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On the Global Convergence of Trust Region Algorithms 

Using Inexact Gradient Information 

R.G. Carter 

Abstract. Trust region algorithms are an important class of methods that can be used to 

solve unconstrained optimization problems. More [10] has proven a global convergence result for a 

class of trust region methods where the gradient values are approximated rather than computed ex

actly, provided the approximations are consistent. We show that the assumption of consistency 

can be replaced by a simple condition on the relative error in the gradient approximation. This 

new condition has both practical and theoretical advantages. First, it provides a practical test for 

judging the adequacy of a given gradient approximation, and does not require new approximations 

to be computed for unsuccessful iterations. Second, it leads to stronger convergence results than 

obtained in [10]. 
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1. Introduction 

1.1. Trust region algorithms usinp; inexact gradients. This paper considers trust region 

methods for the solution of the uncon1Jtrained optimization problem 

minimize f ( x) , 
:, 

(1.1) 

with /: R 11 -R1
. These methods generate iterates {x;} by producing and approximately solving 

a sequence of constrained quadratic model problems. That is, x;+1 = x,. + IJ; for a step IJ; that 

approximately solves 

minimize VJ;(x; + IJ): IID;IJ II ~ t::..,. 
,ER~ 

(1.2) 

where D,. E R 11
X

11 is a scaling matrix, t::..,. is a positive variable known as the tru1Jt radiu1J, and VJ; is 

a quadratic model of/ about the point xk: 

VJ,. ( x,. + IJ) = / ( x,.) + g,. T IJ + ~IJ TB,. IJ (1.3) 

The vector g,. E R 11 is thus the gradient of VJ1t at x,. and the symmetric matrix B,. E R"x" is the 

Hessian of VJ1t· Ideally, g,. should be identical to v'/ (x,.) (the gradient of/ at x,.) while B,. should 

be identical to v'2/(x,.) (the Hessian of/ at x;), but it may not be practical to compute these 

quantities exactly. 

Strong global convergence results have been shown for trust region algorithms which take 

g,. =v'f(x,.) (see, for example [1], [3], [7], [13], and [14]). If the sequence of Hessian approxima

tions {B1r} is uniformly bounded, mild conditions of f and {D1r} are sufficient to establish that 

lim 11 v1 / ( x,.) 11 = o 
,. ..... oo 

(1.4) 

for most implementations. 

More [10] considers the global convergence of a class of trust region algorithms in which the 

condition g,. = v' / ( x,.) is relaxed. Instead of requiring exact gradient values, More allows g,. to be 

an approximation to v' / ( x,.) provided the sequence of approximations satisfies the consistency pro-

perty 

(1.5) 

TR87-6 June 1987 
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Using (1.5) as a primary assumption, he is able to establish1 

lim inf 11 g1, 11 = 0 
11-00 

(1.6) 

but provides no suggestions about how (1.5) should be enforced. 

In this paper, we show that the consistency assumption (1.5) can be replaced by a condition 

on the relative error in the gradient approximation. In simplest form,2 this condition is 

11 g1, - v' / ( X1, ) 11 

Ilg" II :5 ~ 
V,. (1.7) 

for some constant3 ~ < 1. Since error estimates are often available when approximate gradients 

are calculated, (1.7) provides a practical test for judging the adequacy of a given gradient approxi

mation. We argue that this is a more natural approach than trying to enforce (1.5) directly. 

Furthermore, (1.7) leads to the global convergence result 

lim 11 g" 11 = o , 
11-00 

(1.8) 

which is much stronger than (1.6) under certain conditions.4 Moreover, (1.7) and (1.8) imply 

(1.9) 

which is an even stronger consistency property than (1.5). Consistency of the gradient approxima

tions is therefore a consequence of our theory rather than an assumption. 

1.2. Structure of trust region algorithms. Before presenting justification for our claim that 

(1.7) is a more practical condition to directly enforce than (1.5), the structure of trust region algo

rithms must be described in more detail. Authors typically describe trust region algorithms by 

1 More specifically, he establishes Jim inf llllk II( T )_1 -o, where the elliptical norm llz II,. is defined to be 
k-oo Dk Dk 

llz II,.= (zT Az )i. for symmetric positive definite A E R•X•. For implementations which require IIDk T Dk II$ ol and 

ll(Dk T Dk J-1 II$ ql for constants <7 1, <72, More's result is thus equivalent to l~~r llllk II- 0. 

2This Corm is valid for Dk -I; slightly different Corms oC this condition will be used for the more general case Dk ,,r. I. 

1 The value or ( will depend upon some or the other parameters in the trust region implementation, but will typical
ly be about o_g_ 

1Notice that (1.7) and (1.8) imply Jim IIV/(zk) 11-o, the same strong global convergence result obtained when 
k-oo 

Ilk ;;;;VJ(zk)- IC {zt} converges, then {1.5) and (1.6) also imply this strong result, but if {zt} is unbounded or has more 

than one limit point, then (1.5) and (1.6) do not even imply lim inf IIV/ (zk) II- 0. 
k-oo 

TR87-6 June 1987 
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using either a aingle loop indexing system (see, for example, [10] and [13]) or a neated loop indexing 

system (see, for example [l], [14], and [15].) For methods that take g1r ='v/(z1r), the differences 

between these two indexing systems are purely semantic, but for glr .,,, 'v / ( z1r) it is instructive to 

consider them separately. The single loop structure used in [10] is as follows. 

Algorithm (1) Single loop structure for the trust region method. 

Let 0 < f/ 1 < f/2 < 1 and 0 < ')'1 < 1 < ')'2 be prespecified.6 Select an initial guess z0 ER" and trust 

radius Ao> 0. Compute / (z0), and compute or initialize g0 , B 0 , and D 0. 

Fork= 0, 1, ... , until "convergence" do: 

(a) Determine an approximate solution B1r to problem (1.2). 

(b) Compute P1r = (/(z1r)-/(z1r + B1r))/(¢1r(z1r)-¢1r(z1r + a1r)). 

(c) If P1r < f/i then set B1r = 0 and Alr+1 E (0, 'Yi A1r]-

(d} If f/1 $; P1, < f/2 then set A1r+1 E ['Y1 A1r, A1r ]. 

(e) IfJJ2$;P1r thensetA1r+1E[A1r,'Y2,A1r]-

(f} Set X1r+i = x1r + s1r and update g1r, B1r, and D1r. 

End loop. 

In this structure, trial steps s1r are rejected and the trust radius is reduced if P1r < JJ 1. Such 

an iteration is called unauccess/ul since ZJr+t = X1r; iterations for which P1r ~ f/i are called successful. 

Clearly, step ( c) is designed to prevent an infinite series of unsuccessful iterations, while steps ( d} 

and (e) are designed to pick a trust radius for the next iteration that is small enough to have a 

good chance of producing a successful step yet large enough to permit rapid convergence. 

The structure of Algorithm ( 1) neither requires nor prohibits updates of 11r, B1r, and D1r at 

unsuccessful iterations. In implementations which take glr = 'v / ( x1r ), such updates are rarely found 

°Typical values for these parameters ar 711 -0.001, 712 -0.1, 'Yi -0.25, "Y2 -4.0. 

