that the
tangential line is timelike and take a parametrisation of the surface as in (2). Then,

j2E = −1 + 4(p2
20 + q2

20)x
2 + 4q21q20xy + q2

21y
2 ,

j2F = 2q20x
2q21 + (4p20 + q2

21 + 4q20q22)xy + 2q21q22y
2 ,

j2G = q2
21x

2 + 4q22q21xy + 4(1 + q2
22)y

2(10)

so that

j2(F 2 − EG) = q2
21x

2 + 4q21q22xy + 4(1 + q2
22)y

2 .

The discriminant of the above quadratic form is −16q2
21 and is strictly negative, so the

PLD has a Morse singularity of type A+
1 , i.e., it is an isolated point.
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When the tangential line is spacelike we take a parametrisation of the surface as in (3).
Then,

j2E = 1 − 4(p2
20 − q2

20)x
2 + 4q21q20xy + q2

21y
2 ,

j2F = 2q20q21x
2 + (4q20q22 − 4p20 + q2

21)xy + 2q21q22y
2 ,

j2G = q2
21x

2 + 4q22q21xy − 4(1 − q2
22)y

2(11)

and

j2(F 2 − EG) = −q2
21x

2 − 4q21q22xy + 4(1 − q2
22)y

2 .

The discriminant of the above quadratic form is 16q2
21 so the PLD has a Morse singu-

larity of type A−
1 , i.e., it is a pair of transverse crossing curves.

(ii) For a cross-cap as in (4) with a lightlike tangential direction, we have

j2E = 4(ap20 + bq20)x + 2bq21y + 2(3ap30 + 3bq30 + 2p2
20 + 2q2

20)x
2

+4(bq31 + q20q21)xy + (q2
21 + 2bq32)y

2 ,

j2F = bq21x + 2(a + bq22)y + (bq31 + 2q20q21)x
2

+(2bq32 + 4p20 + q2
21 + 4q20q22)xy + (2q21q22 + 3bq33)y

2

j2G = q2
21x

2 + 4q22q21xy + 4(1 + q2
22)y

2 .(12)

We have j2(F 2 − EG) = (bq21x + 2(a + bq22)y)2 which is not identically zero as
q21 �= 0 and a2 + b2 = 1. Therefore, the singularity of the PLD is of type A≥2. If b �= 0,
we change x by x − 2(a + bq22)/(bq21)y, and the coefficients of y3 in the 3-jet of F 2 − EG

becomes

− 1

q21b3
((q2

21 − 4q20q22)b
2 − 4(p20q22 + q20)ab − 4a2p20) .

It is not zero if and if only if condition (5) is satisfied. Thus, the PLD has an A2-singularity
if and only if d0 has a D4-singularity at the cross-cap point (see Theorem 4.5). If b = 0, then
a2 = 1 and the relevant part of j3(F 2 − EG) is 4y2 − 4ap20q

2
21x

3. This is an A2-singularity
if and only if condition (5) is satisfied (that is, p20 �= 0 in this case). ✷

REMARK 5.2. The singularities of the PLD can be explained geometrically as fol-
lows. There is a pencil of planes containing the tangential line of the cross-cap which are
tangent to the cross-cap. When the tangential direction is timelike all the planes in the pencil
are timelike so all nearby tangent planes to the surface are timelike, i.e., the PLD must be an
isolated point. When the tangential direction is spacelike (resp. lightlike), there are two (resp.
one) tangent planes in the pencil which are lightlike and this indicates that there are two (resp.
one) branches of the PLD.

We consider the integral curves of the lightlike directions on a cross-cap, which we label
the lightlike curves. (These are the isotropic geodesics, i.e., those with identically zero length
[22].) The lightlike curves are the images by the parametrisation φ of the solution curves of
the binary quadratic differential equation (BDE)

(13) ω : Gdy2 + 2Fdxdy + Edx2 = 0 .
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We identify a BDE by its coefficients and write ω = (G,F,E). We call the solutions
of (13) the pre-lightlike curves in the source. There are two pre-lightlike curves at each point
in the region of the plane mapped by φ to the Lorentzian region of the cross-cap and none at
points mapped to its Riemannian region. The PLD, which is the discriminant curve of the
BDE (13) (the discriminant curve of a BDE is the set of points where the equation determines
a unique solution direction) separates the two regions. We have the following result about
the generic configurations of the pre-lightlike curves at the cross-cap point. (See [15] for the
generic configurations of the lightlike curves on a smooth surface.)

THEOREM 5.3. The BDE (13) of the pre-lightlike curves of a cross-cap in R
3
1 is topo-

logically equivalent to one of the following normal forms.

(i) When the tangential direction is timelike: (−x2 − y2, 0, 1).

(ii) When the tangential direction is spacelike and

the principal plane is spacelike: (−x2 + y2, 0, 1) ,

the principal plane is timelike: (x2 − y2, 0, 1) ,

the principal plane is lightlike: (xy + y3, 0, 1)(∗) .

(iii) When the tangential direction is lightlike and

the principal plane is timelike: (x2, y, x) if d0 has a D+-singularity ,

(x2,−y, x) if d0 has a D−-singularity ,

the principal plane is lightlike: (y2, 1
2x, y) .

See Table 2 for figures. ((∗): a generic condition is need, see proof for details.)

TABLE 2. Pre-lightlike curves on cross-caps in R
3
1.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Tg. line
Pr. plane

Timelike Lightlike Spacelike

Timelike

Lightlike

Spacelike
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PROOF. (i) We are interested in the local topological configurations of the solution
curves of the BDE (13). Thus, multiplying equation (13) by a germ of a non-zero function or
making smooth changes of coordinates in the plane will not alter the topological type of the
configuration.

The 2-jets of the coefficients of the first fundamental form of a cross-cap as in (2) are
given in (10). The change of y by y + λx, with λ = −q21q22/(2(1 + q2

22)), changes dy to
dy + λdx and eliminates the term xy in the coefficient of dy2 in equation (13). Dividing the
new BDE by the coefficient of dx2 gives a new BDE with coefficients having the following
2-jets:

A = Coeff(dy2) =−
q2

21

(1 + q2
22

)
x2 − 4(1 + q2

22
)y2 ,

B = Coeff(dxdy)= 2q21

(1 + q2
22)

2
(2p20q

3
22 − 2q20q

2
22 + (2p20 + q2

21)q22 − 2q20)x
2

− 2

1 + q2
22

(4q20q
3
22 + (4p20 − q2

21)q
2
22 + 4q20q22 + q2

21 + 4p20)xy ,

C = Coeff(dx2) = 1 .

