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Abstract. A detailed analysis of the Geselowitz formula for the magnetic induction
and for the electric potential fields, due to a localized dipole current density, is provided.
It is shown that the volume integral, which describes the contribution of the conductive
tissue to the magnetic field, exhibits a hyper-singular behaviour at the point where the
dipole source is located. This singularity is handled both via local regularization of the
volume integral as well as through calculation of the total flux it generates. The analysis
reveals that the contribution of the primary dipole to the volume integral is equal to
the one third of the magnetic field generated by the primary dipole while the rest is due
to the distributed conductive tissue surrounding the singularity. Furthermore, multipole
expansion is introduced, which expresses the magnetic field in terms of polyadic moments
of the electric potential over the surface of the conductor.

1. Introduction. Biomagnetism deals with the causal relation that connects electric
currents generated within the organs of the human body with the magnetic fields they
produce just outside the body [7, 11]. Considering the size of human organs, such as the
brain, the heart, or the lungs, the quasistatic approximation of Maxwell's equations for
the investigation of these problems is well justified [7].

In the last three decades a significant number of papers have been written, both at the
theoretical as well as the experimental level, which seek ways to determine the magnetic
field for given currents inside a human organ (Direct Biomagnetic Problem), or to char-
acterize the currents within the organ from measured exterior magnetic fields (Inverse
Biomagnetic Problem). An excellent review on the subject is given by Hamalainen et
al. [7], where an extensive bibliography is also included. An interesting perturbation
analysis on the shape of the conductor can be found in [12].

As far as theoretical models are concerned, almost all this work is based on the
Geselowitz formula [4, 5] which relates the magnetic induction field in the exterior of the
body to the actual electrochemically-generated currents and to the equivalent surface
current distributions supported on surfaces separating regions of different conductivity.
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The most tractable case is that for which the localized electric activity of the neurons is
represented by an equivalent electric dipole with a specified dipole moment. The human
organ is considered to be a finite union of regions of constant conductivity. One of these
regions includes the primary source, i.e., the electric dipole. The primary source excites
conduction currents to all component regions that have nonzero conductivity. These con-
duction currents are interpreted as volume distributions of dipole currents with moments
that are proportional to the electric field. As Geselowitz has shown [5], some vector iden-
tities combined with the vector invariant form of the dyadic version of Gauss's theorem
lead to an equivalent expression for the magnetic field, where the dipoles are distributed
over the boundaries that form the support of the discontinuities of the conductivity func-
tion for the particular organ. The moments of these surface distributions of dipoles now
depend 011 the electric potential field as well as 011 the conductivity- jumps across the
surfaces of discontinuity. For all regions that are free from primary currents this proce-
dure is obviously justified. But at least one of the regions includes the primary current
(dipole source), since otherwise no electromagnetic activity would be present. When this
technique is applied to regions that involve sources, the analysis is more delicate since
for such regions the electric potential, and consequently the electric field, involve sin-
gularities in the region of integration and therefore Gauss's theorem is not immediately
applicable.

A careful treatment of these integrals involves the exclusion of the singularities by
deleting a small sphere centered at the singularity and a subsequent limiting process
that lets the radius of the sphere go to zero. After we exclude the singular point, Gauss's
theorem can be used and the surface integral over the surface of the little sphere, depend-
ing on the strength of the singularity, can provide a nonvanishing contribution. This flux
measuring approach has been used in an early version of the present work which misled
us to conclude that an extra term should be added to the Geselowitz formula. We would
like to acknowledge though that first professor Guido Nolte and then professor Jukka
Sarvas and his colleagues Dr. Matti Kajola and Dr. Matti Hamalainen pointed out to us
that the extra term we calculated cancels out from a corresponding contribution of the
volume integral over the little sphere since the field is also singular there. In fact the
field is hyper-singular there and its contribution to the volume integral has to be evalu-
ated either through regularization [3, 9] or through the theory of generalized functions
[3]. The final result shows that the contribution of the volume integral to the magnetic
induction field is due to the distributed conductive tissue as well as to a concentrated
point measure at the point where the dipole is located and this last contribution equals
to the one third of the field due to the primary dipole source. Through an appropriate
use of polyadic analysis we show how a multipole expansion can be obtained, where the
contribution of the conductive tissue enters via the polyadic surface moments of the in-
terior electric potential. It is actually shown that the zeroth order moment equals the
electric moment of the primary dipole.

