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Abstract. Let A be a quasi–hereditary algebra with triangular decomposition

CACop ' C ⊗S Cop such that all Verma modules are semisimple over Cop.
Then we show: gldim(A) = 2 · gldim(C). Applying this formula to the more
special class of twisted double incidence algebras of finite partially ordered
sets, we get a proof of a conjecture of Deng and Xi. Another application is to
the so-called dual extensions of algebras.

1. Introduction

Quasi–hereditary algebras were introduced by Cline, Parshall and Scott
[12, 1] in order to study highest weight categories, which occur frequently in rep-
resentation theory of Lie algebras and algebraic groups, by means of finite dimen-
sional algebras. The main examples of quasi–hereditary algebras are the algebras
associated with blocks of the category O of a semisimple complex Lie algebra and
the generalized Schur algebras associated with the rational representation theory of
semisimple algebraic groups in any characteristic. These quasi–hereditary algebras,
and many others, have a triangular decomposition [7, 8, 9]. That is, such an
algebra A can be written as CACop ' C ⊗S Cop where (C,≥) is a directed subalge-
bra of A (see the next section for precise definitions), and the isomorphism is given
by multiplication in A. An equivalent statement [8] is: A has a strong exact Borel
subalgebra Cop and a strong ∆–subalgebra C. So, A is constructed from C by a
kind of doubling process. The aim of this note is to show that under additional
assumptions this doubling also occurs in global dimension:

Theorem 1.1. Let (C,≥) be a directed algebra. Let A = C ⊗S Cop be an algebra
with triangular decomposition such that S ' C/rad(C) ' A/rad(A). Then (A,≤)
is quasi–hereditary.

Assume in addition that all Verma modules of A are semisimple over Cop. Then
gldim(A) = 2 · gldim(C).

The assertion on quasi–heredity is just a special case of the theorem in [8]. What
we really have to prove is the formula on the global dimension.
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Unfortunately, for a quasi–hereditary algebra with a triangular decomposition
which does not satisfy the additional assumption in the theorem, such a nice formula
need not be true.

A natural way to construct quasi–hereditary algebras with triangular decom-
position is to start with C and then to try defining an algebra structure on the
bimodule C⊗S Cop. Deng and Xi have studied two such constructions: the twisted
double incidence algebras of partially ordered sets [3] (this generalizes a special case
of a construction of Dyer [6]) and the dual extensions of directed algebras [13, 2].
For quasi–hereditary algebras obtained by the first construction they conjectured
a formula as in the theorem. We prove this formula (thus the conjecture) for both
classes of algebras as an application of the theorem.

After a first version of this paper had been written, Xi [14] generalized the
formula for quasi–hereditary dual extensions of algebras to a larger class of (not
necessarily quasi–hereditary) algebras thus obtaining a new construction of algebras
with large global dimension (compare [15]).

2. Some definitions

Quasi–hereditary algebras have been defined by Cline, Parshall and Scott [12, 1].
A detailed report on quasi–hereditary algebras can be found in [11].

Definition 2.1. Let A be a finite dimensional algebra over a field and I the set of
isomorphism classes of simple A–modules. Choose representatives L(i) of the ele-
ments of I. Let ≤ be a partial order on I. Then (A,≤) is called quasi–hereditary
if and only if the following assertions are true:

(a) For each i ∈ I, there exists a finite dimensional A–module ∆(i) with an
epimorphism ∆(i) → L(i) such that the composition factors L(j) of the kernel
satisfy j < i.

(b) For each i ∈ I, a projective cover P (i) of L(i) maps onto ∆(i) such that the
kernel has a finite filtration with sections ∆(j) satisfying j > i.

The module ∆(i) is called the Verma module of index i. The objects of
the full subcategory F(∆) of A − mod by definition are the A–modules having a
finite filtration with Verma modules as sections. Injective A–modules are filtered
by modules ∇(i) (which are the Verma modules of the quasi–hereditary algebra
(Aop,≤)).

An algebra (A,≤) is called directed if it is quasi–hereditary with simple Verma
modules. Equivalently, the projective covers P (i) of L(i) and P (j) of L(j) satisfy
HomA(P (i), P (j)) = 0 unless i ≥ j and EndA(P (i)) = EndA(L(i)) for all indices
i and j.

