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Abstract. Let (M, g) be a Riemannian manifold of constant sectional curvature κ and (T M, g̃ ) be the tangent
bundle of M equipped with the Cheeger-Gromoll metric induced by g. We give necessary and sufficient conditions
for T M having positive scalar curvature. This gives counterexamples to a stated theorem of Sekizawa.

1. Introduction.

A Riemannian metric g on a smooth manifold M gives rise to several natural Riemannian
metrics on the tangent bundle T M of M . The best known example is the Sasaki metric ĝ
introduced in [6], see also [2]. In the present paper we study tangent bundles equipped with
the so called Cheeger-Gromoll metric. Its construction was suggested in [1] but the first
explicit description was given by Musso and Tricerri in [5].

In [7] Sekizawa calculates the Levi-Civita connection ∇̃, the curvature tensor R̃, the
sectional curvatures K̃ and the scalar curvature S̃ of the Cheeger-Gromoll metric. He then
states in his Theorem 6.3 that if (M, g) is an m-dimensional manifold of constant sectional
curvature κ ≥ −3(m − 2)/m, then (T M, g̃ ) has non-negative scalar curvature.

In this paper we prove the following results giving counterexamples to Sekizawa’s state-
ment.

THEOREM 1.1. Let (M, g) be a surface of constant sectional curvature κ . Then there
exists a real number C2 ≥ 40 such that the tangent bundle (T M, g̃ )

i. has positive scalar curvature if and only if κ ∈ [0, C2),
ii. has non-negative scalar curvature if and only if κ ∈ [0, C2].
THEOREM 1.2. Let (M, g) be a Riemannian manifold of dimension m > 2 and of

constant sectional curvature κ . Then there exist real numbers cm < 0 and Cm > 60 such that
the tangent bundle (T M, g̃ )

i. has positive scalar curvature if and only if κ ∈ (cm,Cm),

ii. has non-negative scalar curvature if and only if κ ∈ [cm,Cm].
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For further details on the geometry of tangent bundles equipped with natural metrics,
such as those of Sasaki and Cheeger-Gromoll we refer the reader to the recent survey given in
[4].

2. The Cheeger-Gromoll metric.

Let (M, g) be a Riemannian manifold and let (p, u) be a point on the tangent bundle
T M of M . Then the Levi-Civita connection ∇ on M induces a natural splitting of the tangent
space T(p,u)T M into its vertical and horizontal subspaces

T(p,u) = V(p,u) ⊕ H(p,u) .

This gives rise to the vertical and horizontal lifts Xv,Xh of a vector field X on M . The
vertical subspace is the kernel of the bundle map π : T T M → T M at the point (p, u). A
horizontal curve in T M corresponds to a vector field on M which is parallel with respect to
the Levi-Civita connection ∇ on (M, g). The vector field U on T M given by U(p,u) = (up)v

is called the canonical vector field.

DEFINITION 2.1. Let (M, g) be a Riemannian manifold. Then the Cheeger-Gromoll
metric g̃ on T M is the Riemannian metric on the tangent bundle T M given by

i. g̃ (p,u)(X
h, Y h) = gp(X, Y ),

ii. g̃ (p,u)(X
h, Y v) = 0,

iii. g̃ (p,u)(X
v, Y v) = 1

α
(gp(X, Y ) + gp(X, u)gp(Y, u))

for all vectors X,Y ∈ TpM . Here α = 1 + g(u, u).

In [7] Sekizawa calculates the Levi-Civita connection ∇̃ and the curvature tensor R̃ of
the Cheeger-Gromoll metric on T M . His results are partially contained in Lemmata 2.2 and
2.4.

LEMMA 2.2. Let (M, g) be a Riemannian manifold and T M be its tangent bundle
equipped with the Cheeger-Gromoll metric g̃ . Then the Levi-Civita connection ∇̃ of (T M, g̃ )

satisfies the following:

∇̃
XvY

v = 1

α
((1 + α)g̃ (Xv, Y v)U − g̃ (Xv,U)g̃ (Y v, U)U

− g̃ (Xv,U)Y v − g̃ (Y v, U)Xv) .

COROLLARY 2.3. Let (M, g) be a Riemannian manifold and T M be its tangent bun-
dle equipped with the Cheeger-Gromoll metric g̃ . Then the projection map π : T M → M is
a harmonic morphism.

For further information on harmonic morphisms between Riemannian manifolds see the
regularly updated bibliography on [3].

