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1. Introduction

Let f2 be a bounded domain with smooth boundary \Gamma in R^{n} . Let \beta\geq 1 ,

and \mu_{j}>0(j=1,2) . R. Martin posed a problem on the existence and uniform
bounds of solutions u=\{u_{1}, u_{2}\} of the reaction-diffusion equation of the form:

(1)

.
\frac{\partial u_{1}}{\partial t}=\mu_{1}\Delta u_{1}-u_{1}u_{2}^{\beta}

x\in\Omega, t>0
.

\frac{\partial u_{2}}{\partial t}=\mu_{2}\Delta u_{2}+u_{1}u_{2}^{\beta}

under various boundary conditions and non-negative initial data; this equation
is related to the Rosenzweig-MacArthur equation in ecology (see J. Maynard-
Smith [5] ; D. Conway and A. Smoller [2] ) . N. Alikakos [1] obtained L^{\infty}

-

bounds of solutions of (1) subject to the homogeneous Neumann boundary
condition under the assumption 1\leq\beta<(n+2)/n , and gave a positive partial
answer to it. The purpose of the present paper is to give a complete answer
to the problem of Martin.

We consider a solution u=\{u_{1}, u_{2}\} of the more general type of reaction-
diffusion equations

(2) \frac{\partial u_{j}}{\partial t}=\mu_{j}\Delta u_{j}+f_{j}(u) , x\in\Omega, t>0(j=1,2) ;

subject to the boundary condition:

(3) \alpha_{j}(x)\frac{\partial u_{f}}{\partial n}+(1-\alpha_{j}(x))u_{f}=0, x\in\Gamma, (j=1,2) ;

and with the initial condition:

(4) u_{j}|_{t=0}=a_{j}(x) , x\in\Omega(j=1,2) .
( \partial/\partial n denotes differentiation in the direction of the exterior normal to \Gamma).

Here we make the following assumptions:

ASSUMPTION 1. \alpha_{j}(x)(j=1,2) is a non-negative C^{2}-function on \Gamma such
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that 0\leq\alpha_{j}(x)\leq 1(x\in\Gamma) .
ASSUMPTION 2. a_{j}(x)(j=1,2) is a non-negative C^{2}-function on \overline{\Omega},

satisfying (3) ;

ASSUMPTION 3. f_{j}(y) (j=1,2) is a C^{1}-function on \overline{R}_{+}^{2}=\{y=(y_{1}, y_{2}) ;
y_{1}\geq 0 , y_{2}\geq 0\} such that
i) -f_{1}(y) , f_{2}(y) are non-negative and f_{1}((0, s))=f_{2}((s, 0))=0 for s\geq 0 ;
ii) there is a monotonically increasing function \omega(s)(s\geq 0) and a positive
constant r with

f_{2}(y)\leq\omega(y_{1})(y_{2}+y_{2^{T}}) ,
(5) y=(y_{1}, y_{2})\in\overline{R}_{+}^{2} ,

f_{2}(y)\leq\omega(yJ|f_{1}(y)|l

We note that f_{1}(y)=-y_{1}y_{2}^{\beta}, f_{2}(y)=y_{1}y_{2}^{\beta} (see (1)) satisfies the assumption 3.
Our result is now given by the following

THEOREM. Let the assumptions 1, 2 and 3 hold. Then the initial-
boundary value problem (2), (3), (4) has a unique global solution u=\{u_{1}, u_{2}\} .
Moreover, u tends to some constant vector of the form c=\{c_{1}, c_{2}\} , as tarrow\infty ,
uniformly on \overline{\Omega}, where c_{j}\geq 0 and f_{j}(c_{j})=0(j=1,2) .

The following corollary follows immediately from the theorem above,
and gives a complete answer to the problem of Martin.