The mathematical formulation of the Biomagnetic problem is stated in Sec. 2 while
the analysis of the Geselowitz formula is developed in Sec. 3. Section 4 deals with the
multipole expansion of the electric potential as well as the magnetic field. Based on
the Geselowitz formula Sarvas [13] has calculated the exact magnetic field outside a
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spherical conductor. For early work on the sphere we refer to Ilmoniemi et al. [8]. A
relative discussion is contained in Sec. 5.

As it is well-known, the actual human brain is shaped in the form of an ellipsoid with
average semiaxes equal to 6, 6.5, and 9 cm. The solution of the direct and the inverse
MEG problem in ellipsoidal geometry is currently under investigation by the authors.

2. Mathematical formulation of the biomagnetic problem. Let G be a bound-
ed (open) region in R3 having a C^1' -smooth boundary denoted by S. The unit normal
n on S is directed towards the unbounded exterior region Go = [G U 5]c. Region G
represents a conductive human organ, such as the brain, while the conductivity of Go is
assumed to be zero. A finite number of nonempty subregions Gi, G2, ■ ■ ■, Gn divide G in
the sense that the union of their closures covers G,

G,nGj = 0 (1)

for each i,j= 1.2,...,?? with i 7^ j and

Gi fl G0 = 0, i = 1,2,..., n. (2)

Let
S% = GinGj, i,j = 1,2,..., n (3)

where the bar denotes the topological closure, the common boundary separating the
subregions Gi,Gj, and let h,j be the unit normal on S,:l directed from G, to Gj. It is
understood that the common boundary of non-neighbouring subregions is empty, and
that each non-empty surface St] is G^1'-smooth. Furthermore, let

Sio = Gi n G0, i = 1,2,..., 7i (4)

be the part of the S boundary that is common to the Gi subregion. The surface
n

St = U Sij (5)
3=1

describes the boundary of the subregion G,-, for each i = 1,2,..., rz.
The electric conductivity in each subregion G, is assumed to be constant and it is

denoted by <x;,i = 1,2,... ,71. The exterior region Go has vanishing conductivity. The
conductivity jumps occur on the separating surfaces Sij and Sio.

One of the subregions, let us say Gn, contains the primary dipole current in its interior
[6, 10]. That is,

Jp(r) = Q<5(r - r0), r0 6 G„, (6)

where Q stands for the electric dipole moment and S denotes the Dirac measure at r().
Within the realm of quasistatic electromagnetism [7] governed by the equations

E(r) = -Vu(r), (7)

VxB(r) = /i0J(r), (8)

J(r) = Jp(r)+aE(r), (9)

V • B(r) = 0, (10)
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the localized dipole current (6) gives rise to the electric potential

«P(r) = Vr~ Q ' r"—~l3' reG" r^r« (n)
47r(j;: |r-ro|J

and to the magnetic induction field

BP(r) = T^Q x r~ r 7^ ro, (12)
4tt |r — r0|3

where cr,; denotes the conductivity of the subregion G,; and /io denotes the magnetic
permeability which is taken to be constant both in the space inside and outside the
conductor. Equations (8), (10), and Gauss's theorem imply Ampere's law [10. 13]:

B(r) = £ JG J(r,) X (13)

where the integration is extended over the conductive region G. Relations (6), (7), (9),
and the partition of G in subregions of constant conductivity allow for (13) to be written
as