We change now x by x +α1x
2y +α2xy2 which changes dx to (1 + 2α1xy +α2y

2)dx +
(α1x

2 + 2α2xy)dy and get a new BDE with a 2-jet

Ady2 + (B + 2α1x
2 + 4α2xy)dxdy + (1 + 4α1xy + 2α2y

2)dx2 ,

with A,B as above. Clearly, we can choose α1, α2 so that the coefficient of dxdy becomes
zero. Then, dividing by the coefficient of dx2 yields a BDE with a 2-jet

(

−
q2

21

(1 + q2
22

)
x2 − 4(1 + q2

22
)y2

)

dy2 + dx2 .

It is shown in Proposition 2.7 in [4] that BDEs with one of the coefficients not vanishing
at the origin can be written locally in the form dx2 +f (x, y)dy2 = 0. When the discriminant
of such a BDE, which is given by f (x, y) = 0, has a Morse singularity (of type A+

1 or A−
1 )

then the BDE is topologically determined by the 2-jet of its coefficients and is topologically
equivalent to dx2 + (ε1y

2 + ε2x
2)dy2 = 0, where ε1 = sign(fyy(0, 0)) and ε2 = ± (see

Theorem 2.7 in [2]). Such BDEs are called Morse Type 1 A±
1 (Type 1 for the case when at

least one of the coefficients of the BDE is not zero at the origin, and A±
1 for the type of the

Morse singularity of the discriminant of the BDE). For each type A−
1 and A+

1 there are two
topological models depending on the sign of fyy(0, 0). If fyy(0, 0) < 0 (resp. fyy(0, 0) > 0),
then the BDE is called of Morse Type 1 A±

1 saddle type (resp. focus type) as two folded saddles
(resp. focus) singularities appear in the bifurcation in a generic 1-parameter families of such
BDEs, [2].
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It follows that the BDE of the lightlike curves on a cross-cap with a timelike tangential
direction is topologically equivalent to dx2 + (−y2 − x2)dy2 = 0 (Morse Type 1 A−

1 saddle
type). Thus, the configuration of the pre-lightlike curves are as in Table 2.

We observe that the topological type dx2 + (y2 + x2)dy2 = 0 (Morse Type 1 A−
1 focus

type) with empty solution curves does not occur in this case because the surface is Lorentzian
away from the singular point, so there are two lightlike curves passing through each point.

(ii) Proceeding as in (i) and using the 2-jets of the coefficients of the first fundamental
form in (10), we can transform the 2-jet of the BDE (13) to

(q2
21x

2 + 4q22q21xy − 4(1 − q2
22)y

2)dy2 + dx2 .

As the discriminant of the BDE (13) has an A−
1 singularity (Proposition 5.1), it follows

by Theorem 2.7 in [2] that the BDE (13) is topologically equivalent to dx2±(x2−y2)dy2 = 0
if and only if q2

22 − 1 �= 0, that is, the principal plane is not lightlike (Proposition 3.2). When
this is the case, we can reduce further the 2-jet of the BDE (13) to

(

4(q2
22 − 1)y2 −

q2
21

(q2
22 − 1)

x2
)

dy2 + dx2 .

We have the Morse Type 1 A−
1 saddle type model dx2 + (−x2 + y2)dy2 = 0 (resp. the

focus type model dx2 +(x2 −y2)dy2 = 0 ) if and only if q2
22 −1 > 0 (resp. q2

22 −1 < 0), that
is, if the principal plane is spacelike (resp. timelike). The configuration of the pre-lightlike
curves are as in Table 2.

When q2
22 − 1 = 0 (the principal plane is lightlike), we can reduce the 3-jet of the BDE

(following the procedure in (i)) to one of the form g(x, y)dy2 + dx2, with

g(x, y) = q2
21x

2 + 4q22q21xy

+2q21q31x
3 + 4(q31q22 + q21q32)x

2y

+2(4q32q22 + 3q21q33)xy2 + 12q22q33y
3 .

Then, by Proposition 3.3 in [26], the BDE (13) is topologically equivalent to (xy +
y3)dy2 + dx2 = 0 if and only if gxy(0, 0)gyyy(0, 0) �= 0, that is, if and only if q33 �= 0 (as
q2

22 = 1 and q21 �= 0).
A BDE which is topologically equivalent to (xy + y3)dy2 + dx2 = 0 is said to have a

Non-transverse Morse singularity ([26]) because its discriminant has a Morse A−
1 -singularity

and the unique direction determined by the BDE at the singular point is tangent to one of the
branches of the discriminant.

(iii) Here the 2-jets of the coefficients of the BDE (13) are as in (12). We observe that
all the coefficients of the BDE vanish at the origin and the 1-jet of the BDE is given by

(14) 2((bq21x + (a + bq22)y))dxdy + (4(ap20 + bq20)x + 2bq21y)dx2 .

Suppose that a + bq22 �= 0, that is, the principal plane is not lightlike. For simplicity
we take b �= 0 (the case b = 0 follows similarly and is omitted). Then the linear change of
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coordinates (x, y) �→ (λx,µx +ηy) with λ = −2(a+bq22))/(bq21)µ gives a new BDE with
1-jet

8µ

bq21
(a+bq22)

2(−η2ydxdy+µ2q2
21

(

(q2
21−4q20q22)b

2−4(p20q22+q20)ab−4a2p20
)

xdx2) .

We can choose µ and η to reduce the 1-jet of the BDE (13) to xdx2 ± ydxdy if and
only if condition (5) is satisfied, that is, if and only if d0 has a D4-singularity at the cross-cap
point (see Theorem 4.5). We suppose that this is the case. Then the 1-jet of the BDE (13) is
equivalent to xdx2 + ydxdy (resp. xdx2 − ydxdy) if Γ < 0 (resp. Γ > 0), with Γ as in (5)
(see Theorem 4.5).

Using Theorem 7.1 in Section 7, we deduce that the BDE (13) is generically topologi-
cally equivalent to xdx2+2ydxdy+x2dy2 = 0 if Γ < 0 and to xdx2−2ydxdy+x2dy2 = 0
if Γ > 0.

If the principal plane is lightlike, the 1-jet (14) becomes

2bq21xdxdy + (4b(q20 − p20q22)x + 2bq21y)dx2 .

If q20 − p20q22 �= 0, the change of coordinate (x, y) �→
( q21

q22p20−q20
x, x + y

)

and

multiplication by a non-zero constant reduces the 1-jet to xdxdy + ydx2. The coefficient
of y2 in Coeff(dy2) of the new equation is equal to 2(1 + q2

22)(q22p20 − q20)
2/(2bq3

21) so
is never zero. Therefore, by Theorem 3.4 in [19], the BDE is topologically equivalent to
y2dy2 + xdxdy + ydx2. If q20 − p20q22 = 0, the coefficient of y2 in Coeff(dy2) is equal
to 2(1 + q2

22)/(bq21) so the BDE is also topologically equivalent to y2dy2 + xdxdy + ydx2.
(Observe that when the principal plane is lightlike, Γ = b2q2

21 > 0, so the singularity of d0 is
of type D−

4 .) ✷

REMARK 5.4. Asymptotic directions can be characterised in terms of the contact of
the surface with lines. This contact is affine invariant [3] so does not depend on the metric in
R

3. This means that the asymptotic curves on a cross-cap in Minkowski 3-space are the same
as those on the cross-cap in Euclidean 3-space (see [25] for their study).