TR87-6 June 1987 
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in the literature.6 The following algorithm uses a nested loop structure in which the outer loop 

indexes only successful iterations and updates to 91r, B1r, and D1r are not allowed during the inner 

loop. 

Algorithm (2) Nested loop structure for the trust region method. 

Let 0 < ''1 < '12 < 1 and 0 < 'Yi < 1 < -r2 be prespecified. Select an initial guess z O ER• and trust 

radius t>.0 > 0. Compute/ {z0), and compute or initialize g0 , B0, and D0• 

For k = 0, 1, · · · until "convergence" do: 

{a) Repeat until P1r ~ '11: 

{a.1) Determine an approximate solution to &Jr to problem {1.2) 

End loop. 

{c) Set Z1r+i = z1r + &1r and update 91r, B1r, and D1r. 

End loop. 

The form of Algorithm (2) raises the possibility that at some iteration k, the inner loop {a) 

may fail to generate an acceptable new iterate. Consider, for example,7 an initial gradient approxi

mation g0 = - v' / {z0) with B 0 = D0 = I. Since every descent direction for/ is an ascent direction 

for 1/)0 , Po will be negative8 no matter how much ~ is reduced in the inner loop {a). Such failures 

&rhis is not to say they are unimportant. The well known algorithm NL2SOL [61 for the solution of the nonlinear 
lea.st squares problem owes much or its success to its capability of switching between alternate Hessian approximations. 
Global convergence theory for such switching is given in [11 and [41 in sufficient generality to provide a framework for an 

expert systems approach to optimization. However, [11, [41, and [61 all take gt= V / (zt ), which makes the question of up
dating gt at unsuccessful iterations moot. 

7This example is presented in greater detail in Section 3 of this paper. 

8Although this example depends on the angle between gt and V/ (zt) being greater than ninety degrees, another ex

ample will be presented in Section 3 that demonstrates the possibility of failure in the inner loop even if the angle between 

TR87-6 June 1987 
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of the inner loop to converge can occur at any iteration unless: 

(i) 

(ii) 

additional conditions are imposed on gi,, or 

gi, is successively improved in the inner loop so that lim I I gi, - v' / (Xi,) 11 = 0. 
i-+oo 

6 

The latter approach is implicit in the formal statement of More"s algorithm, but we prefer impos

ing the additional condition 

(1.10) 

We show in this paper that if fE [0, 1- 'li), then (1.10) is sufficient to ensure the success of the 

inner loop. H error estimates are available, (1.10) can be checked at the atart of every iteration k 

and gi, can be recomputed if necessary. Trying to use approach (ii) so that the analysis of [10] 

holds is less practical because it involves recomputing gi, with successively greater accuracy as 61, 

decreases in the inner loop without regard for whether error in gi, is the problem or whether 61, is 

really too large. Since unsuccessful steps are quite common even with gi, = v' /(xi,) and since 

recomputing gi, with successively greater accuracy is generally very expensive computationally, this 

approach is much less satisfying than using {1.10). 

Even if all the iterates are acceptable, directly enforcing the consistency condition (1.5) 

presents a practical difficulty in that no specification is made about how fast to force 

{ I I gi, - v' / (Xi,) 11} to converge to zero. One might enforce the condition 

(1.ll) 

for some constant c E (0, oo ), but (1.5) provides no suggestions for selecting a reasonable value for 

c. On the other hand, a reasonable value for fin {1.10) is much easier to select since we show that 

strong global convergence results can be obtained for any f E [O, 1 - 112). 

1.3. Synopsis. In Section 2 of this paper, we briefly discuss the techniques generally used to 

compute trial steps for a given model, scaling matrix, and trust radius. In Section 3, we present 

two detailed examples of how the inner loop of Algorithm (2) can indeed fail to produce a solution. 

ft and V/(zt) is zero. 

TR87-6 June 1987 
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We then show that condition (1.10) with f < 1- ''1 is sufficient to ensure the success of the inner 

loop. In Section 4, we show that (1.10} with f < 1- "2 is sufficient to establish 

lim inf II g,. 11 = lim inf II v' / ( x,.) 11 = 0 provided {B,. }, {D,. TD,.} and {(D,. TD,. )-1
} are uniformly 

k-+oo k-+oo 

bounded. We then demonstrate two ways that the stronger convergence result 

lim llv'/(x,.)11=0 can be obtained using (1.10} with r<l-772 given that {B,.} is uniformly 
/,-+oo 

bounded and {D,.} satisfies some mild assumption. The final section of this paper summarizes our 

results and suggests some possibilities for future study. 

1.4. Nomenclature and standard assumptions. In addition to the notation already intro

duced, the following definitions and conventions are used throughout this paper. Unless otherwise 

specified, 11 · 11 denotes the Euclidean norm (or the matrix norm induced by the Euclidean norm), 

while 11 x 11 A is the elliptical norm ( x T Ax).,, for A a symmetric positive definite matrix in R" x ... 

A function h: R" - Rm is said to be Lipschitz with constant L in an open convex region O if 

llh(x)-h{y)II ~Lllx-yllY-x,yEO. Theleve/setofafunction/ atapointx,.ER" is 

the set of all x ER" such that f (x) ~ / (x,. ). 

Let O be an open convex set containing the level set of / at x0• The function /: R" - R 

is said to satisfy the standard assumptions if 

f is continuously differentiable on O, 

f is bounded below, and 

v' / is Lipschitz with constant L in 0. 

(1.12a) 

{1.12b) 

{1.12c) 

It is frequently convenient to represent the trust region subproblem in local coordinates. We 

define the predicted function reduction pred,. ( s) as 

pred,.(s) = ,t,,.(x,.)-,t,,.(x,. +s) 

= - g,. Ts - ~sT B,.s, 

and the actual function reduction ared,.(s) is defined 

TR87-6 

(1.13) 

(1.14) 
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Although the notation used in Algorithm (2) is usually convenient, a rigorous treatment of 

the success or failure of the inner loop requires indexing the trial steps and trial trust radii within 

the loop. The following algorithm is completely equivalent to Algorithm 2, but introduces some 

additional nomenclature. Specifically, { i} represents the complete sequence of trial steps gen

erated and {Ai} represents the corresponding trial trust radii, so that {s,t}C{si} and {AdC{Ai}. 

A)gorjt.hm (3) Trust region method with full notation. 

Let 0 < r, 1 < '12 < 1 and 0 < 'Yi < 1 < -y2 be prespecified. Select an initial guess z0 E Rn and trust 

radius A0 > 0. Compute/ (z 0), and compute or initialize g0 , B 0 , and D0. Set i = -1. 

For k = 0, 1, ... , until "convergence" do: 

(a) Repeat until / ~ r, 1: 

(a.l) Increment i and determine an approximate solution i to 

minimiw¢1c(z1c +s): IID1cs II~ Ai. 
•ER' 

(a.2) Compute 

/ = ared1c(si)/pred1c(si) 

(a.3) If/ < r, 1 then set Ai+! E (0, -y1 Ai], 

Else set 81c = i, A" =Ai, and Pk = /. 