/'(> ̂  r - r„ no

where the electric potentials Ui, i = 1, 2   n solve the following system of mixed bound-
ary value problems:

<jj Au,;(r) = V • JP(r), r € G, (15)

Ui(r)=Uj(r), v e Sij (16)

d o
al — ui(r) = C7j—Uj(r), r 6 StJ (17)

on on

r) = 0. r 6 Si0 (18)

for each i = 1,2,..., n. This is a well-posed problem (uniqueness holds up to an additive
constant) that provides a solution in G. Once this problem is solved and the values of
u on S are determined, the electric potential Uq in the exterior Go is obtained as the
solution of the Dirichlet problem

Au0(r) = 0. re G0 (19)

uo(r) = /(r), r e S (20)

u0(r)e= 0(r_1), r —> oo (21)

where / is composed of the traces of Uj on 5<o for each i = 1,2,... ,n. Because of (6),
Eq. (15) becomes Laplace's equation for each i = 1,2,...,?? — 1, while for i = n, it is a
Poisson's equation with a particular solution given by

«•» = ''Pc» = '•6 c~ (22)

Formula (14) expresses the magnetic induction field as the sum of the field generated by
the primary source (6) at the point ro G G„ and the superposition of the fields due to a
volume distribution of dipoles with moments given by

Ej(r') = —cr, Vu,(r'), r'eG,. (23)
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Geselowitz's formula [4] concerns the replacement of these volume distributions with
surface distributions of dipoles over the interfaces of changing conductivity. This is
treated in the next section.

3. A study on the Geselowitz formula. Geselowitz's idea was to use Gauss's
theorem to reduce the volume integrals in (14) to corresponding surface integrals and this
was applied to all subregions that are free from primary current sources. The situation
is more involved in the region that hosts the source and such a hosting region is always
present. As Geselowitz [5] as well as his followers [2, 7, 12, 13] have claimed,

Vr'Ui(r') x r_ r 3 = Vr'Uj(r') x V

= Vr' X *i(r')Vr'T—-

r - r'
(24)

  f — f
= Vr' x m(r')| -

where the fact that every gradient field is irrotational has been used.
In subregions free of sources the electric potential is harmonic and the vector invariant

form of the dyadic Gauss's theorem [1],

/ V®fdv = / h®ids (25)
Jn JdQ

with f G C(1)(fi) PI C(ft) and Q bounded with -smooth boundary, imply that

Viii(r') x |rr_^3di/(r;) = mir')ti x JL-£^s(r'), (26)

where the wedge on the top indicates unit vector.
It is easily shown that if r G G,, then no contribution is obtained from the singularity

at r since on any little sphere around r.

„, r — r' r — r' r — r'
n x 1 = i 7T x I 777 = 0. 27

|r - r'[d |r — r'| |r - r'|3

Formula (26) is true for i = 1,2,..., n - 1, but for i = n, a deeper analysis is necessary.
In fact, we have to exclude the singularity from the domain of integration by eliminating
from Gn a little sphere of radius e > 0 centered at r(> and denote the rest of Gn by Gn(e).
In fact, we choose an e > 0 such that

B{r0;e) = {r G Gn: |r - r0| < e} C Gn (28)

and let S(ro; e) = dB(v^\e).
Then

G„(e) =Gn-B(ro;s) (29)
and

5Gn(£) = 5„U5(r0;£). (30)
The electric potential in Gn is written as

u„(r) = —'— Q ■  ^3+iu(r), r G Gn, (31)
4?r an |r — r0|
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where w is a harmonic function and (26) for the Gn(e) region is written as

I Vun(r') x ~—^-diy(r') = [ un{r')n' x — ^rfs(r')
JGn(e) lr — i I Js„ |r-r'|3

Q 1 r'"r°
4TTO-n Js(ro;e) lr' - ro|3 |r-r'|3 Js{r0;e)

(32)

