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Abstract. In this paper, starting from the study of the common elements that some globally
convergent direct search methods share, a general convergence theory is established for unconstrained
minimization methods employing only function values. The introduced convergence conditions are
useful for developing and analyzing new derivative-free algorithms with guaranteed global conver-
gence. As examples, we describe three new algorithms which combine pattern and line search ap-
proaches.
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1. Introduction. In this paper, we consider the problem of the form

min
x∈Rn

f(x),

where f : Rn → R is a continuously differentiable function and where the first order
derivatives of f can be neither calculated nor approximated explicitly.

The interest in studying minimization algorithms for solving these optimization
problems derives from the increasing demand from industrial and scientific applica-
tions for such tools. Many derivative-free methods have been proposed in the litera-
ture; descriptions of these methods can be found, for instance, in [13] and [19].

An important class of such methods is formed by the so-called direct search meth-
ods, which base the minimization procedure on the comparison of objective function
values computed on suitable trial points. Two particular subclasses of globally con-
vergent direct search methods are the following:

– pattern search methods (see, e.g., [2], [6], [16], [19]), which present the distin-
guishing feature of evaluating the objective function on specified geometric
patterns;

– line search methods (see, e.g., [1], [4], [5], [8], [10], [11], [12], [17], [20]), which
draw their inspiration from the gradient-based minimization methods and
perform one dimensional minimizations along suitable directions.

These two classes of methods present different interesting features. In fact, the pattern
search methods can accurately sample the objective function in a neighborhood of a
point and, hence, can identify a “good” direction, namely, a direction along which
the objective function decreases significantly. The line search algorithms can perform
large steps along the search directions and, hence, can exploit to a large extent the
possible goodness of the directions. Therefore it could be worthwhile to combine
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12 00185 Roma, Italy (lucidi@dis.uniroma1.it).
‡Istituto di Analisi dei Sistemi ed Informatica, CNR, Viale Manzoni 30 00185 Roma, Italy

(sciandro@iasi.rm.cnr.it).

97



98 S. LUCIDI AND M. SCIANDRONE

these approaches in order to define new classes of derivative-free algorithms that could
exploit as much as possible their different features, namely, algorithms which are able
to determine “good” directions and to perform “significant” steplengths along such
directions. Some examples of methods combining different direct search approaches
have already been proposed in [3], [10], [14], [15], [17], [18]. In this paper, on the
basis of the convergence analyses reported in [5], [7], and [16] for pattern and line
search methods, respectively, we give general sufficient conditions for ensuring the
global convergence of a sequence of points. These conditions, which do not require
any information on first order derivatives, can be used as the basis for developing new
globally convergent derivative-free algorithms and, in particular, algorithms which
can follow a mixed pattern-line search approach.

More specifically, in section 2, we start by identifying the common key features
of the pattern and line search methods which are behind their global convergence
properties. This analysis indicates that the global convergence of a derivative-free
algorithm can be guaranteed by satisfying some minimal and quite natural require-
ments on the search directions used and on the sampling of the objective function
along these directions. Then, in section 3, we analyze theoretical requirements re-
garding the search directions. In section 4, we define general conditions sufficient
to ensure global convergence without gradient information. Finally, in section 5, we
propose new globally convergent algorithms which combine pattern and line search
approaches. The appendix contains the proofs of two technical results.

Notation. We indicate by ‖ · ‖ the Euclidean norm (on the appropriate space). A
subsequence of {xk} corresponding to an infinite subset K will be denoted by {xk}K .

Given two sequences of scalars {uk} and {vk} such that

lim
k→∞

uk = 0 and lim
k→∞

vk = 0,

we say that uk = o(vk) if

lim
k→∞

uk
vk

= 0.

As usual we say that a set of directions {p1, p2, . . . , pr} positively span Rn if for every
x ∈ Rn there exist λi ≥ 0, for i = 1, . . . , p, such that

x =

r∑
i=1

λip
i.

Finally, we denote by ei, with i = 1, . . . , n, the orthonormal set of the coordinate
directions.

2. Preliminary remarks. It is well known that, when the gradient is available,
to define a globally convergent algorithm for unconstrained problems is not a difficult
task. In fact, at each iteration, the gradient allows us

– to compute and select a “good” descent direction, namely, a direction along
which the objective function decreases with a suitable rate;

– to determine a “sufficiently” large steplength along a descent search direction,
namely, a steplength which is able to exploit the descent property of the search
direction by enforcing a significant decrease in the value of the objective
function relative to the norm of the gradient.
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When the gradient is not available, we lose information about the local behavior
of the objective function. In fact, the ith component ∇if of the gradient is the
directional derivative of the objective function along the vector ei, and −∇if is
the directional derivative along the vector −ei. Therefore, the whole gradient vec-
tor provides the rate of change of the objective function along the 2n directions
[e1, e2, . . . , en,−e1,−e2, . . . ,−en]. This fact guarantees that the gradient informa-
tion characterizes quite accurately the local behavior of the objective function in a
neighborhood of the point at which the derivatives are computed.

Most of the algorithms belonging to the class of direct search methods follow,
more or less visibly, the same strategy to overcome the lack of first order information
contained in the gradient. Their common approach is based on the idea of investigat-
ing the behavior of the objective function in a neighborhood of the generic point by
sampling the objective function along a set of directions. Clearly each of these algo-
rithms presents properties and features which depend on the particular choice of the
sets of directions and on the particular way in which the samplings of the objective
function are performed.

The directions to be used in a derivative-free algorithm should be such that the
local behavior of the objective function along them is sufficiently indicative of the
local behavior of the function in a neighborhood of a point. Roughly speaking, these
directions should have the property that, performing finer and finer samplings of the
objective function along them, it is possible either

(i) to realize that the current point is a good approximation of a stationary point
of the objective function, or

(ii) to find a specific direction along which the objective function decreases.
The important point is to identify larger and larger classes of sets of search directions
which can be used to define globally convergent derivative-free algorithms. To this
end, in the next section, we propose a general condition which formally characterizes
classes of sets of directions complying with the properties (i) and (ii).