End loop. 

(b) If/< r,2 then set Ai+i E(0, Ai], 

(c) Set z1c+i = z" + 81t and update Uk, Bk, and D1c. 

End loop. 

TR87-6 

( 1.15) 

(1.16) 
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2. Computation or trial steps. 

2.1. Introduction. In order to establish our results, we must use several properties satisfied by 

standard techniques for computing trial steps. This section summarizes these properties, but is not 

intended to be a comprehensive discussion of methods of step computation. An excellent survey 

(with an extensive bibliography) of the many step computation strategies is presented in [10]. 

Readers familiar with these techniques may wish to proceed directly to Section 3. 

2.2. Scaling matrices and preconditioning. For any nonsingular D,. E R•X• consider the 

change of variables 

i = D,.z 

so that i = D,." and i,. = D,, z1,. Then the definitions 

and 

lead to 

and 

,P1,(i1, + i) = ,P1,(z1,+ "), 

prid,, (i) = pred1, (a), 

arid,.(i) = ared,. (a) 

arid1,(i) = /(z1,)-/(z1, +D,,-1i), 

iJ,, = D.-T B1t D.-I. 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

In this notation, (1.15) becomes the simpler problem of finding ii that approximately solves 

minimize,P1,(i1, + i): Iii II ~ ti' . 
ieR• 

The step "i can then be recovered by inverting transformation (2.1) to give 

TR87-6 

(2.9) 

(2.10) 
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Typically, methods for calculating i use {2.9) and {2.10) rather than {1.15), although the 

change of variables {2.1) need not be explicitly performed. Consider the relationship between the 

method of 8teepe8t de8cent, which takes 

(2.11) 

for some positive o, and the preconditioned 8teepe8t de8cent method, which uses a positive definite 

preconditioning matrix C,. E R•X• and sets 

(2.12) 

for some positive o. Although this preconditioning does not explicitly use scaling (2.1), applying 

the method of steepest descent to the scaled problem (2.9) yields 

-.- -
8 = -og,. (2.13) 

or 

i (D TD )-1 
8 = - O' " I,, g,. (2.14) 

so that (2.12) implicitly uses a change of variables for which D,. TD,. = c,.. 

The matrices Di. are often assumed to be diagonal in trust region literature. Because of the 

relationship between scaling and preconditioning, we prefer not to make this assumption, as nondi

agonal preconditioners are widely used in conjugate direction methods for large scale problems. 

2.3. Asymptotic behavior of step directions. The first property that we will need concerns 

the direction that trial steps i tend toward as the trial trust radii tend toward zero. This pro

perty is, obviously, directly dependent on the method used to compute the trial steps. Let 0; be 

defined to be the angle between ii and -g,. so that 

cosei = -(sif ,,./( llsi II II,,. ID. (2.15) 

We will show that for the two major classes of solution techniques, if t::/ - 0 in the inner loop of 

Algorithm (3) and g,. ~O, then cosei -1. Furthermore, let e,. be the angle between i,. and -g,.. 

If an infinite sequence of successful iterates are generated and lim sup I IE,. 11 < oo, then ~,. - 0 
/,--+oo 

and lim inf II i,. 11 > 0 imply that cos e,. - 1. 
1,-00 

TR87-6 June 1987 



Global Convergence with Inexact Gradients 10 

One of the major classes of solution methods is based on the following powerful result.g 

THEOREM 2.1. Let g be a vector in R", let BE R"X• be symmetric, and let DE R"x" be 

nonsingular. A vector IJ ER" is a global solution to 

minimize gTa +%aTBa: IIDa II~~ 

if and only if a and ~ obey the following relations for some µ 2'.: 0. 

and 

IIDa II~~, 

µ(~- IIDa II)= 0, 

B + µ D TD ia poaitive aemidefinite. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

Furthermore, if B + µ D TD is positive definite, then (2.16) has a unique global solution. 

Theorem 2.1 is unusually strong in that it completely characterizes all of the global solutions 

of problem (2.16), and simultaneously suggests an approach to approximately solving the trust 

region subproblem for a prespecified ~;. Consider any µ 2'.: 0 which is sufficiently large to make 

B + µ D TD positive semidefinite, and let a(µ) be a solution to (2.17). Furthermore, define 

~(µ)= IIDs(µ) II so that (2.18) and (2.19) are satisfied. We see that a(µ) exactly solves (2.16) 

for 10 

I::. = /::.(µ) and hence one possible approach to solving the trust region subproblem is to use some 

sort of procedure to find a µi for which t:.(µi):::::; t:.i. U, for example, a µi is found for which 

~(µi) = ( 1 + c) ~ i for some small c, then IJ (µi) is an exact solution to the problem 

(2.21) 

Methods of this type are sometimes called optimal locally con1Jtrained [8], or OLC methods. 

Such methods approximately solve the trust region subproblem (1.15) by exactly solving the nearby 

"This well known result is founded on work done by Goldfeld, Quandt, and Trotter 191, and was first stated in 

modern form by Gay ISi and Sorensen II5J. The reader is referred to IIOJ for a more complete history and discussion. 

1°In fa.ct, if µ-0 and B is symmetric positive definite,•(µ) exactly solves (2.16) for every A~A(µ). That is, µ-0 

corresponds to the constraint not being binding. 

TR87-6 June 1987 



Global Convergence with Inexact Gradients 11 

problem (expressed here in scaled form): 

mm1mm: i • i + YA iT B,. i: 11 i 11 ~ ~i (2.22) 

with 

(2.23) 

for some constants11 c 1 E (0, l] and c2 E [l, 2). Trial steps therefore satisfy 

(2.24) 

A large number of efficient techniques can be found in the literature for finding a satisfactory µi. 

Experimental results have been published for several implementations [10] in which the average 

number of matrix factorizations (of B + µ DT D) required to find an acceptable l is roughly 1.5. 

We have now characterized OLC methods sufficiently to examine the directional behavior of 

THEOREM 2.2. For k = 1, 2, ... , kmax ~ oo, let {i,.} be a set of vectors in R• and let {Bi,} be 

a set of symmetric matrices in R•X•. Let {.:~/} be a sequence of positive numbers with 

{ t::.•} C { t::. i} , let ii ER• be calculated by an OLC method, and define 9i to be the angle between 

the vectors ii and - g,. . We then have the following. 

