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ABSTRACT

We continue the investigation of overcoming Gibbs phenomenon, i.e., obtaining exponen-

tial accuracy at all points including at the discontinuities themselves, from the knowledge of

a spectral partial sum of a discontinuous but piecewise analytic function.

We show that if we are given the first N expansion coefficients of an L2 function f(x) in

terms of either the trigonometrical polynomials or the Chebyshev or Legendre polynomials,

we can construct an exponentially convergent approximation to the point values of

f(x) in any sub-interval in which it is analytic.
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1 Introduction

In this paper we continue our investigation of overcoming Gibbs phenomenon, i.e., recovering

pointwise exponential accuracy at all points including at the discontinuities themselves, from

ttae knowledge of a spectral partial sum of a discontinuous but piecewise analytic function,

which we started in [5] and [6].

Spectral approximations based upon trigonometric polynomials (Fourier, for periodic

problems) or polynomials (Chebyshev or Legendre, for non-periodic problems) are expo-

nentially accurate for analytic functions [4], [3]. However, for discontinuous but piecewise

analytic functions, the spectral partial sum approximates the function poorly throughout

the domain. Away from the discontinuity only first order accuracy is achieved. Near the

discontinuity there are O(1) oscillations which do not decrease with N, the number of terms

retained in the spectral sum. This is known as Gibbs phenomenon.

In [5] and [6] we treated a representative problem:

• Let f(x) be an analytic but nonperiodic function. Suppose that we are given its first

-N < k < N Fourier coefficients. Can one obtain exponentially convergent pointwise

approximations in the maximum norm?

To solve this problem we used the Gegenbauer polynomials C_(x), which are orthogonal

in [-1, 1] with the weight function (1 - x2)a-½.

The procedure of overcoming the Gibbs phenomenon consists of two steps:

1. Given the Fourier partial sum of the first N terms, we first recover the first

m ,,_ N Gegenbauer expansion coefficients with exponential accuracy. This can

be achieved for any L2 function, as long as we choose )_ in the weight function

of Gegenbauer polynomials to be proportional to N. The error incurred at this

stage is called the truncation error.

2. The next step is to prove, for an analytic function, the exponential convergence

of its Gegenbauer expansion, when the parameter )_ in the weight function is



proportional to the number of terms retained in the expansion. The error at this

stage is labelled the regularization error.

Thus we have shown how to overcome the Gibbs phenomenon for an analytic but non-

periodic function. By a simple shift this procedure covers the case of any analytic function

with one discontinuity.

In this paper we treat a broader class of problems. Here we assume that f(x) is an L2

function on [-1, 1] and analytic in a subinterval [a, b] C [-1, 1]. We assume that tile spectral

partial sum (based on either the Fourier or Chebyshev or Legendre expansion) of a function

over the full interval [-1, 1] is known, and try to recover exponentially accurate point values

over a subinterval [a, b].

We will follow the same path as in [5]. Basically we will show that the first N Fourier

(or Chebyshev or Legendre) expansion coefficients contain enough information such that a

rapidly converging Gegenbauer expansion in the subinterval [a,b] can be constructed. As

before, we will separate the analysis of the error into two parts: truncation error and reg-

ularization error. Truncation error measures the difference between the exact Gegenbauer

coefficients and those obtained by using the spectral partial sum. These will be investigated

ill Section 3 for the Fourier case and in Section 4 for the Chebyshev and Legendre cases.

Regularization error then measures the difference between the Gegenbauer expansion using

the first few Gegenbauer coefficients and the function itself in a sub-interval [a, b], in which

the function is assumed analytic. The estimation of the regularization error is in Section 5.

In Section 2 we will provide some useful properties of Gegenbauer polynomials to be used

later. Section 6 contains a summary theorem and some remarks.

Throughout this paper, we will use A to denote a generic constant or at most a polynomial

in the growing parameters. It may not be the same at different locations.

The message of this paper is that the knowledge of the partial spectral sum of an L2

function in [-1, 1] furnishes enough information so that an exponentially convergent approx-

imation can be constructed in any subinterval in which f(x) is analytic.
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In particular, if f(x) is piecewise analytic, then an exponentially convergent approxima-

tion in the maximum norm can be recovered from its partial spectral expansion.

2 Preliminaries

This section is devoted to a collection of results about the Gegenbauer polynomials. Though

the results are classical, they are not widely known and certainly not in our context. We

rely heavily on the standardization in Bateman [2].