COROLLARY. Let the assumptions 1 and 2 hold. Then the initial-
boundary value problem (1), (3), (4) has a unique global solution u=\{u_{1}, u_{2}\} .
Moreover, u tends to a constant vector c=\{c_{1}, c_{2}\} , as tarrow\infty , uniformly on
\overline{\Omega}, where c_{j}\geq 0 , c_{1}c_{2}=0 , and

(6) c_{1}+c_{2}= \int_{0}^{\infty}\int_{\Gamma}(\frac{\partial u_{1}}{\partial n}+\frac{\partial u_{2}}{\partial n})dS_{x}dt+\int_{\Omega}(a_{1}(x)+a_{2}(x))dx .

In the next two sections we shall give some a priori estimates, which
are the core of the proof of our theorem. In the final section we shall give
the proof of the theorem.

2. L^{p} bounds of solutions

Here we shall give some a priori estimates for a solution u of (2), (3),
(4) which is supposed to exist in the interval [0, T) . We first see that u_{f}

(j=1,2) is non-negative ;

(7) u_{j}(x, t)\geq 0 , x\in\Omega, 0\leq t<T,\cdot(j=1,2)

since the initial data a_{j}(x) is non-negative, and since f_{j}(u) has, by the assump-
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tion 3 (i), the form: f_{j}(u)=c_{j}(u)u_{j} where c_{j}(u)=c_{j}(u(x, t)) is some cotinuous
function of x, t . By the maximum principle,

(8) 0\leq u_{1}(x, t)\leq||a_{1}||_{L}\infty

since f_{1}(u)\leq 0 by the assumption 3. To get the L^{\infty}-bounds for u is the
essential part of the proof of our theorem. This follows from the following
key a priori estimate: for p>1 ,

(9) ||u_{2}(t)||_{L^{p}}\leq M_{p} , 0\leq t<T_{j}

M_{p} being a constant independent of T (we shall simply write u_{j}(t) for
u_{j}(x, t)) , which we shall prove in a series of lemmas ; ||\circ||_{L_{p}} denotes the
usual L^{p}-norm over \Omega . In doing so, we set

g_{p}(u_{2})=(1+u_{2})^{p} , u_{2}\geq 0

for p>0 . We note

(10) g_{p}’(u_{2})\leq(p/|p-1|)^{1/2}g_{p}(u_{2})^{1/2}|g_{p}’(u_{2})|^{1/2}

for p\neq 1 . We denote the inner product of L^{2}(\Omega_{/}^{\backslash } by (\cdot ,\cdot ) , and define (\nabla b,
c\nabla d) by:

( \nabla b, c\nabla d)=\sum_{i=1}^{n}\int_{\Omega}\frac{\partial b(x)}{\partial x_{i}}c(x)\frac{\partial d(x)}{\partial x_{i}}dx

for scalar functions b, c and d on 42.

Lemma 1. Let u=\{u_{1}, u_{2}\} be a solution of (2), (3), (4) in [0, T) . Then
for w in W^{1,2}(\Omega) and 0\leq t<T,,

(11) (\Delta u_{j}(t), w)= \int_{\Gamma}\frac{\partial u_{f}(x,t)}{\partial n}w(x)dS_{x}-(\nabla u_{j}(t) , \nabla w)\tau

Moreover, if w is non-negative, then

(12) (\Delta u_{j}(t), w)\leq-(\nabla u_{j}(t) , \nabla w) , 0\leq t<T ,

( W^{1,2}(\Omega) is the usual Sobolev space).

PROOF. By integration by parts, we have (11). By (3) and (7), it is easy
to see that

(13) \partial u_{j}(x, t)/\partial n\leq 0 , x\in\Omega, 0\leq t<T_{j}j=1,2,\cdot

from which (12) follows by (11).