(i) For fixed k, either g • = 0 or 

lim t::,.i = 0 ~ ~im cos(0i) = 1. 
i-oo ,-oo 

(2.25) 

(ii) Suppose {t::.i,} is an infinite sequence and let {i,,} be the subsequence of {ii} associated with 

{t::.,.}. Define 0• to be the angle between"• and -g,,. If limsup 11.B,. II< oo, then either •-oo 
lim inf 11 i 1, 11 = 0 or 
i,-oo 

lim t::,.i =0 ~ 
i-oo 

lim cos(0i)= 1 ~ 
i,i-oo 

Jim cose,, = 1. 
1,-oo 

(2.26) 

The proof of this theorem is given in the appendix of this paper since it is rather unenlight

ening. It should be pointed out that (i) above is well known but is seldom stated in the literature, 

11A typical choice is c1 -o.g a.nd c2 - 1.1. 
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Global Convergence with Inexact Gradients 12 

since standard convergence theory with g,. = v' f ( x,.) can be established without invoking (2.25 ). 12 

The major alternative to OLC methods for computing approximate solutions to (2.9) is a 

class of techniques that we will refer to as generalized dogleg method&. The oldest and simplest 

such method is Powell's dogleg algorithm [11]. This method13 defines a piecewise linear path i(o) 

starting at i = 0, extending to the Cauchy atep 

- e, 
&1,: = -

91,: T 91,: 

g,.13,.g,. 91,:, 
(2.27) 

Figure 1. Trial steps computed by the dogleg method for two different values of ~-

12Although it is p06Sible to prove many or our results without using Theorem 2.2, such analysis requires f << 1 - '12 

in some cases. 

13Powell originally only considered Dt E /. The more general form given here is sometimes called the preconditioned 

dogleg. 
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and then proceeding to the quaai-Newton atep 

- fll B- -I -a,, = - " g,.' (2.28) 

{assuming for the moment that B,. is positive definite.) 

If i,, •" is inside the trust region, then ii is taken to be i1, ••. Otherwise the dogleg method 

sets i as the intersection of i(o) with the surface of the trust region. In either event, ii minim

izes i/11,(i1, + i(o)): lli(o) II~ ~i. This method has the advantage of requiring only one matrix 

factorization per major iteration: Once i1, •• has been calculated, computation of ai for any given 

~i is trivial. Figure 1 illustrates trial steps computed by the dogleg method for different values of 

~- It is clear that, for sufficiently small ~i, the trial step ii is a positive multiple of -i", the 

direction of steepest descent for the model. 

Other methods exist in the literature which compute approximate solutions to the trust 

region subproblems by minimizing ,/J over a piecewise linear path. The double dogleg of Dennis and 

Mei [5] uses a path with one extra "leg" in order to give a larger bias toward the quasi-Newton 

direction - B1, -1
;,.. Steihaug [17] uses a dogleg path defined by the steps generated by a conju

gate gradient method ( with precondition er D1, T D1,) applied to the problem B1, a = - 91,. Other 

dogleg methods exist (see, for example, [14]) that take advantage of negative curvature in ip (i.e., 

B,. need not be positive definite.) All of these methods use i It•• as the initial segment of the 

dogleg and define i(o) such that lli(o) II is increasing so that the intersection of i(o) and the 

surface of a trust region will be unique. We can therefore state the following. 

PROPOSITION 2.3. The conclusions of Theorem 2.2 remain valid if each ii is computed by 

a generalized dogleg method rather than an OLC method. 

Proof This proposition follows immediately from (2.27), the uniqueness of 

i(o)n{i: Iii II = ~i}, and the hypotheses of Theorem 2.2. D 
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2.4. The uniform predicted decrease condition. A technical condition concerning trial steps 

computed by OLC or generalized dogleg methods that is of great use in proving global convergence 

is the uniform predicted decrease 14 (UPD) condition: 

(2.29} 

for some constants c 3 E (0, 1] and o-1 E (0, oo ). A complete discussion of this condition is not neces

sary for the purposes of this paper, and we merely give the well known16 result that OLC and gen

eralized dogleg methods satisfy (2.29) provided1e 

V k . (2.30} 

3. Successful termination of the inner loop. 

3.1. Introduction. Using the properties of trial steps described in the last section, it is easy to 

generate examples for which the inner loop of Algorithm (3) will fail to find an acceptable step in a 

finite number of iterations. 

Example 3.1 : gk not a descent direction. Define / ( z) = % z T z and select any nonzero 

z0 • We have ared1:(s) = %z0 Tz0 -%(z0 +sf(z0 +s) = -V/ (z0 fs-%sTs. Now suppose 

that g0 =-V/ (z0), B0 = I, and D0 = I. We have that pred,.(s )= V/ (z0f s - % sT s and 

ared1:(si) 
/=----= 

pred1:(si) 

-VJ (zof si - %(sif(si) 

V / ( z 0) Ts i - % ( s i) T ( s i) 
(3.1) 

For simplicity, suppose that each ai 1s being computed by a dogleg procedure so that 

si =-D.i g0/ llg0 II for any tli ~ llgo 11- Substituting into (3.1) gives 

14 The term "uniform" is used because of the uniform bound IIBt II Su1 \I k as opposed to, say, bounds of the 

form II.it llsu1(1+k)\/ k. 

16see for example, 121, ISi, !IOI, 1111, and IHI. 
1111n 121 it is argued that the weaker assumption of a uniform upper bound on {i tB tit/it Tit} is to be preferred, 

since: (a) this also implies the UPD condition, (b) natural methods exist for enforcing this weaker condition, and (c) numer
ical testing of these safeguarding techniques has shown that they can dramatically improve the reliability of a standard 

method without decreasing the overall efficiency of the overall algorithm. The best one of these methods is probably of 

limited utility for models with It ,'V/(zt) because it makes use of first order differences in "g(z)" to safeguard the model 

Hessian, but an alternate safeguarding technique using second order differences in / is also shown in 121 to improve relia

bility. 
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l = - lluoll-"'Ai 
ll10 II - "'Ai 

15 

(3.2) 

Hence, if A0 :$; 11,o II,/< 0 for any D/ :$;A0
, and the inner loop of Algorithm (3) will never ter

minate. Similar examples can be shown for any gradient approximation and scaling matrix which 

do not satisfy (D,;T g,. f (D,.-T'v f (x,.)) > 0. 

Example 3.2 : 11 Sk 11 >> 11 'ilf (x1c) 11- Even if - (D,. TD,. )-1,,. is always a descent 

direction, the inner loop of Algorithm (3) is not assured of success. Consider the last example with 

2 
lo taken to be -'ii/ (xo)- Again taking i = - Ai g0/ I I g0 I I, we have 

'11 

(3.3) 

Then for any Ai :5;A0 :5; min{ ll1oll, ll'v/ (xo) ll}_we have 

. ll'v/(xo)ll-"'Ai 
p' = ½ '11 · < '11 

ll'v/ (x0 Jll-t/4'11A' ' (3.4) 

so that the inner loop of Algorithm (3) will never find a successful iterate. 

These examples, although rather extreme, clearly demonstrate that additional conditions 

must be imposed on the gradient approximation to assure the finite termination of the inner loop 

at every major iteration. It should be pointed out that this in no way contradicts More"s result 

that consistency of the gradient approximations implies lim inf I I u1, 11 (D r D i-i = 0 for Algorithm 
11-00 k k 

(1 ). Since his notation includes both inner and outer loops, hypothesis (1.5) becomes 

(x,.-x') or (-,i-o /orfixed k) ~ _Jim lli-'v/(x,.)11=0 
,-co (3.5) 

in our notation, where {g i} is the set of approximations to 'ii/ ( x,.) used in the inner loop. How

ever, we prefer algorithms which keep a fixed approximation during the inner loop, and More"s 

hypothesis cannot be applied directly to Algorithms (2) or (3). 