In addition to contributing to the previous points (i) and (ii), the method of
sampling has the task of guiding the choice of the new point so as to ensure that the
sequence of points produced by the algorithm is globally convergent towards stationary
points of the objective function. On the basis of the common features of the sampling
techniques of the direct search methods proposed in [5], [7], and [16], in section 4 we
define sufficient conditions on the samplings of the objective function along suitable
directions for the global convergence of a derivative-free method. Similar conditions
were given in [18]; however, the ones proposed in this work are more general.

3. Search directions. Before describing our analysis, we recall the following
basic assumption on the objective function.

Assumption A1. The function f : Rn → R is continuously differentiable.

As said before, the first step in defining a direct search method is to associate a
suitable set of search directions pik, i = 1, . . . , r, with each point xk produced by the
algorithm. This set of directions should have the property that the local behavior
of the objective function along them provides sufficient information to overcome the
lack of the gradient.

Here, we introduce a new condition which characterizes the sets of directions pik,
i = 1, . . . , r, that satisfy this property. This condition requires that the distance
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between the points generated by an algorithm and the set of stationary points of
the objective function tends to zero if and only if the directional derivatives of the
objective function along the directions pik, i = 1, . . . , r, tend to assume nonnegative
values. Formally we have the following condition.

Condition C1. Given a sequence of points {xk}, the sequence directions {pik},
i = 1, . . . , r, are bounded and such that

lim
k→∞

‖∇f(xk)‖ = 0 if and only if lim
k→∞

r∑
i=1

min{0,∇f(xk)T pik} = 0.

By drawing our inspiration from some results established in [7] and [16], we state the
following proposition, which points out a possible interest in the sets of directions
satisfying Condition C1.

Proposition 3.1. Let {xk} be a bounded sequence of points and let {pik}, i =
1, . . . , r, be sequences of directions which satisfy Condition C1. For every η > 0,
there exist γ > 0 and δ > 0 such that, for all but finitely many k, if xk satisfies
‖∇f(xk)‖ ≥ η, then there exists a direction pikk , with ik ∈ {1, . . . , r}, for which

f(xk + αpikk ) ≤ f(xk)− γα‖∇f(xk)‖‖pikk ‖(3.1)

for all α ∈ (0, δ].
Proof. For the proof, see the appendix.
The previous proposition guarantees that, whenever the current point is not a

stationary point, it is possible to enforce sufficient decrease of the objective function
by using sets of directions satisfying Condition C1. In other words, this ensures
that Condition C1 implies that the sets of directions are able to comply with the
requirement (ii) discussed in section 2.

From a theoretical point of view, Proposition 4.1, given in the next section, shows
that Condition C1 is a sufficient requirement for the search directions to ensure the
global convergence of the sequence of iterates (or at least one subsequence) to a
stationary point of f . Roughly speaking, the role of Condition C1 in the field of
derivative-free methods can be similar to that of the gradient-related condition used
in the field of gradient-based algorithms. In fact, Condition C1 can be considered a
mild technical condition on the sets of search directions which can be either naturally
satisfied or easily enforced in a derivative-free algorithm (see Algorithm 3 in section
5).

In order to show that Condition C1 is a viable requirement on the search direc-
tions, we report two classes of sets of directions satisfying Condition C1 and some
examples of these classes. The classes introduced here generalize the ones proposed
in [7].

Classes of sets of search directions.
(a) The sequences {pik}, with i = 1, . . . , r, are bounded, and every limit point

(p̄1, . . . , p̄r) of the sequence {p1
k, . . . , p

r
k} is such that the vectors p̄i, with

i = 1, . . . , r, positively span Rn.
(b) The sequences {pik}, with i = 1, . . . , r, are bounded; the vectors pik, i =

1, . . . , n, are uniformly linearly independent; and, for all k, there exists a
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direction pn+j
k , with j ≥ 1, given by

pn+j
k =

2n∑

=1

ρ
k
(v1

k − v
k)

ξ̃
k
,(3.2)

where
– the sequences {ρ
k}, � = 1, . . . , 2n, are bounded and such that ρ
k ≥ 0

with ρ2n
k ≥ ρ̄ > 0 for all k;

– {v1
k, v

2
k, . . . , v

2n
k } = {z1

k, z
1
k + ξ1

kp
1
k, z

2
k, z

2
k + ξ2

kp
2
k, . . . , z

n
k , z

n
k + ξnk p

n
k}, with

the points v
k, for � = 1, . . . , 2n, ordered (and possibly relabeled) so that

f(v1
k) ≤ f(v2

k) ≤ · · · ≤ f(vn−1
k ) ≤ · · · ≤ f(v2n

k ),(3.3)

and the sequences {ξik} and {zik}, for i = 1, . . . , n, are such that, for all
k,

ξik > 0,(3.4)

max
i=1,...,n

{ξik}
min

i=1,...,n
{ξik}

≤ c1,(3.5)

‖zik − xk‖ ≤ c2ξ
i
k,(3.6)

where c1,c2 > 0, and such that

lim
k→∞

ξik = 0;(3.7)

– the sequences {ξ̃
k}, � = 1, . . . , 2n, are such that mini=1,...,n{ξik} ≤ ξ̃
k ≤
maxi=1,...,n{ξik}.

For the classes of sets of search directions we can state the following proposition.
Proposition 3.2. Let {xk} be a bounded sequence of points, and let {pik}, i =

1, . . . , r, be sequences of directions belonging to class (a) or class (b). Then, Condition
C1 is satisfied.