We start by defining the Gegenbauer polynomials C_(x) in the following

Definition 2.1

The Gegenbauer polynomial C_(x) is defined by

(1-x2)_-½C_(x)- (_2,_nG(A,n)5 [(1-x2) "+x-½] (2.1)

where G(X, n) is given by

a(_,n) = r(_ + })r(,_ + 2_)
r(2_)r(n + _ + })

Under this definition we have

and

C_(1) - F(n + 2) 0
n!r(2A)

(2.2)

[]

(2.3)

f_ (1- x2))'-½C2(x)C_(x)dx = 6k,nh_
1

where

Lemma 2.2

The Gegenbauer polynomials satisfy the following orthogonality condition:

(2.5)

(2.6)

The Gegenbauer polynomials are orthogonal under their weight function, in fact we have

IC_(x)l _<C_(1), -1 < x < 1 (2.4)



[]

We will need to use heavily the asymptotics of the Gegenbauer polynomials for large n

and A. For this we need

Lemma 2.3 (Stirling)

For any number x such that x > 1 we have

1 - - 1 _.--1 x 1

(27r)½x_+_e -_ < F(x + 1) _< (2r)_x *re- ei_-; (2.7)

[]

Lemma 2.4

There exists a constant A independent of A and n such that

c (1) < (2.8)A-1
(n + _-------_ _ h, _< A (n +

The proof follows from (2.6) and Stirling's formula (2.7).

[3

In the analysis we will extensively use the relationship between the Fourier functions

e ik'_: and the Gegenbauer polynomials C_(x). In particular, we will focus our attention on

the Legendre polynomials
1

P_(x) = C_(x) (2.9)

and the Chebyshev polynomials

n o

T_(x) = -_C_,(x)

Our basic formula is taken from [2], page 213:

(2.10)

Lemma 2.5

k/_ll(1-x2)_-½e"_C_(x)dx : F()O(2)

where J,,(x) is the Bessel function.

it(1 + )_)Jl+x(_rn) (2.11)
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[3

Lemma 2.5 gives us the Gegenbauer expansion coefficients of the Fourier functions. How-

ever, what we really want are the Fourier coefficients of the Gegenbauer polynomials. We

have those coefficients, luckily, for the Legendre and Chebyshev polynomials.

Lemrna 2.6

Let a N be the Fourier coefficients of the Legendre polynomial PN(Z) defined in (2.9) and

b_ be the Fourier coefficients of the Chebyshev polynomial TN(z) defined in (2.10), i.e.

co

PN(x)= Y_ aNe 'k': (2.12)
kw_ --oo

Then

and

and

OK)

TN(x)= E
k_-oo

(2.13)

i N

a N _ _rz.__JN+½(_rk) (2.14)
Vzt_

(2.15)

[3

x and using (2.6) and (2.3).Equation (2.14) follows from (2.11) upon substituting A --

Equation (2.15) can be found in [7], page 836.

[]

Lemma 2.6 provides us with a better understanding of the terms "small scales" and

"large scales". The question is the following: it is clear that e iN_rx is small scale for large N,

intuitively Tg(x) and PN(X) are also small scale functions, however the expansions (2.12)

and (2.13) contain all the scales. So, in what sense are TN(X) and PN(X) small scales?

The answer is given in the following Lemma:

Lemma 2.7



Let a N and bku be the Fourier coefficients of the Legendre polynomial PN(Z) and the

Chebyshev polynomial TN(X) respectively, given in (2.12)-(2.15). Then

e_rk N \la_l _<Amin 1,(-_-_-) ) (2.16)

IbNI _<Amin (1, (_.__)erkN N)

where A is a constant independent of k or N.

(2.17)

Proof:

We start with the following estimate for the Bessel function J,_(nz) (see [1], page 362):

IJ,_(nz)l < ( ze__ ]"- 1-1-_] '

From (2.18) we can deduce trivially that

ez),_
Ia,,(nz)l <_( 2"

We also have the uniform bound on Bessel functions

0<z< 1 (2.18)

O<z< 1 (2.19)

I&(z)l _<1 (2.20)

Using (2.19) and (2.20) in (2.14) and (2.15), with z = -_ and n = N, we obtain (2.16)

and (2.17).

[]

Lemma 2.7 provides the answer why PN(x) and TN(x) (for large N) can be considered

as small scale functions. Basically only the terms that are greater than N appear in their

Fourier expansions (2.12) and (2.13). The lower terms decay exponentially with N.