The symbol <g) denotes tensor product. The case where r G Gn is treated as previously
and no contribution from the singularity at r is obtained. On the other hand, even in
the case of r € Go, the singularity due to the dipole source at ro is still present. It is
easy to see that the integrand of the last integral in (32) is bounded over B(ro;e) for
every r 6 Go and therefore

f r — r'
lim / w(r')n' x   —ds(r') = 0.
^°JS( ro;£) k-r'l3

(33)

Next we investigate the limiting value of the integral

h(£) = I r~}—~i30A'x"r—i\3ds^">- (34)/S(r0;e) I — ro| !r-r'l3

Introducing a spherical coordinate system centered at ro via the transformation

r' = r0 + £n', (35)

we immediately see that

with

and

H(e) =
/s2

where S2 denotes the unit sphere in R3.
Discretizing the continuous variable £ by setting

1
£n = n>n0 =

n

ds( r') = s2ds( n') (36)

" r - r0 /Q7\n = J-; 1 (37)
i - r0

I n'®n x-1 ——^^ds(n'), (38)
JS2 |r-r0-en'|3

+ 1 (39)

so that the limit as e —> 0+ is replaced by the discrete limit as n —> oo and using the
fact that

r — ro — n 1n'
|r — ro — n_1n'|3 < 77 w i (4°)jr-r0-n"1n'|^ (|r-r0|-e)

where

d = min{|r — rs|: rs G 5} > 0, (41)
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the Lebesgue Dominated Convergence Theorem implies that

lim H(e) = lim H ( — = / h'ln'x lim ds(h'
£ *0 n-foo \nj JS2 n—>ac jr — r0 — n~in/|J

= / n' ® n' x —^jds(n') = / n' <g> n'ds(n') x
Js* !r ~~ ro| Jsi |r-r0|3

(42)

= lim
£—+0

= lim
£—»0

zds(\\) = f n'<g> n'ds(n')
Js2

A straightforward application of Gauss's theorem now implies that

I n' ® n'ds(n') = / r ® rds(r) = f V <8) vdv{v) = I I dv(r) = — i, (43)
./s2 ./s2 ~/|r|<l J |r|<l 3

where I denotes the identity dyadic.
In view of the above analysis, it is obvious that

jG X

1,„ V""M x 0PMI,) + V""{r,) x 0?d"(r'

x 0pdslr,)

+ I Vu„(r') x -i—I-di/(r')
JB(r0;e) lr ~ r I

, /n -/ r — r' , . . 1 „ r — rn
r 11 X 1 7i3ds r ~ ^T~Q X j |3

JSn |r-r'|J 3 cr„ |r — r0|3

f r — r'
+ lim / Vun(r') x - — dv(r').

^°Jb( ro;£) |r-r'|3

Because of the singularity at ro, the last integral in (44) exhibits a hyper-singular be-
haviour which will be evaluated through regularization [3, 9]. In fact, we interpret its
contribution as a distribution of sources within the ball B(ro; e) perturbing, in this way,
the location of the source by a small distance S £ (0,e). The source is then located at
the point r = r' — ro- That leads to the perturbed internal electric potential

usn(r) = -—Q ■ Vr_ 1 —Q ' _/_ ? i (45)
47ian r + <5 47rcrn r(r + S)2

= / u

(44)

which implies that

I 3r + <5 i -
r ® r

r(r + 5)2 r(r + J)3

Obviously, as e —> 0, S —* 0 and formula (43) as well as the limit

(46)

r — r0 — r r - r0
lim   rpr = i pr (4 7)
e-*o r - r0 - r[3 r - r0|3
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imply that

= lim—• [ \ r I Ids{f) - r/3r "t ̂  I F ® Tds(f)
—0 47ran J0 .(f + Js, W (f + «5)3 ,/s, W

dr x
r - r0|3

Q r — r0 f ~ 2Sr Q r - r„ |~ [e 25s + 52
x   — hm / r„af = -— x T — 1 — lim J

3crn " |r - r0|3 £-oJ0 (r + 6)3 3ct„ |r-r0|3

Choosing

(e + <5)2
(48)