6. The lines of principal curvature. When the shape operator Ap has real eigen-
values at a point p ∈ M \ LD, we call them the principal curvatures and their associated
eigenvectors the principal directions of M at p. (There are always two principal curvatures
at each point on the Riemannian part of M but this is not always true on its Lorentzian part.)
The lines of principal curvature, which are the integral curves of the principal directions, are
the images by the parametrisation φ of the solutions of the BDE

(15) (Gm − Fn)dy2 + (Gl − En)dydx + (F l − Em)dx2 = 0 .

One can extend the lines of principal curvature across the LD as follows ([15]). As
equation (15) is homogeneous in l,m, n, we substitute these by l̄, m̄, n̄. This substitution does
not alter the pair of foliations on M \LD. The new equation is defined on the LD and defines
the same pair of foliations associated to the de Sitter (resp. hyperbolic) Gauss map on the



ON THE GEOMETRY OF THE CROSS-CAP IN MINKOWSKI 3-SPACE 311

Riemannian (resp. Lorentzian) part of M . The extended lines of principal curvature are the
images by φ of the solution curves of the BDE

(16) (Gm̄ − F n̄)dy2 + (Gl̄ − En̄)dydx + (F l̄ − Em̄)dx2 = 0 .

We call the solutions of the BDE (16) the pre-lines of principal curvature and label its
discriminant the Pre-Lightlike Principal Locus (PLPL). The image of the PLPL by φ is
labelled the Lightlike Principal Locus (LPL) (see [14, 15] for smooth Lorentzian surfaces
and smooth surfaces with varying signature metric).

The PLPL is the zero set of the function

(17) (Gl̄ − En̄)2 − 4(Gm̄ − F n̄)(F l̄ − Em̄) ,

and we have the following about its singularities.

PROPOSITION 6.1. (i) If the tangential line is timelike, then the PLPL has an A−
3 -

singularity.

(ii) If the tangential line is spacelike, then the PLPL has: an A−
3 -singularity if and

only if the principal plane is timelike; an A+
3 -singularity if and only if the principal plane is

spacelike; generically an A4-singularity if the principal plane is lightlike.

For both spacelike and timelike tangential lines, when the PLPL has an A−
3 -singularity,

its two branches are tangent to the double point curve in the source.

(iii) Suppose that the cross-cap is not parabolic. If the tangential line is lightlike and the

principal plane is timelike, then the PLPL has generically and X1,0-singularity with two or

four real branches. One of the branches has generically an ordinary tangency with the double

point curve. When the principal plane is lightlike, the PLPL has an X±
1,1-singularity (+ for

a hyperbolic cross-cap and − for an elliptic one). The double point curve is tangent to the

cusp component of the PLPL.

PROOF. (i) We take a parametrisation of the cross-cap as in (2) and compute the rel-
evant jets of l̄, m̄, n̄ and find that the 3-jet of the PLPL is given by 4q2

21x
2 + 8q21q31x

3 −
24q21q33xy2. Therefore, its singularity is of type A≥3. We eliminate the term xy2 by a change
of coordinates of the form x �→ x + ay2 and find that the 4-jet of the PLPL is K-equivalent
to 4q2

21(x
2 − 16(1 + q2

22)y
4), so the PLPL has an A−

3 -singularity.
(ii) We parametrise the cross-cap as in (3), and show, by a similar calculation to the case

(i), that the 4-jet of the PLPL is K-equivalent to 4q2
21(x

2 − 16(1 − q2
22)y

4). This is an A−
3

(resp. A+
3 ) if and only if 1−q2

22 > 0 (resp. 1−q2
22 < 0) (see Proposition 3.2 for interpretation

in terms of the principal plane).
When 1 − q2

22 = 0, the principal plane is lightlike (Proposition 3.2) and the 5-jet of the
PLPL is K-equivalent to 4q2

21(x
2 + 96q33y

5). Thus, the singularity of the PLPL is of type
A4 if and only if q33 �= 0.
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(iii) We parametrise the cross-cap as in (4). The 4-jet of the PLPL is given by

16q21x[q21(4(ap20 + bq20)
2 + q3

21b
2p20)x

3 + 6bq2
21(b(q20 + q22p20) + 2ap20)yx2

+ 3q21(4p20(a + bq22)
2 + b2q2

21)xy2

+ 4(a + bq22)(2(q22p20 − q20)(a + bq22) + bq2
21)y

3] .

Here, the PLPL has an X1,0-singularity and consists of two or four curves intersecting
transversally at the origin if and only if

(q22p20 − q20)
2 + q2

21p20 �= 0 and (a + bq22)(2(q22p20 − q20)(a + bq22) + bq2
21) �= 0 .

Observe that the first condition above means that the cross-cap is not parabolic. The quartic
of the 4-jet of the PLPL has always a real root with tangent direction x = 0, so it is tangent
to the double point curve. A calculation shows that the tangency is ordinary if and only if the
coefficient of y5 in the Taylor expansion of the PLPL is not zero, that is, if and only if

(18) Λ = (−2q21(q
2
22 + 1) + 3q33(bq22 + a))(2(q22p20 − q20)(bq22 + a) + bq2

21) �= 0 .

When a + bq22 = 0, the principal plane is lightlike and the 4-jet of the PLPL becomes

16b2q2
21x

2((q2
21p20 + 4(q22p20 − q20)

2)x2 − 6q21(q22p20 − q20)xy + 3q2
21y

2) ,

with b �= 0. We can make a linear change of coordinate of the form y �→ y + αx to reduce
this 4-jet to

16b2q2
21x

2((q2
21p20 + (q22p20 − q20)

2)x2 + 3q2
21y

2) .

Then the coefficient of y5 is given by 128(1 + q2
22)q

3
21b. Therefore the singularity of the

PLPL is of type X±
1,1 (i.e., it is R-equivalent to x4 ± x2y2 + a0y

5, a0 �= 0) provided that

q2
21p20 + (q22p20 − q20)

2 �= 0, that is, provided that the cross-cap is not parabolic. Observe
that the singularity of the PLPL is R-equivalent to x4+x2y2+a0y

5 (resp. x4−x2y2+a0y
5)

if and only if the cross-cap is hyperbolic (resp. elliptic). Then the PLPL consists of a cusp
(resp. a cusp and two transverse lines). The limiting tangent direction to the cusp is tangent
to the double point curve in the source. ✷

We seek to determine the generic topological configurations of the pre-lines of principal
curvature and their images on the cross-cap. We start with the cases where the tangential line
is timelike or spacelike. Then the PLPL, which is the discriminant of the BDE (16), has
an A±

3 -singularity when the principal plane is not lightlike and an A4-singularity when it is
(Proposition 6.1).