3 Truncation Error in a Sub-interval--Fourier Method

Consider an arbitrary L2 function f(x) defined in [-1, 1]. Suppose that the first 2N + 1

Fourier coefficients of this function are given

1 f/ f(x)e_ik,_Xd x [k[ <_ N (3.1)/(k) = _ ,

In [5] we showed that we can recover (with exponential accuracy) the first m _ N terms

in the Gegenbauer expansion of f(x) based on the interval [-1, 1].

Here we ale interested to find the Gegenbauer expansion of f(x) based on a sub-interval

[a, b] C [-1, 1]. This will allow us to handle multiple discontinuities and discontinuities of

unknown locations. We will show that in this case too, we can get exponential accuracy. We

start by introducing the local variable _:

Definition 3.1

The local variable _ is defined by

• = x({) = 4 + (3.2)

where

b-a
{--

2

Thus when a <_ x _< b, -l _< _ _< 1.

b+a
, {5 - (3.3)

2

[]

Denote now the Fourier partial sum by fN(x), namely

N

fN(.)= _ /(k)_ '_x (3.4)
k=-N

As mentioned before, we are trying to recover the Gegenbauer expansion coefficients

based on the sub-interval [a, b], i.e. we would like to find the first rn ,-, N coefficients f_(l)

in the expansion

f(.v(_)) = _-2f{_(1)C?(_) (3.5)
l=O



where

1 /11(1 - _2))'-½f(x(_))CtA(_)d _ (3.6)

Of course we do not have f_(1) at our disposal but only an approximation based on the

Fourier partial sum fN(x), thus we have

I J/1 2 A-_- A= (i ) 2fN(x( ))c, (3.7)

The Truncation Error is the measure of deviation of the approximate Gegenbauer expan-

sion from the true expansion:

TE(A,m,N,e) =

m

max [y_(f_(1) - O{(/))C_(_¢)[ (3.8)
--1<_(<_1 l=0

We can show that the truncation error is exponentially small:

Theorem 3.2:

Let f(x) be an L2 function whose first 2N+l Fourier coefficients f(k) defined in (3.1) are

known. Let 9{(l) be the Gegenbauer coefficients, based on the sub-interval [a, b] expansion

of the Fourier partial sum fN(x)defined in (3.7), and f,(1) be those of I(x) defined in (3.6).

Assume that

A = deN m = fleN (3.9)

Where e is the half length of the sub-interval [a, b] defined in (3.3). Then the truncation

error is bounded by

TE(aeg, fleg, g,e) <_ mq 'N, (3.10)

where

(_ + 2a)o +2'_
q= (27re)O,a,_/3_ (3.11)

and A grows at most quadratically with N. In particular, if a =/3 _ ¼, then

q_0.8

Proof:



The proof follows exactly the one in [5], Theorem 3.1 and 3.3, with proper accounting

for the interval length e.

[]

4 Truncation Error in a Sub-interval--Chebyshev and

Legendre Methods

In this section we assume that we have the first N + 1 Chebyshev or Legendre coefficients

in the expansion of an L2 function f(x) based on the interval -1 _< x _< 1. We show how

to get its Gegenbauer expansion based on a sub-interval [a,b] C [-1, 1] with exponential

accuracy in N. The proof makes use of Lemma 2.7, which states that the low modes of the

Fourier expansion of the Chebyshev or Legendre polynomial of degree N decay exponentially

with N. Thus only the high modes count, and those are shown in Section 2 to have small

Gegenbauer coefficients.
1

For simplicity of notation we will deal with C_(x), which is the Legendre polynomial

2 times the Chebyshev polynomial Tk(x) (see (2.10)).Pk(x) (see (2.9)), and C_(x), which is

The Chebyshev or Legendre expansion coefficients of f(x) are given by

1
for #=0or #= _.

In this section we consider functions f(x) satisfying

Assumption 4.1:

I]"(k)l <_ A for all k.

o

We remark that if f(x) is an L2 function the assumption is fulfilled.

We assume that we know the first N + 1 Chebyshev or Legendre coefficients, fu(k) for

0 < k < N, and define
N

f (x) = ].(k)c;(x)
k=O

(4.2)



Note that f_c(x) does not converge fast to f(x) if there exist discontinuities inside the domain.

The function f(x) has also a Gegenbauer expansion in a sub-interval [a, b]. With _,_ and

defined in (3.2)-(3.3), we have

oo

f(e_ +,5)- _-_]_(l)C?(_)
I=O

where the Gegenbauer coefficients f_(l) are defined by

(4.3)

]_(l) = h-_/)(1 - _2)_-½f(e_ + 5)C_(_)d_ (4.4)

As before, we do not ha_'e ]_(1) at our disposal, but only an approximation based on the

partial Chebyshev or Legendre sum f_(x), thus we have

0)(t) = h--}-1(1

How well do 0_(l) approximate f_(l)? To answer this question we define

Definition 4.2:

The truncation error is defined by

TE(A,m,N,¢)= max (4.6)
-1<__<_1 I=0

where f_(l) are defined by (4.4) and _(l) are defined by (4.5).