3.2. Ensuring successful termination of the inner loop. In this section we show that if the 

relative error in the gradient approximation is less than 1 - f/i, at a given iteration, then the inner 

loop of Algorithm (3) is assured of finding a successful new iterate. The following lemma will 

prove useful. 
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LEMMA 3.1. Let f : R" - R be continuously differentiable on an open convex set fl contain

ing a point x,., and let v' / be Lipschitz continuous on fl with constant L E (0, oo ). Let the func

tions ared,. ( s) and pred,. ( s) be defined as in ( 1.13) and ( 1.14). Let >.Fin E (-oo, oo) be the smallest 

eigenvalue of Bir and let >.fax E [>.fin, oo) be the largest. H the error in 9ir is defined to be 

eir = 9ir - v' / ( x,.) , 

then for all a ER" such that :r,. + a E fl, we have 

Proof We first use an integral representation of ared,.(a) to establish 

I 

pred,. ( s) - ared1c (a) = - 9ir Ts - 11' s T Bir a + J v' / ( :rir + >.a) Ta d >. 
0 

I 

= - e[ a - Yu T Bir s + J (v' f (:rir + >.s }- v' / (x,. }fa d >. . 
0 

V. (V f (x, + X, )-V/(x.))', dX $ £ IIV/(x, + X, )-V/ (x,) II II• lldX 

I 

$ JL 11>.a II Ila lld>. = 11'L lls 112. 
0 

Substituting these bounds into (3.8) immediately establishes (3.7). 

(3.6) 

(3.8) 

(3.9) 

We can now establish the main result of this section. It ensures that a successful step can 

always be found provided the relative error in g,. is less than 1- rJ 1. 

THEOREM 3.2. Let /: R" - R be continuously differentiable on an open convex set fl con

taining a point :r,., and let v' / be Lipschitz continuous on fl with constant L E (0, oo ). Let 

ared,.(a), pred,.(a), e,., and >.fin be defined as in Lemma 3.1, and let Dir be any nonsingular 

matrix. Consider a sequence of trial iterates { .,; } and associated trust radii {Ai} satisfying 

A;-o, pred,.(s;) >0 Vi, IIDirs; II $c 2 A; Vi, and lim cos0; =1, with 9i defined to be 
'1'-0 

the angle between Dir/ and - D,.-T uir. If g,. ~ 0 and 
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Global Convergence with Inexact Gradients 17 

(3.10) 

for some S' E [O, 1 - 17 1), then for sufficiently small 6; we have 

(3.11) 

Proof Assume without loss of generality that each 6; is sufficiently small to imply 

:ri, +a; E 0. Since pre di, (p;) > 0 V- i, Lemma 3.1 allows us to write 

1 
_ / = pred(a,.)- a~ed(a,.) 

pred(a') 

½(L ->.fin) Ila; 112- e[ai 

~ - gi, Ti - ~(aif Bi,(a;) 

- (Di, -Tei, f (Di,ai) + ~ (L - Xf'i0
) I la; 112 

~ -(Di,-Tgi,f (Di,a,.)-½(ai)T B1,(a,.) 

Using the Cauchy Schwarz inequality, some algebraic manipulations, and the definition 

we can rewrite (3.12) as 

1 IID1,-Te1, 11 + ~ (L - >._ri 0
) Ila; 112 /( IIDi,i II) 

~ IID1,-Tg1, II cos(0,.)- ~ (if B1,(a,.)/( IID1,-Tg1, II IID1,a; II) 

Now, 

and 

. (aif B1,(a;) (aif B1,(a;) 

l!~o IID1,a; II = 1~~ [(aif D1,TD1,(a,.)]"' = O 

so that by combining (3.14), (3.15), (3.16) and the hypothesis lim cos e; = 1 we obtain 
.i'--0 

TR87-6 

(3.12) 

(3.13) 
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(3.17) 

Since r < 1- r,1, we therefore have 1- / < 1 - r,1 for sufficiently small t::,.i. This establishes our 

result since 1- / < 1- r, 1 if and only if/ > r,1. D 

An immediate consequence of Theorem 3.2 is that Algorithm (3) will either generate an 

infinite sequence of iterates or terminate with v' / (x,.) = ,,. = 0 provided {3.10) holds at every itera

tion. This can be formally stated as follows. 

COROLLARY 3.3. Let / : Rn - R satisfy the standard assumptions and let {D,.} be a 

sequence of nonsingular diagonal matrices. Then Algorithm (3), using any of the step computation 

techniques of Section 2, will either produce an infinite sequence of iterates satisfying 

/ (x,.) < / (x,._i) or will terminate at some iterate x,. with v' / (x,.) = 0 provided the relative error in 

the gradient approximation satisfies 

(3.18} 

at every iteration. 

Proof. Since any acceptable iterate satisfies pred,. (p1,} > 0 and Pk > 0, / ( x,.) < / ( x,._1) for 

all (existing) iterates, and hence x,. E O for all {existing) x,.. Now suppose Algorithm {3} succeeds 

in generating x0 , x1, ••• , x,.. If g,. = 0, {3.18} implies that v' / (x,.} = 0. Otherwise, the algorithm 

generates a trial step Bi by the methods of Section 2. If this step satisfies/~ r, 1, then ZJ,+1 exists. 

Ir not, the inner loop of Algorithm (3} will try t::,.i+t E (0, 'i't ~.i], t::,.i+2 E (0, 'i't t::,.i+lj, etc. as per step 

(a3) of the inner loop. Since 'i't < 1, the conditions of Theorem 3.2 are satisfied, and hence xH1 

exists. Our result follows by induction. D 

Some remarks should be made concerning the possibility of ,,. = 0 or v' / ( x,.) = 0 for some 

iteration k. Ir ,,. = 0, then (3.1} requires that ,,. = v' / (x,. ). This is quite reasonable, in that if the 

approximate gradient indicates that x,. is a stationary point of / , then the sensible procedure is to 

recompute g,. with sufficient accuracy to verify or contradict that v' / ( x,.) = 0. We also include no 
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theory to affirm or deny the implementability of the algorithm beyond any iteration with 

fir = v' / (x1r) = 0. Methods exist (see, for example, [14]) which are guaranteed to be repelled from 

such a stationary point if and only if it is a saddle point, but these methods assume that the 

model Hessian B1r is the exact Hessian v'2/ (z1r)- Since the use of a model with an approximate 

gradient and an exact Hessian appears somewhat unlikely, we prefer (for this paper) to say nothing 

about the existence of zlr+1 if f1r = v' / ( z1r) = 0. 

3.3. Relative error bound as an auxiliary to consistency. In one sense, Theorem 3.2 might 

be considered the main result of this paper in that using (3.10) as an auxiliary condition to (1.5) 

eliminates the major practical difficulty in directly enforcing (1.5). That is, (3.10) assures us that 

no further increases in the accuracy of the gradient approximation will be required in the inner 

loop. Enforcing (1.5) for the successful iterates is a lesser problem (even though conditions like 

(1.11) are still somewhat unsatisfying). Moreover, (3.10) is a sufficient condition for 

lim inf II fir I l(D r D i-1 = 0 to imply lim inf I Iv'/ (z1r) I l(D r D i-1 = 0. Consistency alone is not 
/r-eoo k k /r-+oo k k 

sufficient to establish this unless {z1r} converges. 