Suppose that the PLPL has an A±
3 -singularity. For parametrisations of the surface as in

Theorem 3.1, the 1-jet of the coefficients of the BDE (16) is (0, b0x, y), with b0 = −1/2. It
follows by Proposition 3.2 in [25] that the 3-jet of the BDE (16) is equivalent to (a3y

3, b0x +
b2y

2 +b3y
3, y), and Theorem 3.3 in [25] states that if the discriminant has an A±

3 -singularity,
then this BDE is topologically equivalent to

(∓y3, b0x + b2y
2, y) ,

with (b0, b2) a fixed value in an open region delimited by some exceptional curves in the
b0b2-plane. The exceptional curves are the parabola 1 + b0 − b2

2 = 0 and the lines b0 =
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FIGURE 2. Partition of the (b0, b2)-plane, A+
3 left and A−

3 right. The topological type
for (b0,−b2) is the same as that for (b0, b2).

−1, b0 = 0, 2 + b0 − 2b2 = 0, 2 + b0 + 2b2 = 0 (Figure 2). There are 4 generic topological
models when the singularity is A+

3 and 9 when it is A−
3 .

THEOREM 6.2. (i) Suppose that the tangential line of the cross-cap is timelike or

spacelike and the PLPL has an A−
3 -singularity. Then the BDE (16) of the pre-lines of prin-

cipal curvature is topologically equivalent to
(

y3,−1

2
x + b2y

2, y

)

if b2 �= 3/4,±
√

2/2, where b2 = 3q33/(4q21

√

1 + q2
22) when the tangential line is time-

like and b2 = 3q33/(4q21

√

1 − q2
22) when the tangential line is spacelike. The topological

configuration of the pre-lines of principal curvature is as in

Table 3 first figure in the appropriate block if |b2| <
√

2
2 (R9 in Figure 2 right),

Table 3 second figure if − 3
4 < b2 < −

√
2

2 or
√

2
2 < b2 < 3

4 (R8 in Figure 2 right),

Table 3 third figure (R4 in Figure 2 right) if |b2| > 3
4 .

(ii) Suppose that the tangential line of the cross-cap is spacelike and the PLPL has

an A+
3 -singularity. Then the BDE (16) is topologically equivalent to (−y3,− 1

2x, y) (R3 in
Figure 2 left); see Table 3.

PROOF. We deal with the case when the PLPL has an A−
3 -singularity and the tangen-

tial line is timelike. For a parametrisation φ of the cross-cap as in (2), we can reduce the 3-jet
of the BDE (16) following similar steps to those in the proof of Theorem 5.3 to

(

4(1 + q2
22)y

3,−1

2
x + 3q33

2q21
y2 + βy3, y

)

,

where β is a constant depending on j4φ. We divide the new BDE by 4(1 + q2
22) and make

smooth changes of coordinates in the source of the form x = 2
√

1 + q2
22X, y = Y. This

results in a BDE with a 3-jet

(19) (Y 3, b0X + b2Y
2 + β̃Y 3, Y ) ,
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where b0 = −1/2, b2 = 3q33/4q21

√

1 + q2
22 and β̃ is a new constant. The result follows by

apply Theorem 3.3 in [25]. Similar calculations give the result for the case when the tangential
line is spacelike and the PLPL has an A±

3 -singularity. ✷

THEOREM 6.3. Suppose that the tangential line is spacelike and the principal plane

is lightlike (generically the PLPL has an A4-singularity). Then the BDE of the pre-lines of

principal curvature is topologically equivalent to (xy + y3 + y4,− 1
2x, y). See Table 3.

PROOF. The 1-jet of the BDE is given by (0,−q21x, 2q21y). We make successive
changes of coordinates (and divide by 2q21) to reduce the 4-jet of the BDE to the form
a(x, y)dy2 − xdxdy + ydx2, where a has a zero 1-jet. We have a21 = axy(0, 0) = 2q33/q21

and the discriminant has an A4-singularity if and only if q33 �= 0. The result follows by
applying Theorem 7.3 in Section 7. ✷

We turn now to the lightlike cross-cap.

THEOREM 6.4. When the tangential line is lightlike and the principal plane is time-

like, the BDE (16) of the pre-lines of principal curvature of a cross-cap parametrised as in

Theorem 3.1(c) is topologically equivalent to one of the following normal forms:

(xy,−x2, 3xy + 3y2) if Γ > 0 , Table 3 first figure in appropriate box if |c| > 2

(xy,−x2, 3xy + y2) if Γ > 0 , Table 3 second figure if |c| < 2

(xy, x2,−3xy + y2) if Γ < 0 , Table 3 third figure

with ΛΓ �= 0 and c = 2
|Γ | b(bq2

21 + 2(bq22 + a)(−q20 + q22p20))
√

|Γ |/(b2q2
21) �= 0, where

Γ is as in (5) and Λ is as in (18).

PROOF. The 2-jets of the coefficients of the BDE (16) are

A = Coeff(dy2) = 2bq2
21x

2 + 4q21(bq22 + a)xy ,

B = Coeff(dxdy)= 8(bq20 + ap20)q21x
2 + 4bq2

21xy ,

C = Coeff(dx2) = −2bq2
21p20x

2 − 4q21(2p20bq22 + 3ap20 + bq20)xy

−4(2(bq22 + a)(q22p20 − q20) + bq2
21)y

2 .

Suppose that b �= 0 (the case b = 0 follows similarly). As the principal plane is timelike,
(bq22 + a) �= 0. We follow similar steps of the proof of Theorem 7.2 and make the linear
change of coordinates (x, y) �→ (λx, x + ηy) with λ = −2(bq22 + a)/(bq21). We multiply
the new equation by −8η3(bq22 + a)2/b and take η =

√

|Γ |/(q2
21b

2). This gives a new BDE
with a 2-jet

xydy2 − 2x2dxdy + (3xy + cy2)dx2 if Γ > 0

xydy2 + 2x2dxdy + (−3xy + cy2)dx2 if Γ < 0

with c is as in the statement of the theorem. The result follows by applying Theorem 7.2 in
Section 7. ✷
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THEOREM 6.5. Suppose the tangential line is lightlike and the principal plane is light-

like, but the cross-cap is not parabolic (i.e., it is elliptic or hyperbolic). Then the BDE (16)

of the pre-lines of principal curvature of a cross-cap parametrised as in Theorem 3.1(c) is

generically topologically equivalent to

(x2 + xy2 + y3, xy, x2 − 2y2) for an elliptic cross-cap,

Table 3 first figure in appropriate box

(x2 + xy2 + y3, xy,−x2 − 2y2) for a hyperbolic cross-cap, Table 3 second figure.

TABLE 3. Pre-Principal curves on cross-caps in R
3
1.