6 = sa, a > 1 (49)

so that for £ G (0,1) it is always true that 6 £ (0,e), we see that

2fc + <52 r 2£«-1+£2(«-1) nlim   r-77- = hm —   — =0. (50
e-»o(£- + 5)2 e—+0 (1 + eQ_1)2

Hence, in (44) the limiting contribution from the surface S(ro;e) and the contribution
from the point singularity at ro cancel each other, leaving us with the identity

^ Vun(r') x -~dv{v') = ^ u„(r')n x ^_^3ds(r'). (51)

We observe, though, that in the limit as e —> 0 the flux that crosses the surface 5(ro; s) is
equal to one third of the contribution of the primary dipole to the magnetic field, while
the concentrated point source contributes minus one third of the same quantity.

Substituting (26) for each i = 1,2,..., n— 1 as well as (51) for i = n into the expression
(14) and following classical arguments, we are lead to the following form of the Geselowitz
formula:

BW = zQx^4tt r — r0

Mo
47T

/' r — r'
(ai - ^) / u^'Hj x | _ r/.3rf«(r/)

i,j= 1 JSi>i 1 1

"7'it,*71 [ u'(r')n' X p—7Wds(r')-
Jst0 lr ™ r I

(52)

In particular, for a single isotropic and homogeneous conductor with conductivity <7, the
Geselowitz formula reads

B(r) = f Q x _ Of f u{r>> x J^ds(r'), (53)47r |r — r0|3 4n Js jr-r'|3 y v '

where 5 is the boundary of the conductor and r 6 Gq.
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A similar sequence of arguments leads to the following Geselowitz formula [4] for the
electric potential:

r \ 1 m r ~ r°"-"-M = SQ ' |^F

~ JT it. ("1 - "it f »«(r')n« ' JTZ Lp'ls'r'l
i,j=1 JSii 1 1

1 " f r — r'
- iiY." jFT^Tjs^M

for r £ Gk and k = 1,2,... ,n.
From the theory of Magnetostatics we know that the dipole term in the multipole

expansion of the magnetic field outside a bounded volume conductor vanishes.
Indeed, if we define the support of J by

V = supp J (55)

and Sr denotes a sphere that contains V in its interior, then Eq. (8) implies that

V • J(r) = 0, (56)

which yields the identity

V • (J ® r) = (V • J)r + J ■ V <g> r = J. (57)

Ampere's law (13) then provides

= ^Vrx
47T

Mo
Air= T^Vr X + 0[ 4 dv{ r')- I J{r')dv(r'

r Jv

= X fy Vr, . (J(r') « r')du(r') + O (1)

= _S^xX j(r,)0r'ds(r')+o

(58)

= 0(^1,

where Gauss's theorem in the ball interior to Sr as well as (55) has been used. Note
that in applying Gauss's theorem the same analytical arguments as before have to be
used if concentrated currents within the support V are involved. Equation (58) proves
that the multipole expansion of B contains no dipole term. This result is equivalent to
the non-existence of magnetic monopoles.
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4. Multipole expansion. In order to obtain a complete multipole expansion of the
field B as it is given by (53) we introduce the Polyadic notation

la, = ai ® a2 ® ■ • ■ ® a„ (59)
i=1

"n+1

,2=1

2=1

"n+1

© (K)b
i—1

©
X

.2=1

=n^ bo (so)
2=1

= JJ(aj • bj)(a„+i x bn+i), (61)

which provide the Taylor expansion

1 ®H® <S>V)'' <62>
r — rn c' n\ . . . . . „

n=0 n=() \ z—1 / \ 2=1

where the formula
JL i
0V'T 1Si ir-r°i V- (63)

r
r0=0 *=1

has been used. Expansion (62) holds true for r > ro. The importance of the last
expansion in (62) is that it shows the separation between the r0 and the r dependence.