Strong exact Borel subalgebras and strong ∆–subalgebras have been introduced
in [7]. Their existence has been shown for the blocks of category O, for general-
ized Schur algebras and for many other quasi–hereditary algebras (see [7], Scott’s
appendix to [7], and [9]). They are defined as follows:

Let (A,≤) be quasi–hereditary and S ' A/rad(A) a maximal semisimple sub-
algebra of A (which exists at least if the base field k is algebraically closed). A
subalgebra B of A which contains S is called a strong exact Borel subalge-
bra of (A,≤) if (B,≤) is directed, and the induction functor A⊗B − is exact and
produces Verma modules from simple modules: A ⊗B L(i) ' ∆(i). A strong ∆–
subalgebra C of (A,≤) contains S and has the property that for each primitive
idempotent e(i) ∈ S the epimorphism A · e(i) → ∆(i) restricts to an isomorphism
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C · e(i) ' ∆(i); thus, Verma modules over A are indecomposable projective over
C. The algebra C is a strong ∆–subalgebra of (A,≤) if and only if Cop is a strong
exact Borel subalgebra of (Aop,≤). In particular, C is directed with respect to the
partial order ≥ which is opposite to ≤.

The (more general) main theorem in [8] implies that (A,≤) has a strong exact
Borel subalgebra B and a strong ∆–subalgebra C which intersect in S if and only
if the multiplication in A induces an isomorphism C ⊗S B ' A of left C– and right
B–modules. If in addition C = Bop, then such an isomorphism will be called a
triangular decomposition of (A,≤).

The theorem contains the additional strong assumption that the Verma modules
over A are semisimple if restricted to B. In [10] several equivalent versions of this
condition have been given; one equivalent form which will be used later on is the
condition that all C–homomorphisms between A–Verma modules are already A–
linear. For the blocks of category O this occurs precisely in the multiplicity free
case (see [10]). Other examples with this property will be discussed in section 4.

3. Proof of the main result

We split up the proof into a sequence of claims; the last claim implies the the-
orem. Claims 1 to 5 are valid in more generality. To simplify notation we are
however keeping all assumptions of the theorem throughout. Claim 6 is the crucial
step where the assumption on the semisimplicity of the A–Verma modules over
B := Cop is needed.

Claim 1. Let P be an A–projective resolution of an A–module M . Then as a
complex of C–modules, P is the direct sum of a minimal C–projective resolution of

M and some complexes which up to shift have the form 0→ ∆(i)
scalar 6=0→ ∆(i)→ 0

(with the scalar being an element of the division ring EndA(L(i))).

Proof. The algebra A is projective as a left C–module, and an A–Verma module is
indecomposable projective over C. Hence the decomposition of P over C follows.
Summands with trivial homology are of the stated form because of the directedness
of C.

Claim 2. For each i ∈ I: pdimBL(i) = pdimA∆(i). Thus

gldim(B) = max{pdimA(M) : M ∈ F(∆)}.
Proof. The algebraA is projective as a rightB–module, hence the induction functor
A⊗B − is exact. The adjunction formula implies ExtnA(∆(i),−) ' ExtnB(L(i),−)
for each i, hence the first part of the claim. The second assertion follows by induc-
tion on the number of Verma modules in a filtration of M .

Claim 3. An A–module M lies in F(∇) if and only if for all i ≥ 1 and for all
simple A–modules L: ExtiB(L,M) = 0, that is, if M is injective over B. An A–
module M lies in F(∆) if and only if for all i ≥ 1 and for all simple A–modules L:
ExtiC(M,L) = 0, that is, M is projective over C.

Proof. We prove the first statement; the second is dual, since (Aop,≤) has trian-
gular decomposition B ⊗Sop C. The isomorphism in the proof of Claim 2 shows
that ExtiB(L,M) = 0 for all L if and only if ExtiA(F(∆),M) equals zero. Thus
the statement follows from a well–known characterisation of F(∇) (see Theorem 1
in [5]).
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Claim 4. Let M be an A–module, P an A–projective resolution of M and P a
projective A–module which occurs in P at step i ≥ pdimC(M). Let N be the
submodule of P which is mapped to zero (by the map in P). Then N ∈ F(∆).

Proof. The projective module P has a filtration by Verma modules, thus as a C–
module it is projective. A decomposition of the C–module P into Verma modules
can be choosen in such a way that each direct summand is mapped (in P) either
to zero or isomorphically. Therefore, N is filtered by those Verma modules in this
filtration which are mapped to zero.