Lemma 2. Let u be as in Lemma 1. Then
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(14) \int_{\Omega}u_{j}(x, t)dx-\int_{0}^{t}\int_{\Gamma}\frac{\partial u_{j}(x,s)}{\partial n}dS_{x}ds-\int_{0}^{t}\int_{\Omega}f_{j}(u(x, s)) dxds

= \int_{\Omega}a_{j}(x)dx , 0\leq t<T_{j}j=1,2

PROOF. Integrating (2) with respect to x, t over \Omega\cross[0,\{t] , we have,
by (11) with w=1, (14).

Lemma 3. Let u be as in Lemma 1. Then

(g_{p}(u_{2}(t)) , 1)- \mu_{2}\int_{0}^{t}\int_{\Gamma}\frac{\partial u_{2}(x,s)}{\partial n}g_{p}’(u_{2}(x, s))dS_{x}ds

(15)
=(g_{p}(a_{2}), 1)- \mu_{2}\int_{0}^{t}(\nabla u_{2}, g_{p}’(u_{2}) \nabla u_{2})ds+\int_{0}^{t}(f_{2}(u) , g_{p}’(u_{2}))ds ,

0\leq t<T

PROOF. By (2) with j=2, and (12),

\frac{d}{dt} (g_{p}(u_{2}(t)) , 1)=(g_{p}’(u_{2}(t)), \frac{\partial u_{2}(t)}{\partial t})

=\mu_{2} ( g_{p}’(u_{2}(t)) , \Delta u_{2}(t))+(g_{p}’(u_{2}(t)),f_{2}(u(t)))

Integrating the above inequality in t, we have, by (11), (15).

Lemma 4. Let u be as in Lemma 1. Let p\neq 1 . Then

\int_{0}^{t} ( f_{2}(u) , g_{p}(u_{2})) ds \leq M+M\int_{0}^{t}(\nabla u_{2}, |g_{p}’(u_{2})|\nabla u_{2})ds

(16)
+M \int_{0}^{t}(g_{p}’(u_{2}),f_{2}(u))ds

0\leq t<T

M being a constant independent of T (which may depend on ||a_{j}||_{L}\infty , j=1,2)

PROOF. We shall denote by the same M various constant independent
of T (which may depend on p, ||a_{1}||_{L^{\infty}} , ||a_{2}||_{L}\infty). By (2) and (12), (u_{j}=u_{f}(t))

\frac{d}{dt}(u_{1}+u_{1}^{2}, g_{p}(u_{2}))

=((1+2u_{1})(\mu_{1}\Delta u_{1}+f_{1}(u)), g_{p}(u_{2}))

+(u_{1}+u_{1}^{2}, g_{p}’(u_{2})(\mu_{2}\Delta u_{2}+f_{2}(u)))

(17) \leq-(\mu_{1}+\mu_{2})(\nabla u_{1}, (1+2u_{1})g_{p}’(u_{2})\nabla u_{2})-2\mu_{1}(\nabla u_{1} , g_{p}(u_{2})\nabla u_{1})

+(f_{1}(u)+2u_{1}f_{1}(u) , g_{p}(u_{2}))-\mu_{2}(\nabla u_{2}, (u_{1}+u_{1}^{2})g_{p}’(u_{2})\nabla u_{2})
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+(u_{1}+u_{1}^{2}, g_{p}’(u_{2})f_{2}(u)^{\backslash })

(\equiv I_{1}+I_{2}+I_{3}+I_{4}+I_{5})

We shall estimate each term on the right-side of (17). By the Schwarz
inequality, (10), and (8),

I_{1}+I_{2}\leq M(\nabla u_{2}, (1+2u_{1})^{2}|g_{p}’(u_{2})|\nabla u_{2})

\leq M( \nabla u_{2}, |g_{p}’(u_{2})|\nabla u_{2}) 1

By the assumption 3 (i) and (ii), (M_{0}=\omega(||a_{1}||_{L^{\infty}})/(1+2||a_{1}||_{L}\infty))

I_{3}\leq(1+2||a_{1}||_{L}\infty)(f_{1}(u), g_{p}(u_{2}))\leq-M_{0}^{-1}(f_{2}(u) , g_{p}(u_{2}))