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Tg. line
Pr. plane

Timelike Lightlike Spacelike

Timelike

Lightlike

Spacelike
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FIGURE 3. Pre-lightlike and lightlike curves (with the cross-cap viewed from two opposite drections)
when the tangential line is lightlike and the principal plane is timelike (this is the D−

4 case,
in the appropriate box, in Table 2). There are two possible configurations on the cross-cap
depending of the relative position of the double point curve with the separatrice. In the top
left figure, the double point curve intersects a given pre-lightlike curve only once whereas in
the bottom left one it intersects it twice.

PROOF. We can make linear changes of coordinates and reduce the 3-jet the coefficients
of the BDE (16) to

j3A = x2 + a30x
3 + a31x

2y + 6(2q3
22p20−2q2

22q20+q22(q
2
21+2p20)−2q20)

q2
21b

xy2 + 4(1+q2
22)

q21b
y3 ,

j3B = 2xy + b30x
3 + b31x

2y + b32xy2 + b33y
3 ,

j3C = − (q22p20−q20)
2+q2

21p20

q2
21

x2 − 2y2 + c30x
3 + c31x

2y + c32xy2 + c33y
3

with the coefficients aij , bij , cij depending on the 3-jets of p and q in Theorem 3.1(c). The
result follows by applying Theorem 7.4 in Section 7.

The genericity condition is 2q3
22p20 − 2q2

22q20 + q22(q
2
21 + 2p20) − 2q20 �= 0 (i.e., the

coefficient of xy2 in A is not zero, see the proof of Theorem 7.4). ✷

REMARK 6.6 (Configurations on the cross-cap). One can make a cross-cap (ignoring
the metric) from a rectangular piece of paper as follows. Label one side of the paper A and the
other B. Draw a line parallel to one side of the rectangle that divides the piece of paper into
two equal rectangles. This line is the double point curve. Cut the piece of paper along half of
the double point curve. Fold one free edge of the cut and seller tape it to the other fixed half
of the double point curve on the side A of the paper. Take the remaining free edge and fold it
along the fixed half of the double point curve on the side B of the paper.

When every pre-lightlike (resp. pre-principal) curve intersects the double point curve in
at most one point, their images on the cross-cap do not self-intersect. Then one can draw
the pre-lightlike (resp. pre-principal) curves on a piece of paper and determine by the above
procedure the configurations of the lightlike (resp. principal) curves on the cross-cap itself
(see the example in Figure 3 top figures). If there are pre-lightlike (resp. pre-principal) curves
which intersect the double point curve twice (see the example in Figure 3 bottom figures) one
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needs to show that these two points are not mapped to the same image on the cross-cap (see
for example [25] for proofs for some pairs of foliations on a cross-cap). We conjecture that
this case for all the cases in this paper.

7. Normal forms of certain BDEs. We obtain here topological normal forms of
BDEs needed in the previous sections. A germ of a BDE is an equation in the form

ω : a(x, y)dy2 + 2b(x, y)dxdy + c(x, y)dx2 = 0 ,

where a, b, c are germs of smooth functions (say, at the origin) R
2, 0 → R. We denote

a BDE by ω = (a, b, c). BDEs are extensively studied with many applications including
control theory and differential geometry; see for example [7, 16] and [23] for a survey article.
A BDE determines a pair of transverse foliations away from the discriminant curve which is
the set of points where the function δ = b2 − ac vanishes. The pair of foliations together with
the discriminant curve are called the configuration of the solutions of the BDE.

Following the notation in [12], let fi(w), i = 1, 2, denote the foliation associated to ω

which is tangent to the vector field

ξi(ω) = a
∂

∂u
+ (−b + (−1)i

√

b2 − ac )
∂

∂v
.

If ψ is a diffeomorphism and λ(x, y) is a non-vanishing real valued function, then ([12])
for k = 1, 2,

1. ψ(fk(w)) = fk(ψ
∗(ω)) if ψ is orientation preserving;

2. ψ(fk(w)) = f3−k(ψ
∗(ω)) if ψ is orientation reserving;

3. fk(λw) = fk(ω) if λ(x, y) is positive;
4. fk(λw) = f3−k(ω) if λ(x, y) is negative.
7.1. BDEs with 1-jet (0,±y, x). We consider BDEs ω with 1-jet equivalent to

(0,±y, x) and whose discriminants have an A2-singularity (see Section 5). We shall take
j1ω = (0,±y, x). Similar calculation to those carried out in [4, 5, 23] show that any k-jet,
k ≥ 3, of ω can be reduced by smooth changes of coordinates in R

2, 0 and multiplication by
a non-zero polynomial to one in the form

(20) (M1(x),±y, x + M2(y)) ,

where M1(x) = a2x
2+a3x

3+· · ·+akx
k and M2(y) = b3y

3+· · ·+bky
k. As the discriminant

is supposed to have an A2-singularity, a2 �= 0, so we can re-scale and set a2 = 1.

THEOREM 7.1. Suppose that j1ω = (0, εy, x), ε = ±1 and that the discriminant of

ω has an A2-singularity. Then ω is topologically determined by the 2-jet of its coefficients

and is topologically equivalent to one of the following normal forms

(i) (x2, y, x) Figure 4, bottom left,

(ii) (x2,−y, x) Figure 4, bottom right.

PROOF. We consider the blowing-up x = u, y = uv and x = uv, y = v.

The blowing-up x = u, y = uv:
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FIGURE 4. Configurations of the integral curves of a BDE ω with j1ω = (0, εy, x)

and whose discriminant has an A2-singularity, together with their associated
blowing up models: ε = −1 left and ε = 1 right.

We have dx = du and dy = udv + vdu. We denote ω0 = (u, v)∗ω the BDE obtained
by applying the blowing-up transformation to ω. If ω = (a, b, c), then ω0 = (ā, b̄, c̄) is given
by

ω0 : a(u, uv)(udv + vdu)2 + 2b(u, uv)du(udv + vdu) + c(u, uv)du2 = 0 ,

so that

ā(u, v) = u2a(u, uv) ,

b̄(u, v) = uva(u, uv) + ub(u, uv) ,

c̄(u, v) = v2a(u, uv) + c(u, uv) .

For ω as in (20) we have

ā = u2M1(u) ,

b̄ = uv(εv + M1(u)) ,

c̄ = u + 2εuv2 + M1(u)v2 + M2(uv) .

We can write ω0 = u(u2A1, uB1, C1) with

A1 = uN1(u) ,

B1 = εv + uvN1(u) ,

C1 = 1 + 2εv2 + u(N1(u)v2 + N2(uv))

where M1(u) = u2N1(u) and M2(uv) = u2N2(uv).
The quadratic form ω1 = (u2A1, uB1, C1) is a product of two 1-forms, and to these

1-forms are associated the vectors fields

Zi =
(

− uB1 + (−1)iu
√

B2
1 − A1C1

) ∂

∂u
+ C1

∂

∂v
, i = 1, 2 .
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The blowing-up transformation is orientation preserving if u is positive and orientation
reserving if u is negative. As we factored out u once, it follows that Z1 is tangent to the
foliation associated to f1(ω) and Z2 is tangent to the foliation associated to f2(ω).