Proof. For the proof, see the appendix.
Two examples of sets of directions belonging to the classes (a) and (b) are de-

scribed in [7]. These classes are defined starting from a set of n uniformly linearly
independent search directions, for example,

p1
k = e1, p2

k = e2, . . . , pnk = en.(3.8)

Then, to obtain a set of class (a), it is sufficient to consider also the directions

pn+1
k = −e1, pn+2

k = −e2, . . . , p2n
k = −en

or just the direction

pn+1
k = −

n∑
i=1

ei.
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A set of class (b) can be obtained by adding to (3.8) the direction

pn+1
k =

xk − xmax
k

ξk
,

where xmax
k = argmaxi=1,...,n{f(xk+ξkpik)} and ξk → 0 for k → ∞. This corresponds

to setting

zik = xk, ξik = ξk for i = 1, . . . , n,

ξ2n
k = ξk,

ρ1
k = ρ2

k = · · · = ρ2n−1
k = 0, ρ2n

k = 1.

A new class of sets of search directions satisfying Condition C1 will be defined within
Algorithm 3 proposed in section 5. In particular, this class is constructed during the
minimization procedure so as to exploit as much as possible the information on the
objective function obtained in the preceding iterations.

4. Global convergence conditions. In this section we show that the global
convergence of an algorithm can be guaranteed by means of the existence of suitable
sequences of points along search directions pik, i = 1, . . . , r, satisfying Condition C1.
In particular, by using Condition C1 we can characterize a stationary point of f with
the fact that the objective function does not decrease locally along the directions pik,
i = 1, . . . , r, in points sufficiently close to the current point xk. This leads to the pos-
sibility of defining new general conditions for the global convergence of derivative-free
algorithms by means of the existence of sequences of points showing that the objec-
tive function does not decrease along the directions pik, i = 1, . . . , r. These conditions,
even if very simple and intuitive, allow us to identify some minimal requirements on
acceptable samplings of the objective function along the directions pik, i = 1, . . . , r,
that guarantee the global convergence of the method.

In the remainder of the paper we suppose that the following standard assumption
holds.

Assumption A2. The level set

L0 = {x ∈ Rn : f(x) ≤ f(x0)}

is compact.

The following proposition describes a set of global convergence conditions.
Proposition 4.1. Let {xk} be a sequence of points; let {pik}, i = 1, . . . , r, be

sequences of directions; and suppose that the following conditions hold:
(a) f(xk+1) ≤ f(xk);
(b) {pik}, i = 1, . . . , r, satisfy Condition C1;
(c) there exist sequences of points {yik} and sequences of positive scalars {ξik}, for

i = 1, . . . , r, such that

f(yik + ξikp
i
k) ≥ f(yik)− o(ξik),(4.1)



GLOBAL CONVERGENCE OF DERIVATIVE-FREE METHODS 103

lim
k→∞

ξik = 0,(4.2)

lim
k→∞

‖xk − yik‖ = 0.(4.3)

Then,

lim
k→∞

‖∇f(xk)‖ = 0.(4.4)

Proof. From (a) it follows that {f(xk)} is a nonincreasing sequence, so that {xk}
belongs to the compact set L0 and admits at least one limit point. Let x̄ be any limit
point of {xk}. Then, there exists a subset K1 ⊆ {0, 1, . . .} such that

lim
k→∞,k∈K1

xk = x̄,

lim
k→∞,k∈K1

pik = p̄i, i = 1, . . . , r.

Using (4.3), it follows that

lim
k→∞,k∈K1

yik = x̄, i = 1, . . . , r.

Now, recalling (4.1) for all k ≥ 0, we have

f(yik + ξikp
i
k)− f(yik) ≥ −o(ξik), i = 1, . . . , r.(4.5)

By the mean-value theorem, we can write

f(yik + ξikp
i
k)− f(yik) = ξik∇f(uik)T pik, i = 1, . . . , r,(4.6)

where uik = yik + λi
kξ

i
kp

i
k, with λi

k ∈ (0, 1). By substituting (4.6) into (4.5), we obtain

∇f(uik)T pik ≥ −o(ξik), i = 1, . . . , r.(4.7)

Now, it is easily seen from (4.2), taking into account the boundedness of pik, that
uik → x̄ as k → ∞ and k ∈ K1. Hence, by the continuity of ∇f , from (4.7) and
recalling (4.2), we get

lim
k→∞,k∈K1

∇f(uik)T pik = ∇f(x̄)T p̄i ≥ 0, i = 1, . . . , r.

Then, recalling (b) and Condition C1, we have that

∇f(x̄) = 0.

As x̄ is any limit point of {xk}, we conclude that

lim
k→∞

‖∇f(xk)‖ = 0.

Roughly speaking, according to (c), for each search direction pik, the existence of
suitable points yik and yik+ξikp

i
k related to the “current” point xk is assumed (see (4.2)

and (4.3)) whenever a “failure” of a (sufficient) strict decrease of f occurs (see (4.1)).
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Then, also considering (4.2), we have that at the point yik the directional derivative
of f along pik can be approximated by a quantity which tends to be nonnegative.
Therefore, due to the property of the search directions expressed by Condition C1,
the global convergence of the sequence {xk} can be ensured by requiring that the
failure points “cluster” more and more around xk (see (4.3)).

Similar conditions were given in [18]; however, those of Proposition 4.1 are more
general in the requirements placed on both the search directions pik and the trial steps
ξik, i = 1, . . . , r.

The use of directions satisfying Condition C1 and the result of producing se-
quences (or subsequences) of points that satisfy the hypothesis of Proposition 4.1 are
the common elements of the globally convergent derivative-free algorithms proposed
in [5] and [16], which consider the pattern and line search approaches, respectively.
This point is discussed in more detail in [9], where the known global convergence
results of different algorithms are reobtained by using Condition C1 and Proposition
4.1. With regard to (4.1) and (4.2) of Proposition 4.1(c), we note only that

– in the pattern search algorithms, the failures (4.1) (with o(ξik) = 0) occur
“naturally” by requiring only a simple decrease of f , while (4.2) follows by
imposing further restrictions on the search directions and on the steplengths;

– in the line search algorithms, (4.1) and (4.2) are satisfied by enforcing a “suffi-
cient” decrease of f depending on ξik and without imposing further restrictions
on the search directions.