By (8),

I_{4}\leq M( \nabla u_{2}, |g_{p}’(u_{2})|\nabla u_{2}) ;I_{6}\leq M(g_{p}’(u_{2}),f_{2}(u))\tau

Collecting all the estimates above, we see:

the left hand side of (17)\leq-M_{0}^{-1}(f_{2}(u), g_{p}(u_{2}))+M(g_{p}’(u_{2}),f_{2}(u))

+M(\nabla u_{2}, |g_{p}’(u_{2})|\nabla u_{2})

Integrating the above inequality in t over [0, t] , we get (16).

Lemma 5. Let u be as in Lemma 1. Let 0<\theta<1 . Then

(18) \int_{0}^{t}(f_{2}(u(s)), g_{k-\theta}(s))ds\leq M_{k}\tau 0\leq t<T, (k=1,2, \cdots) :

M_{k} being a constant independent of T.

PROOF. We first show (18) holds for k=1 . By (14) with j=1, the
assumption 3 (ii), and (13), (M_{0}’=\omega(||a_{1}||_{L^{\infty}}))

(19) 0 \leq\int_{0}^{t}(f_{2}(u), 1)ds \leq-M_{0}’\int_{0}^{t}(f_{1}(u) , 1)ds\leq M_{0}’(a_{1},1)1

Hence the first and second terms on the left hand side of (14) with j=2
are bounded by some constant (independent of T). Hence the left hand side
of (15) with p=1-\theta is bounded by some constant (independent of T). Since
the left hand side of (18) with k=1 is, by (16) with p=1-\theta, bounded by the
left hand side of (15) with p=1-\theta, we see that (18) holds for k=1 ; note
g_{p}’(u_{2}) is negative for p=1-\theta . We suppose that (18) holds for k=m. Then
since g_{p}’(u_{2})>0 for p>1 , it follows from (15) and (16) that
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\int_{0}^{t} ( f_{2}(u) , g_{p}(u_{2})) ds \leq M_{2}+M_{2}\int_{0}^{t}(f_{2}(u), g_{p}’(u_{2}))ds ,

M_{2} being a constant independent of T, which shows (18) holds for k=
m+1-\theta . By induction on k, the proof of the lemma is completed.

LEMMA 6. For any p>1 , we have

(9) ||u_{2}(t)1_{L^{p}}\leq M,\cdot 0\leq t<T_{2}

M_{p} being a constant independent of T\iota

PROOF. From (13), (15) and (18), the estimate (9) follows.

3. L^{\infty}-bounds of solutions

A) Let p> \max\{n, 2\} . We then define the operator A_{f,p} in L^{p}(\Omega) by:

D(A_{j,p})= \{u\in W^{2,p}(\Omega);\alpha_{j}(x)\frac{\partial u}{\partial n}+(1-\alpha_{j}(x))u=0 on \Gamma\} ;

A_{j,p}u=-\mu_{j}\Delta u

where W^{2,p}(\Omega) is the usual Sobolev space; We shall simply write A_{j} for
A_{j,p} unless otherwise stated. Here we recall the basic properties of the
A_{f} (For the detail see, e . g. , H. Tanabe [7]). We know that the estimate

||u||_{2,p}\leq M\{||u||_{L^{p}}+||A_{j}u||_{L^{p}}\} , u\in D(A_{f}) ,

holds (M : constant) where ||\cdot||_{k.p} is the norm of the Sobolev space W^{k,p}(\Omega) .
Furthermore, - A_{j} generates the holomorphic semi-groups \{e^{-tA_{j}}\}_{t>0} in L^{p}(\Omega) .
We also know that the spectrum of A_{j} consists of non-negative eigenvalues
\{\lambda_{i}\}_{i=1}^{\infty} with finite multiplicity: 0\leq\lambda_{1}\leq\lambda_{2}\leq\lambda_{3}\leq\cdots . Since any eigenvalue \lambda_{i} of
A_{j,p} is also eigenvalue of the self-adjoint operator A_{j,2} in L^{2}(\Omega) , it is easy
to see that the first eigenvalue \lambda_{1} of A_{j} is positive if \alpha_{j}(x)\not\equiv 1 ; and zero if
\alpha_{j}(z)\equiv 1 . For f\in L^{p}(\Omega) , we set