In interpreting (62) we assume the notation

o
0a =1. (64)
2=1

A corresponding expansion for the dipole field (r — ro)|r — ro|-3 can be obtained through
the action either of the operator (—Vr) or of Vro on (62).

This leads to

= t tip (® r.) © (® v) V1-. (65)
22 = 0 72 = 0 \ 2=1 / \ 2=1 /

In fact for the dipole, the quadrupole, and the octapole term of (65), we obtain

, r ~ r",.. = 4+ro'^^-Aro®ro: [2r®I + I®r-5r®f Or] +0 (X ) . (66)
|r — ro|J rz r6 2r4 \r° J

If we denote by

qo = (67)

the constant dipole moment at ro and by

q(r) = -^u(r)" (68)

the variable dipole moment at r G S, we can rewrite (53) as

B(r) = q0 x ^ + / q(r') x p ~ds(r'). (69)
|r — r0|J Js |r — r'|3
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Introducing (65) into (69) we obtain the polyadic multipole expansion

BW = i;( 11
n=0

n! (^9 ro I ® qo
^ i= 1 /

/ n+1 ^

\i= 1 /

© / A _ \ 1

E (-i)Tl ~(~ 1

n\
n=0

I r
s V

q(r')ds(r')
vi=l /

At this point we define the polyadic moments of q as

n+1

®v|-
i=l

and, in general,

where Mn is a polyadic of order n+1.
Then (70) can be rewritten as

( |\n+l
B(r>=E( '

n\
n=0

ro I ® qo
vt=l /

/n+1 \ 1
© 1

or, in particular,

B(r) = -(q0 + M0) x + (r0 <g> qo + Mi) ^ V <8> V *

- i(r0 <g> r0 <g> q0 + M2) " V <g> V (g> V- + O ( \
2 x r \ r5

(70)

o = / q(r)ds(r) (71)
Js

hi = / r <g) q(r)ds(r) (72)
J s

= / r <g> r (g> q(r)ds(r) (73)
Js

q(r)ds(r), n = 0,1,2,... (74)

&)V - (75)
i=i /

(76)

Note that (58) implies that

q0 + M0 = 0 (77)

or equivalently that

Q = J au(r)nds(r). (78)

Hence, for any surface S, the zeroth order moment coincides with the dipole moment
of the primary field.

This is easily verified for the sphere if the solution

Q ■ r ( 1 v \
u(r) = c + —  —r H—r + higher multipole terms (79)

2ircr \2r2 a3

with c an arbitrary constant, as well as orthogonality of the surface spherical harmonics,
are used. In particular, the leading (quadrupole) term in the expansion (70) of B is given
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by

B(r) = ro « qo + J r (g> q(r)ds(r 3r <g> r - I ^ ( 1

Mo
47T

r0 ® Q - cr / -it(r)r <8> nds(r)
•/s

3f®r-I+0/l
r3 \ r4

(80)

5. The single sphere model. Sarvas [13] considered the case of a single conductive
sphere of radius a, with an electric dipole in its interior, and he observed that because
of the identity

r x ■ f - 0. (81)

the radial component of the magnetic field B coincides with the radial component of the
primary dipole field Bq. In other words, the spherical symmetry forces the contribution
of the boundary to live on an orthogonal to r plane. Then he proceeded to evaluate the
magnetic field outside the sphere as a consequence of the fact that B is irrotational there.
In fact, he assumed the representation

B(r) = U0VC/(r) (82)

for | r | > a and he obtained the potential function U by integrating over a ray from
the observation point r to infinity where U vanishes asymptotically. This integration
demands only the radial component of B and therefore only the radial component of Bo
is utilized. This program [13] leads to the magnetic potential

^(r) = _4^)(QXro)'r (83)

and therefore to the induction field

B(r) = 4^2(r)(Q X ru) ' [F(r)i " r ® VF(r)1 (84)

where
F(r) = r|r - rn|2 + (r2 - r • r0)|r - r0| (85)

and

VF(r) = f1 + ^ ~ r<^ + 'F ~ r°'r' + (r + ~ |r |' ) (r ~ r°^

Note that everything is proportional to the term Q x ro since

rB(r) = _^(Qiii»Li (87)
47T |r-r0|J

and therefore this is the only term of B that survives its radial projection. Furthermore,
the radius of the sphere does not enter in the expression for B.