5. New globally convergent algorithms. In this section we try to motivate
further the possible practical interest of the analysis performed in sections 3 and 4,
by showing that Condition C1 and Proposition 4.1 can play the role of guidelines for
defining new derivative-free algorithms and for analyzing their convergence properties.

Since the conditions given in Proposition 4.1 capture some common theoretical
features of pattern and line search approaches, they are suitable for defining algorithms
which combine these two approaches. In particular, our aim is to propose algorithms
which are able to

– get sufficient information on the local behavior of the objective function f ,
like in a pattern strategy;

– exploit the possible knowledge of a “good” direction, like in a line search
strategy.

In this section, as examples, we describe three new algorithms (Algorithm 1, Algo-
rithm 2, and Algorithm 3). The basic idea of these algorithms is to sample, at each
iteration k, the objective function f along a set {pik}ri=1 of search directions. This is
performed with the aim of detecting a “promising” direction (like in a pattern strat-
egy), that is, a direction along which the objective function decreases “sufficiently.”
Then, once such a direction has been detected, a “sufficiently” large step is performed
along it. Both the “sufficient” decrease of the objective function and the “sufficient”
steplength are evaluated by means of criteria derived from the line search approach.
These criteria, requiring sufficient decrease of the objective function, are stronger than
the ones used in the pattern search algorithms (where the simple reduction of f is
allowed). However, as we said before, they allow us more freedom in the choice of
search directions and in the steplengths used to sample the objective function.

In particular, in Algorithm 1 and Algorithm 2, we assume that the sets of search
directions satisfying Condition C1 are given. Algorithm 1 is very simple, and its
scheme is similar to that of a pattern search algorithm. For this algorithm we can
prove that at least one accumulation point of the sequence produced is a stationary
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point of f . In Algorithm 2 a line search technique is introduced to exploit as much
as possible a promising direction identified by the algorithm. For this algorithm
we prove that any convergent subsequence generated by the algorithm tends to a
stationary point of f . The approach of Algorithm 3 is the same as that of Algorithm
2; the distinguishing feature of Algorithm 3 is that of using sets of n+1 directions, in
which the first n are given and the last one is computed on the basis of the information
iteratively obtained with the aim of identifying a “good” direction. For this algorithm
we prove the same convergence result stated for Algorithm 2.

The first algorithm is the following.

Algorithm 1.
Data. x0 ∈ Rn, α̃0 > 0, γ > 0, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. If there exists yk ∈ Rn such that

f(yk) ≤ f(xk)− γα̃k,

then go to Step 4.
Step 2. If there exists i ∈ {1, . . . r} and an αk ≥ α̃k such that

f(xk + αkp
i
k) ≤ f(xk)− γ(αk)

2
,

then set yk = xk + αkp
i
k, α̃k+1 = αk and go to Step 4.

Step 3. Set α̃k+1 = θα̃k and yk = xk.
Step 4. Find xk+1 such that f(xk+1) ≤ f(yk), set k = k + 1,

and go to Step 1.

Algorithm 1 follows an approach similar to that of a pattern search algorithm. In
particular, at each iteration it is possible to accept any single point for which sufficient
decrease of the objective function is realized (Step 1). The stepsize αk is reduced only
when it is not possible to locally enforce the sufficient reduction of f along the search
directions pik, for i = 1, . . . , r (Steps 2–3). At Step 4 the algorithm can accept any
point which produces an improvement of the objective function with respect to the
selected point yk.

We note that, at Step 2, any extrapolation technique can be attempted to deter-
mine a good stepsize αk whenever a suitable direction has been detected. However,
the use of an extrapolation technique is not necessary to guarantee global conver-
gence. (In particular, it is enough to use αk = α̃k.) Furthermore, we point out that,
even if a set of r search directions pik, i = 1, . . . , r, is associated to the current point

xk, so long as a sufficient decrease condition has been satisfied along a direction pīk,
the remaining directions can be ignored. This is a feature that Algorithm 1 has in
common with the weak form of pattern search algorithms (see [16]).

Finally, we observe also that Step 1 and Step 4 allow the possibility of using any
approximation scheme for the objective function to produce a new better point.

The convergence properties of the algorithm are reported in the following propo-
sition.

Proposition 5.1. Let {xk} be the sequence produced by Algorithm 1. Suppose
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that the sequences of directions {pik}ri=1 satisfy Condition C1. Then we have

lim inf
k→∞

‖∇f(xk)‖ = 0.(5.1)

Proof. We prove (5.1) by showing that conditions (a), (b), and (c) of Proposition
4.1 are satisfied (at least) by a subsequence of {xk}.

Condition (a) follows from the instructions of the algorithm. Condition (b) is
obviously true. Therefore we concentrate on Condition (c).

We can split the iteration sequence {k} into three parts, K1, K2, and K3, namely,
those iterations where the test at Step 1 is satisfied, those where the test at Step 2 is
satisfied, and those where Step 3 is performed. In particular, if k ∈ K1, we have

f(xk+1) ≤ f(xk)− γα̃k;(5.2)

if k ∈ K2, we have

f(xk+1) ≤ f(xk)− γ(αk)
2 ≤ f(xk)− γ(α̃k)

2
;(5.3)

and if k ∈ K3, we have

f(xk + α̃kp
i
k) > f(xk)− γ(α̃k)

2
for i = 1, . . . , r.(5.4)

If K1 is an infinite subset, then (5.2), the compactness of the level set L0, the conti-
nuity assumption on f , and Condition (a) imply

lim
k→∞,k∈K1

α̃k = 0.(5.5)

Now, let us assume that K2 is an infinite subset. From (5.3), by repeating the same
reasoning, we obtain

lim
k→∞,k∈K2

α̃k = 0.(5.6)

Now for each k ∈ K3 let mk be the biggest index such that mk < k and mk ∈ K1∪K2.
Then we have

α̃k+1 = θk−mk α̃mk
.(5.7)