PROOF. It follows from Definition 2.1 and Lemma 2.2 that π : T M → M is a Rie-
mannian submersion with totally geodesic fibres. Hence it is a harmonic morphism. �
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LEMMA 2.4. Let (M, g) be a Riemannian manifold and T M be its tangent bundle
equipped with the Cheeger-Gromoll metric g̃ . Then the curvature tensor R̃ of (T M, g̃ ) satis-
fies the following:

R̃(Xv, Y v)Zv =α + 2

α2 (g̃ (Xv,Zv)g(Y, u)U − g̃ (Y v, Zv)g(X, u)U)

+ 1 + α + α2

α2 (g̃ (Y v, Zv)Xv − g̃ (Xv,Zv)Y v)

+ α + 2

α2 (g(X, u)g(Z, u)Y v − g(Y, u)g(Z, u)Xv) .

In his paper Sekizawa attempts to calculate the sectional curvatures K̃ and the scalar
curvature S̃ for (T M, g̃ ) but unfortunately his calculations are wrong. In the rest of this
section we shall correct the error and obtain valid expressions for K̃ and S̃.

Let ‖ · ‖ denote the norm with respect to the Cheeger-Gromoll metric g̃ and let Q̃(V,W)

be the square of the area of the parallelogram with sides V,W ∈ T(p,u)T M given by

Q̃(V,W) = ‖V ‖2‖W‖2 − g̃ (V ,W)2 .

Furthermore let G̃ be the (2, 0)-tensor on the tangent bundle T M given by

G̃ : (V ,W) �→ g̃ (R̃(V ,W)W,V ) .

LEMMA 2.5. [7] Let X,Y ∈ TpM be two orthonormal vectors in the tangent spaces
TpM of M at p. Then

i. Q̃(Xh, Y h) = 1,
ii. Q̃(Xh, Y v) = 1

α
(1 + g(Y, u)2),

iii. Q̃(Xv, Y v) = 1
α2 (1 + g(Y, u)2 + g(X, u)2).

Sekizawa’s mistake is contained in the proof of the last part of the following Lemma.

LEMMA 2.6. Let X,Y be two orthonormal vectors in the tangent space TpM of M

at p. Then
i. G̃(Xh, Y h) = K(X, Y ) − 3

4α
|R(X, Y )u|2,

ii. G̃(Xh, Y v) = 1
4α2 |R(u, Y )X|2,

iii. G̃(Xv, Y v) = (1+α+α2)

α2 Q̃(Xv, Y v) − (α+2)

α3 (g(X, u)2 + g(Y, u)2).

PROOF. Here we only prove iii. The rest can be found in [7].

G̃(Xv, Y v) =g̃ (R̃(Xv, Y v)Y v,Xv)

+ (α + 2)

α2
(g̃ (Xv, Y v)g(Y, u)g(X, u) − g̃ (Y v, Y v)g(X, u)2)

+ (1 + α + α2)

α2 (g̃ (Y v, Y v)g̃ (Xv,Xv) − g̃ (Xv, Y v))

+ (α + 2)

α2 (g(X, u)g(Y, u)g̃ (Xv, Y v) − g(Y, u)2g̃ (Xv,Xv))



78 SIGMUNDUR GUDMUNDSSON AND ELIAS KAPPOS

= (1 + α + α2)

α2 Q̃(Xv, Y v) − (α + 2)

α3 (g(X, u)2 + g(Y, u)2) .

�

PROPOSITION 2.7. Let (M, g) be a Riemannian manifold and T M be its tangent bun-
dle equipped with the Cheeger-Gromoll metric g̃ . Then the sectional curvatures K̃ of (T M, g̃ )

satisfy the following:
i. K̃(Xh, Y h) = K(X, Y ) − 3

4α
|R(X, Y )u|2,

ii. K̃(Xh, Y v) = 1
4α

|R(u,Y )X|2
(1+g(Y,u)2)

,

iii. K̃(Xv, Y v) = 1−α
α2 + α+2

α
1

(1+g(X,u)2+g(Y,u)2)
.

PROOF. The statements follow directly from the division of G̃(Xi, Y j ) by Q̃(Xi, Y j )

for i, j ∈ {h, v}. �

For a given point (p, u) ∈ T M with u �= 0 let {e1, · · · , em} be an orthonormal basis
for the tangent space TpM of M at p such that e1 = u/|u|, where |u| is the norm of u

with respect to the metric g on M . Then for i ∈ {1, · · · ,m} and k ∈ {2, · · · ,m} define the
horizontal and vertical lifts by fi = eh

i , fm+1 = ev
1 and fm+k = √

αev
k . Then {f1, · · · , f2m}

is an orthonormal basis for the tangent space T(p,u)M with respect to the Cheeger-Gromoll
metric.