Claim 5. gldim(A) ≤ gldim(B) + gldim(C) = 2 · gldim(C).

Proof. Consider the minimal A–projective resolution P of an A–module M . Let
i denote gldim(C), and let N be the kernel at step i in P, so N = Ωi(M) (if we
start counting with N = Ω0(N)). By Claim 4, N ∈ F(∆). Thus by Claim 2, the
projective dimension of N over A is bounded by gldim(B).

Claim 6. Let P (i) be an A–projective cover of L(i) and ∆(l) a Verma module
over A. Then each homomorphism ϕ : P (i) → ∆(l) factors over the epimorphism
κ : P (i)→ ∆(i).

Proof. Write P as A · e for an idempotent e ∈ A. Then x := ϕ(e) generates
ϕ(P (i)) as an A–module. Since ∆(i) is the C–projective cover of L(i), there is a
C–homomorphism ψ : ∆(i) → ∆(l) which has x in its image. By the assumption
in the theorem, the map ψ even is an A–homomorphism. Hence its image contains
ϕ(P (i)). For i < j, there is no composition factor L(j) in ∆(i), hence [ϕ(P (i)) :
L(j)] = 0. This implies the desired factorization.

Claim 7. Let L and L′ be simple A–modules and n an integer. Then ExtnC(L,L′)
is a direct summand of ExtnA(L,L′) via the embedding of C into A. In other words,
if the indecomposable projective C–module C · e occurs with multiplicity m at step
n in a minimal C–projective resolution of L, then the indecomposable projective
A–module A · e also occurs with multiplicity at least m at the nth step of the
minimal A–projective resolution of L.

Proof. We proceed by induction on n. If n is zero, the assertion is clear. So
let us assume n > 0. We are given a minimal A–projective resolution P of the
simple module L. By Claim 1, the minimal C–projective resolution of L is a direct
summand of P. So, if C · e = C(i) occurs in the C–projective resolution at step n,
then ∆(i) must occur (with the same or even larger multiplicity) in the A–resolution
at step n. Pick such a copy of ∆(i), which of course is mapped non–trivially, that
is, neither goes to zero nor is mapped isomorphically. Assume ∆(i) occurs in the
filtration of the indecomposable projective A–module P (j) (of course, at step n of
P). Then j ≤ i and we have to prove j = i. So we assume now j < i. Since ∆(i)
occurs in the minimal C–projective resolution of L, there is an indecomposable
projective module P (l) in P at step n − 1 such that the restriction to ∆(i) of
the map P (j) → P (l) in P is not zero. Because of the induction step, even the
composition of this map with the projection P (l) → ∆(l) is not zero. Altogether
we get a contradiction to Claim 6.

Claim 8. Let M ∈ F(∆) have a filtration in which ∆(i) occurs with multiplicity
one and all other Verma modules in the filtration have smaller projective dimension
than ∆(i). Then pdimA(M) = pdimA(∆(i)).
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Proof. Use induction on the number of Verma modules in a filtration of M , and
the long exact homology sequence.

Claim 9. Let L(i) and L(j) be simple modules such that Ext
gldim(C)
C (L(i), L(j)) 6=

0, and with j as large as possible. Then the projective dimension of L(i) over A
equals 2 · gldim(C).

Proof. Let P be a minimal A–projective resolution of L(i). By Claim 7, the pro-
jective module P (j) occurs at step n = gldim(C) in P. Let K be the submodule
of P (j) which is mapped to zero (by the map in P). Claim 4 implies K ∈ F(∆).
Moreover, if we restrict P to C again, the Verma module ∆(j) is the end term of the
minimal projective resolution of L, hence it is mapped injectively (as a term in the
complex P). Let K ′ be the kernel of the epimorphism P (j)→ ∆(j). By Claim 7,
the Verma factors in the filtration of K ′ are not part of the minimal projective
resolution of L. Thus they are mapped either isomorphically or trivially, the latter
case occurring precisely for the Verma factors of K. Hence, K ′/K has (by Claim 4
a filtration by Verma modules. Adding ∆(j) to this filtration produces a filtration
by Verma modules of P/K. This filtration contains one copy of ∆(j), and all other
Verma modules in this filtration have strictly larger indices. The choice of j implies

that Ext
gldim(C)
B (L(l),−) = Ext

gldim(C)
C (−, L(l)) equals zero for all indices l > j.