P_{j}f=\{
\int_{\Omega}f(x)dx/|\Omega| (if \alpha_{f}(x)\equiv 1 )

0 (if \alpha_{j}(x)\not\equiv 1).

Then P_{j} is the projection operator onto the eigenspace corresponding to the
first eigenvalue \lambda_{1}=0 if \alpha_{f}(x)\equiv 1 . Define the operator Q_{j} in L^{p}(\Omega) by

Q_{f}=I-P_{j}

(I denotes the identity operator). Then
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Lemma 7. Let 0<\theta\leq 1 . For 0\leq s\leq t , we have

(20) ||e^{-tA_{j}}||\leq M ;

(21) ||Q_{f}e^{-tA_{j}}||\leq Me^{-\beta t} ;

(22) ||A_{f}e^{-tA_{j}}||\leq Mt^{-1}e^{-\beta t} ;

(23) ||e^{-tA}j-e^{-sA_{j}}||\leq M(t-s)^{\theta}s^{-\theta}e^{-\beta s} ;

(24) ||\nabla e^{-tA}f-\nabla e^{-sA_{j}}||\leq M(t-s)^{\theta/2}s^{-(\theta+1)/2}e^{-ps} ;

(25) ||e^{-tA_{j}}w-e^{-sA_{Jw||_{L^{\beta}}}}\leq M(t-s)e^{-\beta s}||A_{j}w||_{L^{p}} , w\in D(A_{j}) ;

(27) ||\nabla e^{-tA_{j}}w-\nabla e^{-sA_{j}}w||_{L^{p}}\leq M(t-s)^{1/2}e^{-\beta s}||A_{j}w||_{L^{p}} , w\in D(A_{f}) ,

(j=1,2) where M, \beta are positive constants independent of t;||\cdot|| denotes
the operator norm in L^{p}(\Omega) .

PROOF. The proofs of the inequalities above are standard in the theory
of semi-groups. We omitt the subscript j. Since the spectrum of AQ in
QL^{p}(\Omega) consists of positive eigenvalues, and since AQ=O, (21) and (22)
follow from the representation of the holomorphic semi-groups by the Duford-
Taylor integral. Since Pe^{-tA}=P, using (21) just proved, we have (20). (23)
and (25) follow from (21), (22) and the following inequalities:

||e^{-tA}w-e^{-sA}w||_{L}^{\sigma_{p}} \leq(t-s)^{\theta}||\frac{I-e^{-(t-s)A}}{(t-s)A}Q||^{\theta}||Ae^{-sA}w||_{L^{p}}^{\theta} ;

||e^{-tA}w-e^{-sA}w||_{L^{p}}=||e^{-tA}w-e^{-sA}w||_{L^{p}}^{\theta}||e^{-tA}w-e^{-sA}w||_{L^{p}}^{1-\theta}

Since A has a bounded inverse in QL^{p}(\Omega) , we have

||Qw||_{L^{p}}\leq M||Aw||_{L^{p}} , w\in D(A)t

Hence, using the interpolation theorem :

||\nabla w||_{L^{p}}^{2}\leq M||Qw||_{L^{p}}||w||_{2,p}

(see, e . g. , S. Mizohata [6 : Theorem 3. 26]) we find

(28) ||\nabla w||_{L}^{2_{p}}\leq M||Qw||_{L^{p}}||Aw||_{L^{p}} ;