LEMMA 2.8. Let (p, u) be a point on T M and {f1, · · · , f2m} be an orthonormal ba-
sis for the tangent space T(p,u)T M as above. Then the sectional curvatures K̃ satisfy the
following equations.

K̃(fi , fj ) =K(ei, ej ) − 3

4α
|R(ei, ej )u|2 ,

K̃(fi , fm+1) =0 ,

K̃(fi , fm+k) =1

4
|R(u, ek)ei |2 ,

K̃(fm+1, fm+k) = 3

α2 ,

K̃(fm+k, fm+l ) =α2 + α + 1

α2
,

for i, j ∈ {1, · · · ,m} and k, l ∈ {2, · · · ,m}.
PROOF. The result is a direct consequence of Proposition 2.7. �

PROPOSITION 2.9. Let (M, g) be a Riemannian manifold with scalar curvature S. Let
T M be its tangent bundle equipped with the Cheeger-Gromoll metric g̃ and (p, u) be a point
on T M . Then the scalar curvature S̃ of (T M, g̃ ) satisfies the following:

S̃(p,u) =Sp + (2α − 3)

4α

m∑

i,j=1

|R(ei, ej )u|2
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+ (m − 1)

α2 (6 + (m − 2)(α2 + α + 1)) .

PROOF. Let {f1, · · · , f2m} be an orthonormal basis for the tangent space T(p,u)T M as
above. By the definition of the scalar curvature we know that

S̃ =
∑

i �=j

K̃(fi , fj )

=2
m∑

i,j=1
i<j

K̃(fi , fj ) + 2
m∑

i,j=1

K̃(fi , fm+j ) + 2
m∑

i,j=1
i<j

K̃(fm+i , fm+j )

=
m∑

i �=j

K(ei, ej ) − 3

4α

m∑

i,j=1

|R(ei, ej )u|2

+ 1

2

m∑

i,j=1

|R(u, ej )ei |2 + 2
m∑

i=2

3

α2
+

m∑

i,j=2
i �=j

(1 + α + α2)

α2

=S + (2α − 3)

4α

m∑

i,j=1

|R(ei, ej )u|2 + (m − 1)

α2 (6 + (m − 2)(1 + α + α2)) .

For the above calculations we have used Lemma 2.10. �

LEMMA 2.10. Let (M, g) be a Riemannian manifold with curvature tensor R. If p ∈
M and {e1, · · · , em} is an orthonormal basis for the tangent space TpM , then

m∑

i,j=1

|R(ej , u)ei |2 =
m∑

i,j=1

|R(ej , ei)u|2 .

PROOF. With u = ∑m
i=1 uiXi we get

m∑

i,j=1

|R(ej , u)ei |2 =
m∑

i,j,k,l=1

ukulg(R(ej , ek)ei, R(ej , el)ei )

=
m∑

i,j,k,l,s=1

ukulg(R(es, ei)ek, ej )g(R(es, ei)el, ej )

=
m∑

i,j,k,l=1

ukulg(R(ej , ei)ek, R(ej , ei)ek)

=
m∑

i,j=1

|R(ej , ei)u|2 .

�
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3. The constant curvature case.

In this section we shall assume that (M, g) is an m-dimensional Riemannian manifold of
constant sectional curvature κ . This implies that its curvature tensor R takes the special form

R(X, Y )Z = κ(g(Y,Z)X − g(X,Z)Y )

and the scalar curvature S is given by S = κm(m − 1).

PROPOSITION 3.1. Let (M, g) be a Riemannian manifold of constant sectional curva-
ture κ . Let T M be its tangent bundle equipped with the Cheeger-Gromoll metric g̃ . Then the
sectional curvatures K̃ of (T M, g̃ ) satisfy the following:

i. K̃(Xh, Y h) = κ − 3κ2

4α
(g(u,X)2 + g(u, Y )2),

ii. K̃(Xh, Y v) = κ2g(X,u)2

4α(1+g(Y,u)2)
,

iii. K̃(Xv, Y v) = 1−α

α2 + α+2
α

1
1+g(X,u)2+g(Y,u)2 ,

for any orthonormal vectors X,Y ∈ TpM .