(We can assume that mk = 0 if the index mk does not exist; that is, K1 and K2 are
empty.)
As k → ∞ and k ∈ K3, either mk → ∞ (if K1 ∪ K2 is an infinite subset) or
(k −mk) → ∞ (if K1 ∪K2 is finite). Therefore, (5.7) together with (5.5) and (5.6)
or the fact that θ ∈ (0, 1) yields

lim
k→∞,k∈K3

α̃k = 0.(5.8)

Thus, by using (5.5), (5.6), and (5.8), we can write

lim
k→∞

α̃k = 0.(5.9)

From (5.9) it follows that there exists an infinite subset K ⊆ {0, 1, . . .} such that
α̃k+1 < α̃k for all k ∈ K; namely, Step 3 is performed for all k ∈ K. Therefore, we
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have K ⊆ K3, and hence (5.4) holds for all k ∈ K. Now, with reference to condition
(c) of Proposition 4.1, for each k ∈ K we set

ξik = α̃k, yik = xk, i = 1, . . . , r.(5.10)

Then we have

f(yik + ξikp
i
k) ≥ f(yik)− γ

(
ξik
)2

;

moreover, recalling (5.9), it follows that

lim
k→∞,k∈K

ξik = 0,

so that (4.1) and (4.2) hold. Finally, (4.3) follows directly from (5.10), and this
concludes the proof.

Now we define pattern-line search algorithms producing sequences of points with
the stronger property that every limit point is a stationary point of f . This additional
property can be obtained by investigating in more detail the behavior of the objective
function along the search directions pik, i = 1, . . . , r, and by using a derivative-free line
search technique to ensure sufficiently large movements along any “good” direction
identified by the algorithm. The first of these algorithms is the following.

Algorithm 2.
Data. x0 ∈ Rn, α̃i

0 > 0, i = 1, . . . , r, γ > 0, δ, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. Set i = 1 and y1

k = xk.

Step 2. If f(yik + α̃i
kp

i
k) ≤ f(yik)− γ(α̃i

k)
2
, then

compute αi
k by LS Procedure(α̃i

k, y
i
k, p

i
k, γ, δ)

and set α̃i
k+1 = αi

k;
else set αi

k = 0 and α̃i
k+1 = θα̃i

k.

Set yi+1
k = yik + αi

kp
i
k.

Step 3. If i < r, set i = i+ 1 and go to Step 2.
Step 4. Find xk+1 such that

f(xk+1) ≤ f(yr+1
k ),

set k = k + 1, and go to Step 1.

LS Procedure(α̃i
k, y

i
k, p

i
k, γ, δ).

Compute αi
k = min{δ−jα̃k : j = 0, 1, . . .} such that

f(yik + αi
kp

i
k) ≤ f(xk)− γ

(
αi
k

)2
,(5.11)

f

(
yik +

αi
k

δ
pik

)
≥ max

[
f(yik + αi

kp
i
k), f(y

i
k)− γ

(
αi
k

δ

)2
]
.(5.12)
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At each iteration k the algorithm examines the behavior of the objective function
along all the search directions pik, i = 1, . . . , r (Steps 1–3). However, whenever it
detects a direction pik where the function is sufficiently decreased, the algorithm pro-
duces a new point by performing a “sufficiently” large movement along this direction.
This point is determined by means of a suitable stepsize αi

k computed by a line search
technique (LS Procedure). At Step 4, similarly to Algorithm 1, the new point xk+1

can be the point yr+1
k produced by Steps 1–3 or any point where the objective func-

tion is improved with respect to f(yr+1
k ). This fact, as said before, allows us to adopt

any approximation scheme for the objective function to produce a new better point
and hence to improve the efficiency of the algorithm without affecting its convergence
properties.

Comparing Algorithms 1 and 2, it is easy to observe that Algorithm 2 requires
stronger conditions to produce the new point. In fact, all the directions must be
investigated at each iteration, and the use of a line search technique is necessary.
However, in Algorithm 2 it is possible to associate to each direction pik a different
initial stepsize α̃i

k, which is updated on the basis of the behavior of the objective
function along pik observed in the current iteration. This feature can be useful when
the search directions are the same for all iterations (pik = p̄i, i = 1, . . . , r, for all k). In
fact, in this case, the instructions of the algorithm should guarantee that the initial
stepsizes α̃i

k, i = 1, . . . , r, take into account the different behavior of f along different
search directions.

Finally, we note that Algorithm 2, similarly to the strong form of pattern search
algorithms, is required to examine, at each iteration, the local behavior of f along
all the r directions pik, i = 1, . . . , r. However, at each iteration the current point xk
is updated by means of intermediate points yi+1

k whenever sufficient decrease of f is
obtained along any of the search directions pik, i ∈ {1, . . . , r}.

From a theoretical point of view, it is possible to state the following convergence
result, which is stronger than the one obtained for Algorithm 1.

Proposition 5.2. Let {xk} be the sequence produced by Algorithm 2. Suppose
that the sequences of directions {pik}ri=1 satisfy Condition C1. Then, Algorithm 2 is
well defined and we have

lim
k→∞

‖∇f(xk)‖ = 0.(5.13)

Proof. In order to prove that Algorithm 2 is well defined, we must show that,
given an integer i ≤ r such that the test of Step 2 is satisfied, there exists a finite
integer j for which (5.11) and (5.12) hold with αi

k = δ−jα̃i
k. With this goal, we give

a proof by contradiction. We assume that either

f(yik + δ−jα̃i
kp

i
k) < f(yik)− γ

(
δ−jα̃i

k

)2
for all j

or

f(yik + δ−j−1α̃i
kp

i
k) < f(yik + δ−jα̃i

kp
i
k) ≤ f(yik)− γ

(
δ−jα̃i

k

)2
for all j.

Then, taking the limits for j → ∞, we obtain in both cases that f is unbounded
below, which contradicts Assumption A2.

Now we prove (5.13) by showing that conditions (a), (b), and (c) of Proposition
4.1 are satisfied.