In Section 4, we show that consistency can be entirely replaced aa a primary aaaumption by 

conditions on the relative error. However, for completeness we conclude this section by showing 

how using (3.10) as an auxiliary assumption to consistency allows the results of More' to be 

strengthened. 

We first state the following lemma. 

LEMMA 3.4. Let {D1r} be a sequence of nonsingular matrices in R•X• satisfying 

{v' / (x1r)} be sequences in R•X11 that satisfy either 

lle1r II 
I I f1r 11 ~ r < 1 V k 

(3.19) 

or 
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Then the following are equivalent. 

lim inf 11 gk 11 = 0 . 
k-+oo 

liminf llgk ll(D TD i-1 = 0. 
k-+oo k k 

lim inf 11 v' / ( xk) 11 = 0 . 
k-+00 

liminf llv'/(xt) ll(D Tv i-1 = 0. 
k-+oo k k 

Furthermore, the following are also equivalent. 

lim 11 g" 11 = o . 
k-+oo 

lim 11 gk 11 (D TD )-1 = 0 . 
k-+oo t k 

lim 11 v' / ( xd 11 = 0 . 
k-oo 

lim llv'/(.rk) 11 1v Tv 1-1 = 0. 
11-00 t t 

Proof We first notice that the conditions on {D11 } imply 

and 

20 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

for all y ER". This immediately implies (3.21) ~ (3.22), (3.23) ~ (3.24), (3.25) 4;, (3.26), and 

(3.27) ~ (3.28). Now, if lle11 II/ llgt II ~S" < 1 V k, we have that (3.21) ~ (3.23) and 

(3.25)~(3.27). H lle11 ll(vkTDtl-1/llg11 ll!DtTDk)-1~S-<l, then (3.22)4;,(3.24) and 

(3.26) ~ (3.28). Linking all of these equivalences immediately establishes the lemma. D 

A hybrid of Theorem 3.2 and the global convergence results of More can now be stated. 

THEOREM 3.5. Let /: R" - R satisfy the standard assumptions, let {Ed, {D 11 T DIil and 

{(Dk T Dt)-1
} be uniformly bounded, and let {.rd be the set of iterates produced by Algorithm (I) 
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using any of the step computation techniques of Section 2. Let the gradient approximations satisfy 

the relative error bound (3.18), and assume that if the set of successful iterates is an infinite 

sequence, then the consistency condition (1.5) holds. Further assume that x1,+1 = x1, =;, 9k+t = gi,. 

We then have that either 

(3.31) 

or 

(3.32) 

for some iterate xi,. 

Proof We first note from Corollary 3.3 that either 'v / (xi,)= g,. = 0 for some iteration x,., or 

Algorithm (1) generates an infinite sequence of successful iterates. If {x1,} is an infinite sequence, 

then by hypothesis {gd is consistent and More"s [10] result that liminf Ilg,. ll(D Tv i-1 =0 applies 
/r-oo k k 

(our assumptions on /, {Bk}, {D,. }, and the step computation procedure are more than sufficient 

to imply the hypotheses used in [10} Hence Lemma 3.4 implies that either (3.31) or (3.32) holds. 

D 

4. Global convergence. 

4.1. Introduction. Although Theorem 3.5 shows that applying (3.10} as an auxiliary condition 

bypasses the largest practical difficulty with directly enforcing consistency, this theory is still less 

than satisfying because nothing is specified about how fast 11 ei, 11 should be forced to zero as {xi,} 

converges. If a condition such as 11 e,. 11:::; c 11 "" 11 is used, c can be chosen to be any value in 

[0, oo). In Section 4.2, we establish the same global convergence results as in Theorem 3.5 without 

using consistency as a primary hypothesis. We instead use the condition 

(4.1) 

Since typical values for r,2 usually fall in [0.1, 0.25] and typical values for r,2 usually fall in [0.CXH, 

0.1], condition (4.1) is only slightly more restrictive than (3.10). 
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In order to establish the strong result lim llv'/(:rt) 11 =0, More' [10] returns to the assump-
•-oo 

tion that g,. = v' /(:rt). This stronger assumption is not necessary. We show in Section 4.3 that 

bounding the relative error in the gradient approximation to be less than or equal to any constant 

S" E [0, 1) is sufficient to establish lim 11 v' / ( Xt) 11 = 0. This strong global convergence result is 
t-oo 

often called first order stationary point convergence. 

4.2. Replacing the consistency assumption with a relative error bound. We now show 

that the results of Theorem 3.5 remain true if the consistency assumption is replaced by (4.1). 

THEOREM 4.1. Let /: R" - R satisfy the standard assumptions, let {Bi.}, {Di.TD,.} and 

{(D• T Di.)-1
} be uniformly bounded, and let {:rA:} be the set of iterates produced by Algorithm (3) 

using any of the step computation techniques of Section 2. Let the gradient approximation satisfy 

the relative error bound (4.1). We then have that either 

Jim inf 11 g,. 11 = Jim inf II v' f ( x,.) 11 = 0 
a-oo i-oo 

(4.2) 

or 

9k = v' / (Xi.) = 0 (4.3) 

for some iterate Xt. 

Proof. The central ideas in this proof are largely due to Powell [12], but we also draw heavily on 

the ideas used to prove Theorem 3.2. 

(a) We first note that since f < 1- r,2 < 1- r, 1, by Corollary 3.3 we have that either (4.3) 

is true or the algorithm generates an infinite sequence of successful iterates satisfying 

(b) Suppose {xi.} is an infinite sequence but 

liminf llgl: ll(D TD i-1 > ( > 0. 
i.-oo I; I; 

(4.4) 

From (1.16), (2.29), and the bounds on {BA:} and {DA:} we have 
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a red,. ( s,.) ~ ~ '71 ca I I 91r ll(D{D.)-1 min {,~b :1 II g,. I l(D{D.)-1} (4.5) 

for some u 1 E(0,oo), 77 1 E(0,1) and c3 E(0,1]. Since/ is bounded below, (4.5) implies that 

Li,. - 0 and hence Li; - 0. Assume without loss of generality that k is sufficiently large to imply 

1-/ ~ 
IID,.-Tc,. II/ IID,.-Tg,. II+ ½(L - xrin) Iii 112/( IID,.-rg,. II IID,..,; II) 

cos 0; - ~ (if B,.(.,;)/( IID,.-rg,. II IID,.i II) (4.6) 

From Theorem 2.2 and Proposition 2.3 we have that Li; - 0 ~ cos 8; - 1 and since {B,.} 

and { (D,. TD,. t 1
} are bounded, we can write 

lim 
/t,i-oo 

(4.7) 

and 

lim 
i,i-oo 

(4.8) 

Furthermore, Xfin is bounded away from -oo, so combining (4.6), (4.7), and (4.8) gives 