The fields Zi, i = 1, 2, are defined in the region where B2
1 − A1C1 > 0. The set

B2
1 − A1C1 = 0 is a smooth curve tangent to the exceptional fibre at u = 0 and we have

(B2
1−A1C1)(0, v) = v2, so the whole exceptional fibre is an integral curve for both Z1 and Z2.

We study the vector fields Zi in a neighbourhood of the exceptional fibre u = 0. The
singularities of Zi on u = 0 occur when 1+2εv2 = 0. Thus, the vector fields Z1 and Z2 have
singularities at v = ±

√
2/2 when ε = −1 and have no singularities when ε = 1.

Consider ε = −1. At v =
√

2/2, we have B1(0,
√

2/2) = −
√

2/2, so that

−uB1 − u
√

B2
1 − A1C1 = −uB1 + uB1

√

1 − A1C1/B
2
1

= A1C1

2B1
+ C2

1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. Therefore Z1 is singular
along the curve C1(u, v) = 0. We replace Z1 with the vector field Z̃1 = Z1/C1, which is
regular along the exceptional fibre.

At v = −
√

2/2, the eigenvalues of the linear part of Z1 are 2
√

2 and −
√

2, so Z1 has a
saddle singularity at this point.

Similar calculations to those for Z1 show that Z2 has a saddle singularity at v =
√

2/2
and is regular at v = −

√
2/2.

The blowing-up x = uv, y = v:
This yields a new BDE ω0 = (u, v)∗ω = (ā, b̄, c̄) with

ā = u3v + 2εuv + u2M2(v) + M1(uv) ,

b̄ = u2v2 + εv2 + uvM2(v) ,

c̄ = uv3 + v2M2(v) .

We can write ω0 = v(A1, vB1, v
2C1) with

A1 = u3 + 2εu + v(u2N2(v) + N1(uv)) ,

B1 = u2 + ε + vuN2(v) ,

C1 = u + vN2(v)

where M1(uv) = v2N1(uv) and M2(v) = v2N2(v).
The quadratic form ω1 = (A1, vB1, v

2C1) is a product of two 1-forms, and to these
1-forms are associated the vectors fields

Zi =
(

− B1 + (−1)i
√

B2
1 − A1C1

) ∂

∂u
+ vC1

∂

∂v
, i = 1, 2

with
A1 = u3 + 2εu + v(N1(uv) + u2N2(v)) ,

B1 = u2 + ε + v(uN2(v)) ,

C1 = u + vN2(v) .
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We only need to study the vector fields Zi at origin. Similar calculations to the first
blowing-up show that Z1 has a saddle singularity (resp. has no singularity) and Z2 has no sin-
gularity (resp. has a saddle singularity) when ε = −1 (resp. ε = 1). Therefore, the integral
curves of Z1 and Z2 are in as Figure 4, top figures. Blowing down yields the configuration in
Figure 4, bottom figures. ✷

7.2. BDEs with 2-jet (xy, εx2,−3εxy + cy2). We take j2ω = (xy, εx2,−3εxy +
cy2), ε = ±1. Then the 4-jet of the discriminant of ω is given by

x(x3 + 3εxy2 − cy3) .

The discriminant has an X1,0-singularity if c �= 0,±2 when ε = −1, and if c �= 0 when
ε = 1. We write

(21) ω = (a, b, c) = (xy + M1(x, y), εx2 + M2(x, y),−3εxy + cy2 + M3(x, y)) ,

where Mi(x, y), i = 1, 2, 3, are germs of smooth functions with zero 2-jets at the origin. We
set

j3M1 = a30x
3 + a31x

2y + a32xy2 + a33y
3 ,

j3M2 = b30x
3 + b31x

2y + b32xy2 + b33y
3 ,

j3M3 = c30x
3 + c31x

2y + c32xy2 + c33y
3 .

THEOREM 7.2. Suppose that j2ω = (xy, εx2,−3εxy + cy2), ε = ±1, c �= 0,±2 if

ε = −1, c �= 0 if ε = 1. Suppose further that (b33 − 2ca33) �= 0. Then ω is topologically

determined by the 2-jet of its coefficients and is topologically equivalent to one of the following

normal forms

(i) (xy,−x2, 3xy + 3y2) Table 3 first figure in appropriate box,

(ii) (xy,−x2, 3xy + y2) Table 3 second figure,

(iii) (xy, x2,−3xy + y2) Table 3 third figure.

PROOF. We start with the case ε = −1. We consider the blowing-up x = uv, y = v

and x = u, y = uv.

The blowing-up x = uv, y = v:

This gives a new BDE ω0 = (u, v)∗ω = (ā, b̄, c̄) with

ā = (u3 + cu2 + u)v2 + M3(uv, v)u2 + 2M2(uv, v)u + M1(uv, v) ,

b̄ = (2u2 + cu)v3 + M2(uv, v)v + M3(uv, v)uv ,

c̄ = (3u + c)v4 + M3(uv, v)v2 .

We can write ω0 = v2(A1, vB1, v
2C1) with

A1 = u3 + cu2 + u + v(N1(u, v) + 2N2(u, v)u + N3(u, v)u2) ,

B1 = u(2u + c) + v(N2(u, v) + N3(u, v)u) ,

C1 = 3u + c + vN3(u, v)
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where Mi(uv, u) = v2Ni(u, v), i = 1, 2, 3. The quadratic form ω1 = (A1, vB1, v
2C1) is a

product of two 1-forms, and to these 1-forms are associated the vectors fields

(22) Yi = A1
∂

∂u
+

(

− vB1 + (−1)i |v|
√

(B2
1 − A1C1)

) ∂

∂v
, i = 1, 2 .

Here, as we factored out v twice, it follows that Y1 is tangent to the foliation associated
to f1(ω) if v is positive and to that associated to f2(ω) if v is negative; while Y2 is tangent to
the foliation associated to f2(ω) if v is positive and to f1(ω) if v is negative.

We study the vector fields Yi in a neighbourhood of the exceptional fibre v = 0. The
fields Yi are only defined in the regions where the discriminant δ = B2

1 − A1C1 ≥ 0. On
v = 0, this means that

u(u3 − 3u − c) ≥ 0 .

The above segment of the exceptional fibre is an integral curve of both fields Yi , i = 1, 2.

The discriminant δ has two roots if |c| > 2 and four roots if |c| < 2.
We start with the case |c| > 2 and take c > 2 (the case c < −2 is topologically equivalent

to the case c > 2). The singularities of Y1 on v = 0 occur when A1(u, 0) = 0, that is, when

u(u2 + cu + 1) = 0 .