Condition (a) follows from the instructions of the algorithm. Condition (b) is
obviously true. Then we must show that condition (c) holds.
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We first prove that for i = 1, . . . , r we have

lim
k→∞

αi
k = 0(5.14)

and

lim
k→∞

α̃i
k = 0.(5.15)

From the instructions of the algorithm we have

f(xk+1) ≤ f(yr+1
k ) ≤ f(xk)− γ

r∑
i=1

(
αi
k

)2
,

so that, since {xk} belongs to the compact set L0, {f(xk)} → f̄ and hence αi
k → 0,

for i = 1, . . . r. Given i ∈ {1, . . . r}, we split the iteration sequence {k} into two parts,
K and K̄, namely, those iterations where αi

k > 0 and those where αi
k = 0. For all

k ∈ K we have αi
k ≥ α̃i

k, so that, if K is an infinite subset, it follows that

lim
k→∞,k∈K

α̃i
k = 0.(5.16)

For each k ∈ K̄, let mk be the biggest index such that mk < k and mk ∈ K. (We can
assume mk = 0 if the index mk does not exist, that is, K is empty.) Then we have

α̃i
k = (θ)k−mk α̃i

mk
.

As k → ∞ and k ∈ K̄, either mk → ∞ (if K is an infinite subset) or (k−mk) → ∞ (if
K is finite). Therefore, (5.16) and the fact that θ ∈ (0, 1) imply limk→∞,k∈K̄ α̃i

k = 0.
Now, with reference to condition (c) of Proposition 4.1, we set

ξik =




αi
k

δ
if k ∈ K,

α̃i
k if k ∈ K̄.

(5.17)

Then, we have f(yik + ξikp
i
k) ≥ f(yik)− (ξik)

2; moreover, recalling (5.14) and (5.15), it
follows that limk→∞ ξik = 0, so that (4.1) and (4.2) hold. Finally, since we have

‖yik − xk‖ ≤
i−1∑
j=1

αj
k‖pjk‖,

by again using (5.14) it follows that

lim
k→∞

‖xk − yik‖ = 0,(5.18)

so that even (4.3) is satisfied and this concludes the proof.
Remark. By the proof of Proposition 5.2, in particular by (5.18), we note also

that

lim
k→∞

‖∇f(yik)‖ = 0 for i = 1, . . . , r + 1.

We conclude this section by describing Algorithm 3. This algorithm and Algo-
rithm 2 differ only in their search directions. In particular, we recall that in Algorithm
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2 the sets of directions {pik}ri=1 satisfying Condition C1 are given. In Algorithm 3
we instead assume that, at each iteration, only n linearly independent directions are
given. Then the algorithm, on the basis of the behavior of the objective function
along these directions, determines a further direction that should have a good descent
property and that is able (with the other directions) to ensure the global convergence
of the sequence produced.

Algorithm 3.
Data. x0 ∈ Rn, c > 0, α̃i

0 > 0, i = 1, . . . , n+ 1, γ > 0, δ, θ ∈ (0, 1).
Step 0. Set k = 0.
Step 1. Set i = 1, y1

k = xk, Vk = {y1
k}, Sk = {∅}.

Step 2. If f(yik + α̃i
kp

i
k) ≤ f(yik)− γ(α̃i

k)
2
, then

compute αi
k by LS Procedure(α̃i

k, y
i
k, p

i
k, γ, δ) and

set α̃i
k+1 = αi

k, Vk = Vk ∪ {yik + αi
kp

i
k},

Sk = Sk ∪ {αi
k};

else set αi
k = 0, α̃i

k+1 = θα̃i
k, Vk = Vk ∪ {yik + α̃i

kp
i
k},

Sk = Sk ∪ {α̃i
k}.

Set yi+1
k = yik + αi

kp
i
k.

Step 3. If i < n, set i = i+ 1 and go to Step 2.
Step 4. Compute αmin

k = minα∈Sk
{α} and αmax

k = maxα∈Sk
{α}.

If
αmax

k

αmin
k

≤ c, then compute pn+1
k such that

pn+1
k =

vmax
k − vmin

k

ξk
,

where vmax
k = argmaxv∈Vk

{f(v)},
vmin
k = argminv∈Vk

{f(v)}, and
ξk ∈ [αmin

k , αmax
k ];

else set pn+1
k = −∑n

i=1 p
i
k.

Step 5. If f(ynk + α̃n+1
k pn+1

k ) ≤ f(ynk )− γ(α̃n+1
k )

2
, then

compute αn+1
k by LS Procedure(α̃i

k, y
i
k, p

n+1
k , γ, δ)

and set α̃n+1
k+1 = αn+1

k ;

else set αn+1
k = 0 and α̃n+1

k+1 = θα̃n+1
k .

Set yn+1
k = ynk + αn+1

k pn+1
k .

Step 6. Find xk+1 such that

f(xk+1) ≤ f(yn+1
k ),

set k = k + 1, and go to Step 1.

Steps 1–3 are essentially the same as those of Algorithm 2. In these steps the
algorithm produces the points yik, with i = 1, . . . , n, by examining the behavior of
the objective function along the linearly independent directions pik, with i = 1, . . . , n.
At Step 4 we check whether the steplengths used to sample the objective function
along the n directions have been “sufficiently regular,” namely, whether the ratio
between the biggest steplength and the smallest one is not too high. In this case,
the objective function values corresponding to points generated along the n linearly
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independent directions are sufficiently representative of the local behavior of f . Hence,
the direction pn+1

k is computed taking these values into account, and it is given by
the direction (suitably scaled) from the point with the highest objective value to the
point with the lowest objective value. The aim is to approximate the direction of
steepest descent. Whenever the test on the ratio between the biggest steplength and
the smallest one is not satisfied, the direction pn+1

k is chosen in such a way that the
set {p1

k, . . . , p
n+1
k } is a positive basis for Rn. Roughly speaking, the test at Step 4 can

be viewed as a derivative-free angle condition which, as for the usual angle condition
adopted in gradient-based algorithms, allows us to define sets of search directions
satisfying Condition C1 and hence to ensure the global convergence of the algorithm.