( 4.9) 

therefore there exists i such that i > i ~ I - / < 1 - 772, and hence / > 772. But since no trust 

radius reduction is allowed if / > 772, we have that lim inf Li; > 0, which implies lim inf Li,. > 0, 
i-oo lt-oo 

which is a contradiction. Thus if {x,.} is an infinite sequence, 

lim inf II g,. II (D TD i-1 = 0 · 
lr-oo ; ; 

(4.10) 

The result (4.2) follows from (4.10) and Lemma 3.4. D 

4.3. First order stationary point convergence. 

4.3.1. Relative error measured in the Euclidean norm. The following theorem establishes 

first order stationary point convergence provided the sequence {x,.} satisfies the weaker property 

lim inf II v' / ( x,.) II = 0, 
1r-oo 

the uniform predicted decrease condition hnlO!-, and 
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11 e1c 11 / 11 Uk 11 $ f < 1. This is a very powerful result, as it allows us to obtain the strong result 

lim 11 v' / ( z1c) 11 = 0 directly from the previously established weak convergence property ( 4.2) 
k-+oo 

without using any information concerning the trust radius updating procedure. 

THEOREM 4.2. Let /: R• - R satisfy the standard assumptions. Let {z1c} be an infinite 

sequence of vectors which satisfy the (UPD) condition 

and 

where D-1c is a positive number satisfying 

lls1c llv,Tv, $ c2D-1c 

with c3 E(0,1], u 1 E(0,oo), 17 1 E(0,1) and c2 E[l,2). 

Let the sequence of scaling matrices {D1c} satisfy 

and 

foru2,u3 E(O,oo). IT 

for all k with r E [O, 1), then 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

Proof Define £ = ~ (1 - r)/(1 + r) and consider any iterate z,,, with nonzero 9111 • Since 

lim inf 119k 11 = 0, there exists m ~ m for which 119;;; +I 11 $ £ II g,,. 11 and 11,., 11 > £ 11,,,, 11 for 
k-+oo 

all k E [m, m]. Now, from (4.11) and (4.12) 
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;; ffl 

/(xm)-/(x;;;+1) = :E ared.,(s.,) 2:: :E q1pred.,(s.,) 
ll•m 

(4.18) 

Using the facts that 

llu .. 11 > £ llum II for all k E [m, ml, (4.18) can be transformed into 

(4.19) 

This can be divided into two cases. 

(i) 
111112 

If llum 112::-- lls., II foratleastonekE[m,m],wehave 
£0"3C2 

(4.20) 

(ii) Otherwise, 

(4.21) 

m 

Now, in order to merge case (i) and case (ii), we need to establish a lower bound on :E 11 s., 11-
4-am 

From the triangle inequality we can write II Um 11 :s;; 11 9;;; +I - 9m 11 + 119;;; +I 11 and hence 

11 gm 11 $ 11 gm +I - gm 11 + f 11 gm 11- By rearranging terms, again applying the triangle inequality, 

invoking the Lipschitz continuity of~/, and substituting in e., = g., - v' / (x., ), we can obtain 

(t-£) llum II s llu;;;+1 - ,m II 

$ llv'/(x;;;+i)-v'/(zm)II+ lle;;;+i-em II 

$ L llx;;;+i -Zm II+ llem+l - em II 
iii 

:s;; L E lls., II+ lle;;;+1 II+ llem II· 
4-•m 

Substituting ( 4.22) into ( 4.21) yields 
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(4.23) 

Hence for either case (i) or case (ii) we have that 

/(xm)-/(x;;;+1) ~ 7 llum 112 (4.24) 

h - • h " " - IL £ • { £ 1 - ( } w ere£ 1st e pos1t1ve constant£= 7Z r, 1 c3 - mm -- , _ ___,;__ . 
"2 "2"1 2L 0'3C 2 

Now, by hypothesis, / is nonincreasing and bounded below, so {/ (xk)} must converge to some 

limit, say / •. Thus, for any m, either Um = 0 or 

llum II~ (/(xm)-/(x;;;+1))/°£ 

~(/(xm)-/')/°£. 

Therefore Uk - 0 and by Lemma 3.4, v' / (xk )- 0. D 

(4.25) 

Condition (4.16) is a fairly natural condition, but it is slightly different from the condition 

used previously because it measures the relative error in the Euclidean norm while (1.10) measures 

it in the elliptical norm induced by (Dw T Di: r1. In the next section we introduce a variation of 

Theorem 4.2 which uses (1.10). 

4.3.2. Relative error measured in the norm induced by the scaling matrices. The fol

lowing theorem establishes first order stationary point convergence under conditions similar to 

those of Theorem 4.2. There are, however, two differences. First, we assume 

11 ek I l(D{Dtl-1/ II 91: ll(D{Dtl-1 ~ ( < 1 to be consistent with the theory in Section 4.2. Second, we 

impose an extra condition on the sequence of scaling matrices. 
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THEOREM 4.3. Let the hypotheses of Theorem 4.2 be satisfied, with the exception that 

( 4.16) is replaced by 

II gk - 'v f (x,.) I l(D{Dtl-1 

I I g,, I l(D{Di)-1 
< f ( 4.26) 

for all k with f E [O, 1 ). Let us further assume that there exists a constant [ E (0, oo) such that 

(4.27) 

for all k. We then have that 

lim inf I I g,. 11 = 0 =;. lim II gt 11 = 0 =;. lim II 'v f ( Xt) 11 = 0 . 
k-0 t-oo t-oo 

( 4.28) 

The proof of Theorem 4.3 is quite similar to that of Theorem 4.2, so we shall defer it until the 

Appendix. 

Condition (4.27) is quite interesting. If a fixed scaling matrix D is used rather than an adap

tive scaling technique, (4.27) is automatically implied by the Lipschitz condition on 'v f. Further

more, simply assuming that {D,. TD.} and {(D[D,. )-1
} are bounded is definitely not sufficient to 

imply {4.27). For example, if 'v/(xt+1)='v/(x,.), IIDt+i-T'v/(xk+i)-D,.-T'v/(x,.)11 = 

I l(Dt+1-T - D,.-T)'v I (z•) 11-

Adaptive scaling is poorly understood at present. Most implementations that make use of it 

generate {D,.} by heuristic methods rather than procedures with a firm theoretical basis. Given 

this lack of understanding, theoretical conditions such as (4.27) are important because they suggest 

guidelines to be used in designing methods for generating scaling matrices {D.}. 