PROOF. This is a simple calculation using the special form of the curvature tensor. �

PROPOSITION 3.2. Let (M, g) be a Riemannian manifold of constant sectional curva-
ture κ . Let T M be its tangent bundle equipped with the Cheeger-Gromoll metric g̃ and K̃ be
the sectional curvatures of (T M, g̃ ). Then

i. K̃(Xh, Y h) is non-negative if 0 ≤ κ ≤ 4
3 ,

ii. K̃(Xh, Y v) is non-negative,
iii. K̃(Xv, Y v) is positive.

PROOF. If X,Y ∈ TpM are orthonormal, then obviously

g(Y, u)2 + g(X, u)2 ≤ |u|2 < α .

With this in hand the result follows directly by Proposition 3.1. �

PROPOSITION 3.3. Let (M, g) be a Riemann manifold of constant sectional curvature
κ . Let (T M, g̃ ) be the tangent bundle equipped with the Cheeger-Gromoll metric. Then the
scalar curvature S̃ of T M is given by

S̃ =(m − 1)

2α2 (α(α − 1)(2α − 3)κ2 + 2mα2κ

+ 2(6 + (m − 2)(1 + α + α2))) .

PROOF. The result follows from Proposition 2.9 and the following calculations

m∑

i,j=1

|R(ei, ej )u|2 =
m∑

i,j=1

(α − 1)κ2|δ1j ei − δi1ej |2

=2(m − 1)(α − 1)κ2 .

�
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FIGURE 1.

For a given m ≥ 2, we are now interested in determining the sign of the scalar curva-
ture S̃m(α, κ) as a function of (α, κ) ∈ D = [1,∞) × R. The contour D0 = {(α, κ) ∈
D| S̃m(α, κ) = 0} in the (α, κ)-plane is determined by the second order polynomial equation

α(α − 1)(2α − 3)κ2 + 2mα2κ + 2(6 + (m − 2)(1 + α + α2)) = 0(1)

in κ . If α �= 1, α �= 3/2 and the descriminant of equation (1) is non-negative we get the
solutions

κ± = −mα2 ± √
m2α4 − α(α − 1)(2α − 3)2(6 + (m − 2)(1 + α + α2))

α(α − 1)(2α − 3)
.

In Figure 1 we have plotted the contour D0 in the (α, κ)-plane for the case when m =
3. When removing D0 from D the rest falls into three connected components. The scalar
curvature is positive in the component D+ containing the point (2, 40) and negative in the
other two.

We are interested in determining those κ ∈ R such that S3(α, κ) is positive (non-
negative) for all α ∈ [1,∞) i.e. which are the horizontal half-lines completely contained
in the component D+. The connected component of D0 contained in the upper halfspace
(κ > 0) is the graph of the solution κ− for α ∈ (1, 3/2). It has exactly one minimum C3 > 0.
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FIGURE 2.

The graph of the other solution κ+, where defined, has excatly one maximum c3 < 0. The
family of horizontal lines that we are looking for are then parametrized by κ ∈ (c3, C3).

It is easy to see that for m > 3 we get exactly the same qualitative behaviour of the two
solutions κ− and κ+ as for m = 3. This provides us with the following result:

THEOREM 3.4. Let (M, g) be a Riemannian manifold of dimension m > 2 and of
constant sectional curvature κ . Then there exist real numbers cm < 0 and Cm > 60 such that
the tangent bundle (T M, g̃ )

i. has positive scalar curvature if and only if κ ∈ (cm,Cm),
ii. has non-negative scalar curvature if and only if κ ∈ [cm,Cm].
Notice that for α ∈ (1, 3/2) and m ≥ 3 the function κ is increasing in m, so if m < m̄

then Cm < Cm̄.
When m = 2 the descriminant of equation (1) is positive everywhere, and the solution

κ− and κ+ are given by

κ± = −2α2 ± 2
√

α4 − 3α(α − 1)(2α − 3)

α(α − 1)(2α − 3)
.
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In Figure 2 we have plotted the contour D0 in the (α, κ) for m = 2. When this is removed
from D the rest falls into four connected components. The scalar curvature is positive in the
two components containing the points (2,±40) and negative in the others. When α > 3/2
both the solutions κ± are negative and approaching 0 in the limit α → ∞.

This leads to the following result

THEOREM 3.5. Let (M, g) be a surface of constant sectional curvature κ . Then there
exists a real number C2 ≥ 40 such that the tangent bundle (T M, g̃ )

i. has positive scalar curvature if and only if κ ∈ [0, C2),
ii. has non-negative scalar curvature if and only if κ ∈ [0, C2].
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