At Step 5, the point yn+1
k is produced by essentially repeating the instructions of

Step 2 for the computed direction pn+1
k . Finally, according to Step 6, the algorithm can

update the current point by any point which produces an improvement of the objective
function value with respect to f(yn+1

k ). Now we prove the following convergence result.
Proposition 5.3. Let {xk} be the sequence produced by Algorithm 3. Suppose

that the vectors {pik}, with i = 1, . . . , n, are bounded and uniformly linearly indepen-
dent. Then Algorithm 3 is well defined and we have

lim
k→∞

‖∇f(xk)‖ = 0.(5.19)

Proof. In order to prove the thesis, since Algorithm 3 is an instance of Algorithm
2, we need only show that the sets of directions {pik}n+1

i=1 satisfy Condition C1. First
let us suppose that there exists an index k̄ such that for all k ≥ k̄ we have

pn+1
k = −

n∑
i=1

pik.

Then, the sets pik, with i = 1, . . . , n + 1, belong to the class (a) of sets of search
directions defined in section 3, and hence Condition C1 is satisfied.

Now, let us consider any subset K ⊆ {0, 1, . . .} such that, for all k ∈ K, pn+1
k is

given by

pn+1
k =

vmax
k − vmin

k

ξk
,

according to Step 4. The instructions of this step imply

αmax
k

αmin
k

≤ c for all k ∈ K.(5.20)

In this case, we can prove that the sets pik, with k ∈ K and i = 1, . . . , n + 1, belong
to the class (b) of sets of search directions defined in section 3. In fact, we can define

zik = yik, ξik =

{
αi
k if αi

k > 0,
α̃i
k otherwise,

for i = 1, . . . , n,

and we can set

ρ1
k = ρ2

k = · · · = ρ2n−1
k = 0, ρ2n

k = 1,

ξ̃2n
k = ξk,
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so that (3.2) becomes

pn+1
k =

(v1
k − v2n

k )

ξ̃2n
k

=
vmax
k − vmin

k

ξk
.

The conditions on ρlk, with l = 1, . . . , 2n, are obviously satisfied. Recalling the defi-
nitions of ξik for i = 1, . . . , n, we have that (3.4) holds; moreover, the test at Step 4
implies that (3.5) is satisfied with c1 = c (see (5.20)). Regarding (3.6), recalling the
boundedness of {pjk} with j = 1, . . . , n, we can write for all i ∈ {1, . . . , n}

‖zik − xk‖ ≤
i−1∑
j=0

ξjk‖pjk‖ ≤ max
l=1,...,n

ξlk

i−1∑
j=0

‖pjk‖ ≤ cξik

i−1∑
j=0

‖pjk‖ ≤ c̃ξik,

so that (3.6) holds with c2 = c̃. Finally, by repeating the same reasoning used in
the proof of Proposition 5.2, we can prove (5.14), (5.15), and (5.18), so that (3.7) is
satisfied.

6. Conclusions. In this work we have tried to establish a general convergence
theory for unconstrained optimization without derivatives. Toward that aim, we
have stated a set of conditions by satisfying which a pattern search or a line search
algorithm is guaranteed to enjoy global convergence. On the basis of the theoretical
analysis, we have defined new derivative-free algorithms which combine pattern and
line search approaches. Future work will be devoted to designing an efficient code
and to performing computational experiments in order to thoroughly investigate the
practical interest of the proposed approach.

7. Appendix.
Proof of Proposition 3.1. Assume, by contradiction, that the assertion of the

proposition is false. Therefore, there exists a value η > 0 such that, for every pair γt,
δt, we can find an index k(t) and scalars αi

k(t), with i = 1, . . . , r, for which we have

‖∇f(xk(t))‖ ≥ η,

f(xk(t) + αi
k(t)p

i
k(t)) > f(xk(t))− γtα

i
k(t)‖∇f(xk(t))‖‖pik(t)‖,

and

0 < αi
k(t) ≤ δt

for all i ∈ {1, . . . , r}. Now, taking into account the boundedness of {xk}, we have
that there exist (by relabeling if necessary) sequences {xk}, {γk}, {δk}, {αi

k}, {pik},
with i = 1, . . . , r, such that

xk → x̄,(7.1)

γk → 0,(7.2)

δk → 0,(7.3)

αi
k ≤ δk,(7.4)

f(xk + αi
kp

i
k) > f(xk)− γkα

i
k‖∇f(xk)‖‖pik‖.(7.5)

By the continuity assumption, we have that ‖∇f(x̄)‖ ≥ η; then, by using Condition
C1, for k sufficiently large there exists an index i ∈ {1, . . . , r} such that

∇f(xk)T pik ≤ ρ < 0.(7.6)
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Now, by (7.3), (7.4), and the boundedness of {pik} for i = 1, . . . , r, we have that

lim
k→∞

αi
k‖pik‖ = 0(7.7)

for all i ∈ {1, . . . , r}. By (7.5) and the mean-value theorem, we can write

∇f(xk)T pik + (∇f(xk + θikα
i
kp

i
k)−∇f(xk))T pik ≥ −γk‖∇f(xk)‖‖pik‖,(7.8)

where θik ∈ (0, 1). From (7.7), (7.8), (7.2) and recalling again the boundedness of
{pik}, we get a contradiction with (7.6) for k sufficiently large.

Proof of Proposition 3.2. If limk→∞ ‖∇f(xk)‖ = 0, then the boundedness of {pik}
for i = 1, . . . , r implies that limk→∞ min{0,∇f(xk)T pik} = 0, i = 1, . . . , r.