By Claim 8 and the choice of j and i, the A–projective dimension of P/K equals
that of ∆(i), hence, by Claim 2, the B–projective dimension of L(i). Because of
C = Bop, the claim follows.

4. Applications: the algebras of Deng and Xi

We first discuss twisted double incidence algebras of partially ordered sets in
more detail, and after that we briefly mention dual extensions of directed algebras.

The following definitions are taken from [3]. We use a slightly different notation,
however.

Let X be a finite partially ordered set (=poset). By I(X) we denote its in-
cidence algebra. We write I(X) by quiver and relations: I(X) = kQ/I. The
vertices of the quiver Q are the elements of the poset. There is an arrow x → y
precisely if x < y, and there is no z such that x < z < y (in that case we call x
and y neighbours). The ideal I in kQ is generated by all commutativity relations,
that is, by elements α− β where α and β are two paths in Q starting at a common
vertex a and ending at a common vertex b.

By a mesh in the poset X we denote a sequence (x; y1, . . . , yn; z) such that
the following conditions are satisfied: for each i we have x > yi < z, each yi is a
neighbour of both x and z, and the yi are all the elements in X satisfying these
conditions. If in addition we are given an element w with x < w > z and w is a
neighbour of both x and z, then we call the mesh together with w an extended
mesh.

A label of an extended mesh is a choice of scalars m(w, yi) for all i. If we choose
such a label for each extended mesh in X , we say that X has the labelling M (where
M implicitly means the collection of all these labels).

Reversing the ordering in X defines the opposite poset Xop and the opposite set
of relations Iop.
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Now we form a new quiver Q̃ which is the fibre product of Q and its opposite
Qop along the vertices. That is, Q̃ has the same vertices as Q and for each arrow
x→ y in Q the new quiver Q̃ contains two arrows x→ y and y → x.

Definition 4.1. Let X be a finite poset as above. Choose a labelling M for the
extended meshes in X . Then the algebra A(X,M) is defined by quiver and relations

as follows: A(X,M) = kQ̃/Ĩ where Q̃ is as above, and the relation ideal Ĩ is
generated by the union of I and Iop, and the set of all relations x → w → z =∑
im(w, yi)(x → yi → z) for all extended meshes (with notation as above). The

algebra A(X,M) is called theM–twisted double incidence algebra of the poset
X with labelling M .

The algebra A(X,M) in general need not be quasi–hereditary. But if it is, then
Deng and Xi [3] conjectured the following result:

Theorem 4.1. If A(X,M) is quasi–hereditary, then

gldim(A(X,M)) = 2 · gldim(I(X,M))

Proof. Deng and Xi have shown in [3] that I(X,M) is a strong exact Borel sub-
algebra of A(X,M), and that I(X,M)op is a strong ∆–subalgebra. Hence there
is triangular decomposition. Moreover, a composition multiplicity [∆(i) : L(j)] is
either zero or one, and it is one if and only if j ≤ i. Hence HomA(∆(j),∆(i)) equals
HomC(∆(j),∆(i)) (since both are EndS(L(j)) or 0, depending on j ≤ i or not).
Thus all Verma modules are semisimple over B. (The last assertion also might be
verified directly by induction without using the equivalence from [10].) Thus the
formula in the theorem follows from Theorem 1.1.

Another class of quasi–hereditary algebras defined by Deng and Xi [13, 2] are
the dual extensions: Let (C,≥) be directed with maximal semisimple subalgebra S.
Then putting rad(Cop) · rad(C) = 0 defines an algebra structure on A = C ⊗S Cop
which is called the dual extension of C. The algebra A can be defined by quiver
and relations in a similar way as above. Put Q̃ as above, and define as new relations
x→ w → z = 0 for all pairs of neighbours x < w and w > z.

For such an algebra A the formula gldim(A) = 2 · gldim(C) again is a special
case of Theorem 1.1. Here the triangular decomposition is already given by the
definition of A as a dual extension. And the Cop–semisimplicity of Verma modules
comes from the fact that C is a quotient algebra of A; hence C–homomorphisms
between Verma modules automatically are A–homomorphisms.
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