D

The truncation error is the measure of the distance between the true Gegenbauer expan-

sion in the interval [a, b] and its approximation based on the Chebyshev or Legendre partial

sum in [-1, 1].

We first have the following lemma:

Lemma 4.3:

TE(A, m, N, _) <_
q=N+I t=0 _//1(1 -- _2)_-½C_(e_ ÷ 5)C?(5)d_

10
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Proof:

From (4.4) and (4.5) we have

1

/?(t) - 0_(_)= _ J';,(1 - 42):_-½(f(e4 + 5) - f_,(¢_¢ + 5))Ct_(_)d_

Substituting (4.8) into (4.6), recalling (2.4) and

oO

f(_ + _)- f_(_¢+ _)=
q=N+l

we obtain (4.7).

(4.8)

fU(q)C_(¢_ + 5) (4.9)

[3

For simplicity of notations we denote:

Fq,t,;_ = _Ct_(1) f:, (1-_2)_-½C_(_ +5)C?(_)d_ , q > N (4.10)

In order to estimate this term, we consider the Fourier series approximation of C_'(e[ + 5)

from (2.12) and (2.13) to get

Lemma 4.4:

Pq,t,__<AC{(1)F(_)_ _ Idt+_(kTr_)lla_,l (4.11)
k=l

where a_ is given either by (2.14) or by (2.15), and A grows at most as fast as a linear

polynomial in A and l.

Proof:

We expand C_(x) using (2.12) or (2.13):

oo oo

C_'(x)= _ a_'Ue'k'_= __, a_'Ue'k"_e 'k'_6 (4.12)

1

_q,o 2bqwhere a_ '_ = a_ is given by (2.14) and uk = _ k is given by (2.15).

We now use (2.11) to get

J_ 2 A l ,kT:_( tkr5 Xh_ 1( 1 -4 ) -_e e C, (()d_ = F(A)

Substituting (4.12) and (4.13) into (4.10) gives us (4.11).

(l + A)IJt+_(k_-_)l (4.13)

ll



[]

We are ready now to estimate directly Fq,t,:_ defined in (4.10).

Lemma 4.5:

Consider Fq,t,_ defined in (4.10). Let A = 2-_eN and l = 7A where 3' < 1. Then for every

q > N we have

Fq,t,A < Ae -'_ (4.14)

where A grows at most quadratically with N.

Proof."

Let kq = [_] be the integer part of _. We split the sum on the right hand side of (4.11)

into

C___ ) [ ( 2 ) x ] /'F(1) F(2)_ (4.15)Fq,t,x < a + _ c?(1)F(A) _ Ig,+:,(k,_OllaZI = At, q,t,_, + q,t,_,]
k=kq+l

We first use (2.3) and (2.7) to obtain:

C_(1) < A ((7 + 2)_+2_

A

< A(-_) '_ (4.16)

and

r(_) < A.V_e-'_ (4.17)

We start with an estimation of the second sum

F(2)q,,,_= c}(1)r(_)
k=kq+l

Igt+_(kTrc)llaZI

We use (4.16), (4.17), the fact that IJl+x(x)[ < 1 and la_,l _< 1, and k > kq = [_] and

A = 2--_eN to get

Fq,2, < A (27A_a (N) _'t'_- \-_-eq ] < Ae-_ " (4.18)

where A grows at most linearly with N, the growth coming from the summation. For the

first sum
kq

k=l

IJt÷_(k_OI laT_l,

12



westill use (4.16), (4.17) and the bound JJt+x(x)[< 1. However, for the estimate on Ja_[,

we use (2.16), (2.17):

and the fact q > N > A to get

_ q,l,A -- k=l

and, upon substituting for kq = [_] and A = 2-_eN:

A

,/,A --

Combining (4.18) and (4.21)we obtain (4.14).

(4.19)

,X (eTr_q_q( 27A )'_<_Akq \---_-q] 2_kqe] (4.20)

< Ae -_ (4.21)

[]

We are now ready for the main theorem of this section:

Theorem 4.6:

Let the truncation error be defined in (4.6). Let A = 2, N and m < A, then27e

TE(A, m, N, _) < Ae -:_ (4.22)

where A grows at most as a fourth order polynomial in N.