An extension of our theory which might seem desirable would be a result analogous to 

Theorem 4.2 but with the relative error expressed in the Euclidean norm. Such a theorem would 

increase the symmetry between the results of Sections 4.2 and 4.3. Unfortunately, this conjecture 

is not true. Say, for example, 'v/(x,.)=(-%, 1 )T, g,. =(%, If, 112 =0.l, and D,. = (1&4 ~} Now, 

e1c =(1,0) and lie,. II/ llg1c II =\/4/5 < .9, so that our condition lie,. II/ Ilg,. II ~f < l-'12 is 

satisfied. However, the preconditioned steepest descent direction, - (D[D,. )-1 
g1, , is - (8, 1) T. This 

is not a descent direction for/ since (-'v/(x,.)f(-8,-lf <O. Therefore, since&; tends in 
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direction toward -(D{D,,) g1, -I as Ai - 0, a sufficiently small 1:1° will imply 

5. Conclusion. 

5.1. Summary of results. The global convergence result Jim inf 11 Ut 11 (D rv i-1 = 0 has previ-
lt-+oo i i 

ously been shown for trust region algorithms that use inexact gradient values provided these 

approximations are consistent. We demonstrate, however, that for implementations that do not 

update g,, on unsuccessful iterations, the algorithm may fail at a point x1; with g,, ~ 0. This failure 

cannot occur if 

11 Ut - V / (x,,) I l(D{D;)-1 

II"" 11 (D{D,)-1 

<f (5.1) 

and f E [0, 1 - f/ 1). Furthermore, if (5.1) holds with f E [0, 1 - "2), the result 

lim inf 11 Ut 11 = lim inf I IV/ (z1,) 11 = 0 can be established without using consistency as a primary 
1:-+oo 1:-+oo 

assumption17 
: consistency is instead a conaequence of our theory. Finally, (5.1) also allows us to 

obtain the strong global convergence result Jim 11 V / ( x1;) 11 = 0 provided ( 4.27) holds. 
1:-+oo 

Since many of the procedures used for generating gradient approximations simultaneously 

provide an error estimate, our results provide a practical criteria for deciding whether a given 

approximation is adequate. 

5.2. Final remarks. Several possibilities suggest themselves for future study. One is to estab

lish our results using alternative assumptions. Rather than taking 11 e1; 11 / 11 g,, 11 ::; f, we might 

try assumptions like 

g1,TV/(x1;) 

11 g,, 11 11 VI (Xi,) 11 ~ f 
(5.2) 

or 

17Tbis result uses mild assumptions on/ and assumes that {B.}, {D, TD.} and {(D{D,)-1
} are uniformly bounded. 
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(5.3) 

The two examples in Section 3.1 show that neither (5.2) nor (5.3) taken alone is sufficient to 'mply 

implementability, but some combination of similar assumptions might work. The existence (and 

utility) of such alternative assumptions is an open question. 

Another topic for future research is to examine the local convergence rates of these methods. 

Steihaug [16] establishes q-superlinear convergence for a class of trust region algorithms assuming 

= 0. The structural similarity between Steihaug's analysis and that of this paper suggests that 

I. b b . d ·r 1· 11 e., 11 0 Th' . b bl al' . q-super mear convergence can e o tame 1 1m I I I I = . 1s 1s pro a y an unre 1st1c 
It-co g,. 

assumption since gradient approximations are generally used only when exact (or almost exact) 

values are extremely expensive computationally, so an important question is the existence of less 

restrictive assumptions which imply fast local convergence. 

6. Appendix. 

6.1. Proof of Theorem 2.2. First notice that case (i) can be treated as a special instance of 

case (ii) by defining i'f = i 1t and Bf= B,. \J k?: k. To prove case (ii), we recall that by Theorem 

2 .1, there exists a sequence of nonnegative numbers {l} such that 

(6.1) 

and 

(6.2) 

with B,. + l I positive semidefinite. Applying the Cauchy Schwarz inequality to (6.1) gives 

(6.3) 

Suppose there exists £ > 0 such that 11 i It 11?: £ for all k sufficiently large. Equation (6.3) and the 

hypothesis that {.B,.} is bounded establishes that 
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{6.4) 

Now, 

- (iif i,. 

I Iii II I Ii,. 11 
{6.5) 

so that by substituting (B,. + µi I) ii for - i,. in {6.5) and expanding the resulting terms we get 

. (iif(B,.+µiJ)ii 
cos0' = . . . 

Iii' 11 ll(B,.+µ'J)i' II 

1 + ~(ii)T B,.(ii)/ llii 112 
µ' =-------__.;. _____________ _ 

[
1 + ~ (ii)T B.(ii)/ I Ii 112 + ( ~)2(iif B,. T .81,(ii)J I Iii 112 l½ 

µ' µ' j 

(6.6) 

Hence by {6.2), {6.4), {6.6) and the hypotheses lim sup I IB., 11 < oo and li~ ~i = -0, we have 
•-oo ,-oo 

lim cos(0i)= 1. D 
k,i-+oo 

6.2. Proof of Theorem 4.3. The proof of this theorem is quite similar to that of Theorem 4.2. 

Define 

£ = % {1 - f)/{1 + f) {6.7) 

and consider any iterate Zm with nonzero 9m . 

Since lim inf I I g,. 11 = 0, by Lemma 3 .4 we have that lim inf 11 D,. -T g,. 11 = 0, and thus there 
k-oo t,-oo 

exists m2::m for which IIDH1-Tgm+111~£11D;Tgm II and IID,.-Tg,. II>£ IID,;-Tgm II for all 

kE[m,m]. Using equation (4.18) and the facts that ~,.2::...!.... lls,. llv rv 2::-
1

- lls,. II and 
C2 t t 0"3C2 

I ID,. -T g,. 11 > £ IID,;-Tgm 11 V- k E [m, ml, we can write 

We then use the triangle inequality to show 

TR87-6 

IID.;T,m II:::; IID.;T,m -Di!1Um+I II+ IIDi;1Um+1 II 

:::; IID,;-T,m - Di!19m+I II+£ IID,;-Tgm II 

(6.8) 

(6.9) 
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so that 

(6.10) 

Rearranging terms, defining e,. = g1, - v' / (x,. ), and again applying the triangle inequality allows us 

to write 

(1-£) IID,;Tgm II~ IID,;Tv'J(xm)+D,;Tem -Di.;1 v'/(x;;;+1)-Di.;1e;;;+1 II 

~ IID,;Tv'J(xm)-Di.;1 v'/(xm+1) II+ IID,;Tem II+ IIDi.;1e;;;+1 II 
m 

= II :E (D,.-Tv'/(x,.)-D1,+1-1v'/(x1,+i)) II+ IID,;Tem II+ IIDi.;1e;;;+1 II 
/,•m (6.11} 

m 

$ :E IID,.-Tv'/(x,.)-D1,+1-1v'/(xHi)II+ IID,;Tem II+ IIDiJ1em+lll 

Using (6.7), (6.11), and the inequality 11Di_;1gm+i 11 ~£ IID,;Tgm II gives 

(6.12) 

Substituting this into (6.8) yields 

(6.13) 

where 

(6.14) 

By hypothesis, / is nonincreasing and bounded below so that / ( x,.)-+ / • for some / •. Thus for 
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any m, either Um = 0, or 
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I ID,;-T Um 112 :::; (/ (xm )- / (x;;;+1n / ( 

:s; (/ ( Xm ) - / • ) / £ · 

Therefore, lim 11 D" -T Uk 11 = 0, and by Lemma 3.4, 
ll--+oo 

lim llv'/ (x1t) II =0. D 
/l--+OO 

32 

(6.15) 

lim 11 U• 11 = 0 and 
ll--+oo 
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