In order to prove that

lim
k→∞

r∑
i=1

min{0,∇f(xk)T pik} = 0(7.9)

implies

lim
k→∞

‖∇f(xk)‖ = 0,(7.10)

we assume, by contradiction, that the assertion is false. Therefore, taking into account
the boundedness of {xk}, there exist a subset K1 ⊆ {0, 1, . . .} and a positive number
η such that

lim
k→∞,k∈K1

xk = x̄,(7.11)

‖∇f(x̄)‖ ≥ η > 0.(7.12)

Now we distinguish the two classes of sets of search directions.
Class (a). By recalling the assumptions on the sets of search directions of this

class, we have that we can find a subset K2 ⊆ K1 such that we have

lim
k→∞,k∈K2

pik = p̄i, i = 1, . . . , r,

where p̄1, . . . , p̄r positively span Rn. Therefore, we can write

−∇f(x̄) =
r∑

i=1

βip̄i,(7.13)

with βi ≥ 0 for i = 1, . . . , r. Then, recalling (7.12), we obtain

−η2 ≥
r∑

i=1

βi∇f(x̄)T p̄i.(7.14)

From (7.14), recalling the continuity assumption on ∇f , it follows that

lim
k→∞,k∈K2

r∑
i=1

min{0,∇f(xk)T pik} =

r∑
i=1

min{0,∇f(x̄)T p̄i} < 0,
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which contradicts (7.9).
Class (b). By the boundedness assumptions on the sequences {pik}, with i =

1, . . . , r, and {ρlk}, with l = 1, . . . , 2n, we have that there exists a subset K2 ⊆ K1

such that we have

lim
k→∞,k∈K2

pik = p̄i, i = 1, . . . , r,(7.15)

lim
k→∞,k∈K2

ρlk = ρ̄i, l = 1, . . . , 2n,(7.16)

where ρ̄2n ≥ ρ̄ > 0.
From the definitions of ξ̃lk and vlk with l = 1, . . . , 2n, the boundedness of {pik}

with i = 1, . . . , r (for the sake of simplicity, we assume ‖pik‖ = 1), and (3.5), (3.7),

(3.6), it follows that the vectors (vlk − v1
k)/ξ̃

l
k are bounded. In fact, from (3.6), for k

sufficiently large and for each l ∈ {1, . . . , 2n} we can write

‖vlk − v1
k‖ ≤ ‖vlk − xk‖+ ‖xk − v1

k‖ ≤ σl
1ξ

l
k + σl

2ξ
1
k

with σl
1, σ

l
2 > 0. From the assumptions on ξ̃lk, by (3.5) we have

1

c1
≤ ξik

ξ̃lk
≤ c1(7.17)

for each i ∈ {1, . . . , n} and for each l ∈ {1, . . . , 2n}. Then, the boundedness of {pik},
with i = 1, . . . , r, implies the boundedness of (vlk − v1

k)/ξ̃
l
k for l = 1, . . . , 2n. Hence we

have

lim
k→∞,k∈K2

vlk − v1
k

ξ̃lk
= ȳl, l = 1, . . . , 2n.(7.18)

Furthermore, (3.7) and (7.15) imply

lim
k→∞,k∈K2

vlk = x̄, l = 1, . . . , 2n.(7.19)

From (3.3), for all k ≥ 0 and for l = 1, . . . , 2n, we can write

f(vlk)− f(v1
k) ≥ 0,

from which, by using the mean-value theorem, it follows that

ξ̃lk∇f
(
vlk + θlk ξ̃

l
k

vlk − v1
k

ξ̃lk

)T (
vlk − v1

k

ξ̃lk

)
≥ 0,(7.20)

with θlk ∈ (0, 1). Then, recalling (7.11) and (7.18), taking into account (3.7), and by
using the continuity assumption on ∇f for l = 1, . . . , 2n, we have

lim
k→∞,k∈K2

∇f
(
vlk + θlk ξ̃

l
k

vlk − v1
k

ξ̃lk

)T (
vlk − v1

k

ξ̃lk

)
= ∇f(x̄)T ȳl ≥ 0.(7.21)

Now, from (3.2), we get

∇f(xk)T pn+j
k =

2n∑
l=1

ρlk∇f(xk)T
(v1

k − vlk)

ξ̃lk
.(7.22)
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On the other hand, from (7.9) and recalling the continuity assumption on ∇f , it
follows that

lim
k→∞,k∈K2

∇f(xk)T pik = ∇f(x̄)T p̄i = li ≥ 0, i = 1, . . . , r.(7.23)

Therefore, from (7.22), taking the limits for k → ∞ and k ∈ K2, we obtain

∇f(x̄)T p̄n+j = −
2n∑
l=1

ρ̄l∇f(x̄)T ȳl ≥ 0,

where ρ̄l ≥ 0 and ρ̄2n > 0. Hence, recalling (7.21), it follows that

∇f(x̄)T ȳ2n = 0.(7.24)

Now, from (3.3), we get

f(v2n
k )− f(v1

k)

ξ̃2n
k

≥ f(zik + ξikp
i
k)− f(zik)

ξ̃2n
k

, i = 1, . . . , n.(7.25)

By using the mean-value theorem, we have

f(v2n
k )− f(v1

k)

ξ̃2n
k

=
∇f

(
v1
k + θkαk

v2n
k −v1

k

ξ̃2n
k

)T
(v2n

k − v1
k)

ξ̃2n
k

,(7.26)

f(zik + ξikp
i
k)− f(zik)

ξ̃2n
k

= ∇f(zik + uikξ
i
kp

i
k)

T pik
ξik
ξ̃2n
k

,(7.27)

with θk ∈ (0, 1), uik ∈ (0, 1), i = 1, . . . , n.
By substituting (7.26) and (7.27) into (7.25), taking the limits for k → ∞ and

k ∈ K2, and recalling (7.17) and the continuity assumption on ∇f , we obtain

∇f(x̄)T ȳ2n ≥ ∇f(x̄)T p̄i 1

c1
, i = 1, . . . , n.

Then, from (7.23) and (7.24), it follows that

∇f(x̄)T p̄i = 0, i = 1, . . . , n.

The linear independence of p̄i, with i = 1, . . . , n, implies

∇f(x̄) = 0,

which contradicts (7.12).
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