Performing an asymptotic expansion for r > ro we obtain that

1 1 +^ + o(i
F( r) 2 r
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and
VF(r) 3f (5f®r-!).r0 / 1 \~5 + °^J (89)

which imply that

B(r) = ^ ^ X r° -(I-3r(g)r) + 7^ ^ ^r° •(l0r + r0l-5r0r®f)-ro + O ( -4- ) . (90)
871- 47t r4 \ r»o '

A clear view is obtained if we rewrite the expression (53) for the B field as

Ho Q x r /x0 Q x r0 /x0ct f , ti x r ,
B(r) = 7~ 1 n ~ T~ 7 R r~ / u(r 1 TFTrfs(r

47r |r — ro| 47r|r —roj3 4n Js Jr — r'|3
Hqo f , n' x r' ,

+ ~T~ / u(r )i ^rfs(r )>
47T /q r - r'3

(91)

where the last integral vanishes whenever S is a sphere. Taking the radial component
of B, the first and the third term on the right-hand side of (91) are also eliminated and
the evaluation of B is then based solely on the radial component of the term that is
proportional to Q x ro-

The straightforward procedure that leads to the determination of the magnetic field
B is to solve first the interior problem that provides the electric potential u and then to
calculate B from (91). If we follow this approach and use spectral methods to evaluate
u, we arrive at

Q r / 1 2r\ Q <g> r0: (I - 3r <g> r) / 1 3r2 \u(r) — c H—   I — H   J    I — + ——- J + ..., (92)
Ana \r2 a3 J 4tt(t \r3 2J

where the missing terms are multipoles of order higher than three, a is the radius of the
sphere, and c is an arbitrary constant.

Considering only the dipole and the quadrupole terms we obtain

Ho Qxr HoQxr | 3/x0 Q x r ® r • r0 | Q / 1 \ ^
An |r — ro|3 An r2 An r3 \r4/

Ho Q x rp _ ho Q x r0 / 1 \
47t |r — ro|3 Air r3 v4/

Jsu^\r-J\3ds^ (95)
_ Ho Qxr 3/j0(Qxr0 + r0®Q)xf+o / 1

_ V°a
An

Arc r2 8n r3 \ r4

and then the cancellation of the dipole terms in (91) is obvious.
Hence, the leading term of the multipole expansion of B for the sphere is given by the

expression

3/zo Q x r <g>r • r0 ho Q x r0 3/x0 r ■ (Q ® r0 + r0 # Q) x r / 1 \
B(r) =   o ~t o o o \~0 —j (96)47t r3 47r r3 8n r3 V r4 /



B(r) = ±^(Q x r0) • (I - 3r ® f) + O ( 3 ) (98)
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which, in view of the identity
(Q x r)(r • r0) - (r0 x r)(r • Q) = r x [Q'-x (r0 x r) + r0 x (f x Q)]

= -f x [r x (Q x r0)]

= (Q x r0)(r • r) - (Q x r0) • r ® r

= (Qxr0)-(I-r®f),

implies that
L _ WT

8nr
and recovers the leading quadrupole term in (90).

The present analysis is greatly influenced by the isotropy of the sphere and the in-
evitable symmetry it implies. A non-isotropic model of the brain, such as the case of
an ellipsoid, would reveal a more realistic interconnection between the electrochemical
activity of the brain and the electromagnetic field it generates.
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