Proof:

The theorem follows from (4.7), the Assumption 4.1, and (4.14).

D

5 Regularization Error for a Sub-interval

In this section we study the second part of the error, which is caused by using a finite

Gegenbauer expansion based on a sub-interval [a, b] C [-1, 1], to approximate a function

f(x) which is assumed analytic in this sub-interval [a, b]. Since in previous sections we have

13



establishedexponentially small truncation errors if )_ and m are both growing linearly with

N, in this section we will consider the case of )_ ,-- m.

We will assume that f(x)is an analytic function on [a,b] satisfying

Assumption 5.1

There exists constants p > 1 and C(p) such that, for every k > 0,

max dkf I k___<_<b d_-xk(x) < C(p) (5.1)

o

This is a standard assumption for analytic functions, p is the distance from [a, b] to the

nearest singularity of f(x) in the complex plane (see, for example, [8]). This assumption and

the following proof can be modified to allow for an arbitrary ellipse region around [a, b] for

the analyticity of f(x) (n. Vandeven, private communication).

Let us consider the Gegenbauer partial sum of the first m terms for the function f(e_+8):

m

f_,c(_) = __, fi_(l)C_(_) (5.2)
l=O

with _, e and 5 defined by (3.2) and (3.3), and the Gegenbauer coefficients based on [a,b]

defined by

We want to estimate the regularization error in the maximum norm:

nE(,_,m,e) = max + 5)- _-_f?(l)C? (5.4)

We have the following result for the estimation of the regularization error, when )_ ,._ m:

Theorem 5.2:

Assume )_ = 7m where 7 is a positive constant. If f(x) is analytic in [a,b] C [-1,1]

satisfying the Assumption 5.1, then the regularization error defined in (5.4) can be bounded

by

RE(Tin, re, e) < mq m (5.5)

14



whereq is given by

which is always less than 1.

constant, then

c(1 + 27) a+2"Y

q = p2a+2.yT.y( 1 + 7) 1+'+
(5.6)

In particular, if 3' = 1 and m = /3N where /3 is a positive

RE(_N,_N,c) <_ Aq N (5.7)

with

(27e'_ _ (5.8)
q = \3--_p]

Proof:

The proof follows in exactly in the same fashion as in [5], Lemma 4.2, Theorems 4.3 and

4.4, with proper accounting for the transformation x(_) = e_ + (5.

[]

6 Concluding Remarks

In this Section, we combine the estimates for truncation errors and regularization errors in

previous sections, to obtain the main theorem of this paper:

Theorem 6.1: Removal of the Gibbs Phenomenon for the sub-interval case

Consider an L2 function f(x) on [-1, 1], which is analytic in a sub-interval [a,b] C [-1, 1]

and satisfies

dkf, ,I k'
max -_xktX) < C(p)--), p > 1a<x<b p_

Assume that either the first 2N + 1 Fourier coefficients

(6.1)

1 f f(x)e_ik..dx 'f(k) = _ , -N <k< N

or the first N + 1 Chebyshev or Legendre coefficients

f_'(k) = -)i-_/_ll(1-x2)U-½ f(x)C_(x)dx,

1

_=Oor_=_-

15



areknown. Let _,x(1),0 < l < m be the Gegenbauer expansion coefficients, based on the sub-

interval [a, b], of the spectral partial sum fu(x)in (3.4) or fly(x)in (4.2). These Gegenbauer

coefficients are defined in (3.7) for the Fourier case and in (4.5) for the Chebyshev or Legendre

2 (Chebyshev orcase. Then for X = m = _eN where/3 < _ (Fourier case) or fl <

Legendre case), we have

rft
max f(e_ + 6)- _[I2(l)C?(()

--1_<(_<1 l=0

where

for the Fourier case and

<_ A (q_N + q_N) (6.2)

qT \2_re] < 1, qn \32p] < 1

qT=e -f_< 1, qn= \32p] < 1

for the Chebyshev or Legendre case, and A is at most a fourth order polynomial in N.

Proof:

Just combine the results of Theorems 3.2, 4.6 and 5.2.

o

We finally give two remarks:

Remark 6.2

It can be seen from (6.2) that the truncation error gets bigger when the interval half-

length _ decreases, because the parameters m and X must decrease with e. This in turn also

affects the regularization error, although there is a factor _ in qn which offsets this effect.

[]

Remark 6.3

No attempt has been made in this paper to optimize the parameters.

f-3
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