Thus, Y1 has singularities at u = 0 and u± = (−c ±
√

c2 − 4)/2.
At u+ = (−c +

√
c2 − 4)/2, we have B1(u+, 0) =

√
c2 − 4 (−c +

√
c2 − 4)/2 < 0, so

that

−vB1 − |v|
√

B2
1 − A1C1 = −vB1 − |vB1|

√

1 − A1C1/B
2
1

= −vB1 + |v|B1 − A1C1|v|
2B1

+ A2
1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. When v > 0, Y1 is
singular along the curve A1(u, v) = 0. We consider the vector field Ỹ1 = Y1/A1. Then Ỹ1

has no singularity. When v < 0, Y1 has a saddle singularity at (u+, 0).
Similarly, Y1 has a saddle singularity at (u−, 0) if v > 0 and no singularities if v < 0.
The singularity of Y1 at u = 0 occur at the point of intersection of the exceptional fibre

with the branches of the blown-up discriminant. We change variables and set t = v, s2 =
B2

1 − A1C1, with s ≥ 0. (The map (u, v) �→ (s, t) is a fold map, so is a local diffeomorphism
from the uper half-plane s > 0 to the set in the (u, v)-plane with B2

1 − A1C1 > 0. It is a 1-1
map on the closure of these sets, i.e., including boundaries.)

The 2-jet of the vector field (s, t)∗Y1 is equivalent to

(−s + Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v > 0

(s + Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v < 0 ,(23)

where Λ1 = b33 − 2ca33. The singularity of (s, t)∗Y1 is a saddle-node provided Λ1 �= 0, and
its integral curves are as in Figure 5.
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FIGURE 5. Integral curves of (s, t)∗Y1(s ≥ 0), Λ1 > 0 left, and Λ1 < 0 right. (The
continuous curves are those of interest as s ≥ 0.)

FIGURE 6. Integral curves of (s, t)∗Y2(s ≥ 0), Λ1 > 0 left, and Λ1 < 0 right. (The continuous curves
are those of interest as s ≥ 0.)

The singularities of Y2 on v = 0 occur when A1(u, 0) = 0, that is, when

u(u2 + cu + 1) = 0.

Therefore, Y2 has singularities at u = 0 and u± = (−c ±
√

c2 − 4)/2.
At u+ = (−c +

√
c2 − 4)/2, we have B1(u+, 0) =

√
c2 − 4 (−c +

√
c2 − 4)/2 < 0.

Following the same arguments for Y1, we can write

−vB1 − |v|
√

B2
1 − A1C1 = −vB1 + |v|B1 − A1C1|v|

2B1
+ A2

1g(u, v)

for some germ of a smooth function g with a zero 1-jet at the origin. When v < 0, Y2 is
singular along the curve A1(u, v) = 0. We consider the vector field Ỹ2 = Y2/A1. Then Ỹ2

has no singularities. When v > 0, Y2 has a saddle singularity at (u+, 0).
Similarly, Y2 has a saddle singularity at (u−, 0) if v < 0 and no singularities if v > 0.
At u = 0, we change variables and set t = v, s2 = B2

1 − A1C1, with s ≥ 0. The 2-jet of
the vector field (s, t)∗Y2 is equivalent to

(s + Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v > 0

(−s + Λ1t)
∂

∂s
+ (2ts)

∂

∂t
if v < 0(24)

where Λ1 = b33 − 2ca33, as for Y1. The singularity of (s, t)∗Y2 is a saddle-node provided
Λ1 �= 0, and its integral curves are as in Figure 6.
The blowing-up x = u, y = uv:
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FIGURE 7. Configurations of the integral curves of the BDEs when ε = −1: |c| > 2 left, and |c| < 2
right and their associated blowing-up.

We take the coefficients of the BDE as in (21). The blowing-up yields new BDE given
by ω0 = u2(u2A1, uB1, C1) with

A1 = v + uN1(u, uv) ,

B1 = v2 − 1 + u(N1(u, uv)v + N2(u, uv)) ,

C1 = v3 + cv2 + v + u(N1(u, uv)v2 + 2N2(u, uv)v + N3(u, uv))

where Mi(uv, u) = v2Ni(u, v), i = 1, 2, 3. The quadratic form ω1 = (u2A1, uB1, C1) is a
product of two 1-forms, and to these 1-forms are associated the vectors fields

Xi = (u2A1)
∂

∂u
+

(

− uB1 + (−1)i |u|
√

(B2
1 − A1C1)

) ∂

∂v
, i = 1, 2 .

These vector fields are tangent to the foliations defined by ω1. It is clear that we can factor
out the term u in Xi , with an appropriate sign change when u < 0. The vector fields

Yi = (uA1)
∂

∂u
+

(

− B1 + (−1)i
√

(B2
1 − A1C1)

) ∂

∂v
, i = 1, 2 ,

are then considered. It is easy to see that Y1 (resp. Y2) has a node singularity (resp. has no
singularities) at the origin.

We can now draw the integral curves of the fields Y1 and Y2, as illustrated in Figure 7,
top figures, and blow down to obtain the configurations of the integral curves of the associated
BDE (Figure 7, bottom figures, left box).

We consider now the case |c| < 2. The singularities of Yi, i = 1, 2, on v = 0 occur only
at u = 0. At u = 0, the vector fields Yi have a saddle-node singularity as in (23) and (24).
The configurations of the integral curves of Yi are as in Figure 7 right, top figures (left box).
Blowing-down yields the configuration of the integral curves of the original BDE.

The case ε = 1 follows similarly and the configuration of the integral curves is given in
Figure 7, right box. ✷
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FIGURE 8. Configuration of the integral curves of a BDE topologically equivalent to (y,− 1
2 x, xy +y3 +

y4) right figure, and its associated blowing-up left figure.

7.3. BDEs with 1-jet
(

0,− 1
2x, y

)

and with a discriminant with an A4-singularity.

THEOREM 7.3. Suppose that j1ω = (0,− 1
2x, y) and that the discriminant has an

A4-singularity. Then ω is topologically determined by the 4-jet of its coefficients and is topo-

logically equivalent to (xy + y3 + y4,− 1
2x, y), with configuration as in Figure 8.

PROOF. One can reduce the k-jet of such BDEs to the form j kω = (a(x, y),−1/2x, y),
with j1a = 0. If we denote by aij the coefficient of xi−jyj in the Taylor expansion of a, then
the discriminant of ω has an A4-singularity if and only if

a22 = 0 , a33 − a2
21 = 0 , 4a20a

2
21 + 2a32a21 + a44 �= 0 .

We consider the blowing-up x = uv and y = v. We get, after dividing by v2 a BDE
(u, v)∗ω/v2 whose discriminant has a cusp singularity (an A2) at the origin. Both vector
fields are regular along v = 0 and away from u = 0. The 2-jet of (u, v)∗ω/v2 at the origin is
given by

(a21u − a2
21v + a20u

2 + a32uv + a44v
2)dv2 + ududv + vdu2 .

When a21 �= 0, we can make changes of coordinates to show that the 2-jet of (u, v)∗ω/v2

is equivalent to
(

2

9a2
21

(4a20a
2
21 + 2a32a21 + a44)u

2 + α1uv + α2v
2
)

dv2 − 2vdudv + udu2 ,

where α1 and α2 depend on the coefficients of c. It follows now from Theorem 3.3 in [24], that
(u, v)∗ω/v2 is topologically equivalent to u2dv2 −2vdudv+udu2 = 0 and the configuration
of its integral curves are as in Figure 8, left figure. (We observe that in Theorem 3.3 in [24],
the 1-jet is taken in the form (0,−v+b2u, u) with b2 �= 0. In fact we can take b2 = 0, the only
difference in the proof there is that discriminant appears when blowing up in the v-direction,
so the condition b2 �= 0 is redundant.)

Blowing up in the v-direction does not give any extra information. Therefore, the con-
figuration of the BDE is as shown in Figure 8, right figure. The conditions on the coefficients
of c that we need are a21 �= 0 together with those above for the discriminant to have an A4-
singularity. We take a21 = 1 (so a33 = 1), a44 = 1 and set the remaining coefficients to be
zero. ✷
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FIGURE 9. Configuration of the integral curves of a BDE topologically equivalent to (x2 + xy2 +
y3, xy, x2 − 2y2) (resp. (x2 + xy2 + y3, xy,−x2 − 2y2)) bottom left figure (resp. bottom
right), and its associated blowing-up top figure.

7.4. BDEs with 1-jet (x2, xy, c20x
2 − 2y2) and whose discriminant has an X1,1-

singularity.

THEOREM 7.4. Suppose that the j2ω = (x2, xy, c20x
2 − 2y2) and that its discrimi-

nant has an X±
1,1-singularity at the origin. Then the BDE is locally topologically determined

by its 3-jet and is topologically equivalent to

X−
1,1 : (x2 + xy2 + y3, xy, x2 − 2y2) , Figure 9, bottom left ,

X+
1,1 : (x2 + xy2 + y3, xy,−x2 − 2y2) , Figure 9, bottom right .

PROOF. We write the coefficients of the BDE ω = (a, b, c) in the form

a = x2 + a30x
3 + a31x

2y + a32xy2 + a33y
3 + O(3) ,

b = 1
2 (2xy + b30x

3 + b31x
2y + b32xy2 + b33y

3 + O(3)) ,

c = c20x
2 − 2y2 + c30x

3 + c31x
2y + c32xy2 + c33y

3 + O(3) .

The discriminant b2 − ac has an X1,1-singularity if and only if c20 �= 0 and a33 �= 0. We
have an X+

1,1(resp. X−
1,1) if and only if c20 < 0 (resp. c20 > 0).

We proceed as in the previous subsection. (The blowing-up x = u and y = uv does
not give any extra information). With blowing up x = uv and y = v, we get a new BDE
(u, v)∗ω/v2 = (A, vB, v2C) with,

A = a33v + u2 + (a32 + b33)uv + a44v
2 + O(3) ,

B = 1
2 (−2u + b33v + (2c33 + b32)uv + b44v

2 + O(3)) ,

C = −2 + c33v + c20u
2 + c32uv + a44v

2 + O(3) .



326 F. DIAS AND F. TARI

The discriminant is given by v2(B4 − AC) with

B2 − AC = 8a33v − 4u2(c20u
2 − 3) + vg(u, v) ,

where g a smooth function with a zero 1-jet. Thus, on the exceptional fibre v = 0 there is one
smooth component of the blown up discriminant at u = 0 which has an ordinary tangency
with the exceptional fibre provided a33 �= 0 and two extra smooth branches transverse to the
exceptional fibre at u± = ±

√
3/c20 if c20 > 0 (i.e. when the discriminant of ω has an X−

1,1)
and no extra branches if c20 < 0 (see Figure 9, top figures).

We consider the vector fields Yi , i = 1, 2, as in (22). They are singular on the exceptional
fibre (away from u = 0, and u±) occur when A(u, 0) = u2(c20u

2 + 1) = 0. When the
discriminant of ω has an X−

1,1-singularity, the vector fields Yi , i = 1, 2, have no singularities
on the exceptional fibre away from u = 0. At u±, they are transverse to the blown-up branches
of the discriminant (see Figure 9, first two top left figures).

When the singularity is an X+
1,1 the vector fields Y1 has a saddle singularity on the excep-

tional fibre at u = −
√

−c20 (resp. u = 1/
√

−c20) when v ≥ 0 (resp. v ≤ 0) and is regular
at u = −

√
−c20 (resp. u = 1/

√
−c20) when v ≤ 0 (resp. v ≥ 0). The vector field Y2 has

mirror image behaviour to Y1 with respect to the exceptional at ±1/
√

−c20. As the blowing
up is orientation preserving if v > 0 and orientation reversing if v < 0, the configuration of
the foliations associated to Yi are as Figure 9.

We can now blow down (u, v)∗ω/v2 to obtain the configuration of the integral curves of
ω (Figure 9). ✷

At u = 0, we proceed as in the proof of Theorem 7.2. By the implicit function theorem,
(B2 − 4AC)(u, v) = s2 gives v = g(u, s). We make the change of variables u = t and
v = g(t, s), with s ≥ 0, in Yi , i = 1, 2, at u = v = 0. The difference here with the case
of Theorem 7.2 is that the new vector fields (t, s)∗Yi have more degenerate singularities at
t = s = 0. In fact,

j3(t, s)∗Y1 =
1

16a33
s(s − 2t)(s + 2t)

∂

∂t
+

1

8a33
(s − 2t)(−s2 + 6st + 24t2)

∂

∂s
,

j3(t, s)∗Y2 = 1

16a33
s(s − 2t)(s + 2t)

∂

∂t
+ 1

8a33
(s + 2t)(s2 + 6st − 24t2)

∂

∂s
.

We blow up the singularity at the origin (t = T , s = ST ) and obtain the configuration
in Figure 10. On the exceptional fibre T = 0, (T , S)∗((s, t)∗Y1) has a saddle singularity
at S =

√
12 and S = −4, a node singularity at −

√
12 and a saddle-node singularity at

S = 2 provided that a32 �= 0. The vector field (T , S)∗((s, t)∗Y2) has a saddle singularity at
S = −

√
12 and S = 4, a node singularity at

√
12 and a saddle-node singularity at S = −2

provided that a32 �= 0. Blowing down gives the configuration of (s, t)∗Yi . Blowing down
again gives the configuration (u, v)∗ω/v2 as in Figure 10.

We can now blow down (u, v)∗ω/v2 to obtain the configuration of the integral curves of
ω (Figure 9). �
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FIGURE 10. Change of variable followed by a blowing up of the singularities of Yi , i =
1, 2 at u = v = 0.
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