(29) ||\nabla w||_{L^{p}}\leq M||Aw||_{L^{p}}

Hence, by (23),

||\nabla e^{-tA}w-\nabla e^{-sA}w||_{L^{p}}\leq M||e^{-tA}w-e^{-sA}w||_{L^{p}}^{1/2}||(I-e^{-(t-s)A})Ae^{-sA}w||_{L^{p}}^{112}. .

from which (24) follows by (22) and (23). Similarly, (27) can be proved by
(29), (22), and (25).
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Let q>2 . Let f(t) , 0\leq t<T_{7} be an L^{q}-function of t with values in
L^{p}(\Omega) . We then define the function \dot{v}_{j}(t) by:

(30) v(t)=e^{-tA_{j}}a_{j}+ \int_{0}^{t}e^{-(t-s)A_{jf(S)ds}} , j=1,2 .

then :

Lemma 8. Let v_{j}, f be as above. Let 0<\theta<1-2/q. We have; (0\leq

s\leq t<T) .,

(31) ||v_{j}(t)||_{L^{p}} \leq M+M\int_{0}^{t}||f(\sigma)\#_{L^{p}}d\sigma ;

(32) ||Q_{j}v_{f}(t)||_{L^{p}} \leq Me^{-\beta t}+M\int_{0}^{t}e^{-\beta(t-\sigma)}||f(\sigma)||_{L^{p}} da;

(33) || \nabla v_{j}(t)\#_{L^{p}}\leq Me^{-\beta t}+M\int_{0}^{t}(t-\sigma)^{-1/2}e^{-\beta(t-\sigma)}{?} f(\sigma)||_{L^{p}d\sigma ;

(34) ||v_{j}(t)-v_{j}(s)||_{L^{p}} \leq M(t-s)+M\{(t-s)^{\theta_{1}}+(t-s)^{\theta}\}(\int_{0}^{t}[f(\sigma)||_{L}^{q}pd\sigma)^{1/q} ;

(\theta_{1}=1-1/q)

(35) || \nabla v_{j}(t)-\nabla v_{j}(s)||_{L^{p}}\leq M(t-s)+M\{(t-s)^{\theta_{2}}+(t-s)^{\theta_{3}}\}(\int_{0}^{t}||f(\sigma)\Downarrow_{L^{p}}^{q}d\sigma)^{1/q}

(\theta_{2}=\theta/2;\theta_{3}=1/2-1/q) ‘

PROOF. (31) and (32) follow easily from (20), (21). We shall show (35).

We omitt the subscript j, and write v, A, etc. for v_{j}, A_{j}, etc. We have

v(t)-v(s)= \int_{s}^{t}Pf(s)ds+Q(e^{-tA}-e^{-sA})a+\int_{s}^{t}Qe^{-(t-\sigma)A}f(\sigma)d\sigma

(36)
+ \int_{0}^{s}Q(e^{-(\iota-\sigma)A}-e^{-(s-\sigma)A})f(\sigma) da , (\equiv I_{1}+I_{2}+I_{3}+I_{4})

By (28) and (22) ,\cdot we see

(37) ||\nabla e^{-tA}||\leq Mt^{-1/2}e^{-\beta t}

We have : \nabla I_{1}=0 . By (25), ||\nabla I_{2}||_{L^{p}}\leq M(t-s) . By (37) and the H\"older

inequalty,

|| \nabla I_{3}||_{L^{p}}\leq M\int_{s}^{t}(t-\sigma)^{-1/2}e^{-\beta(t-\sigma)}||f(\sigma)||_{L^{p}}d\sigma

\leq M(t-s)^{\theta_{3}}(\int_{0}^{t}||f(\sigma)||_{L^{p}}^{q}d\sigma)^{1/q}

By (24) and the H\"older inequalty,
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|| \nabla I_{4}||_{L^{p}}\leq M(t-s)^{\theta_{2}}(\int_{0}^{t}||f(\sigma)\Uparrow_{L^{p}}^{q}d\sigma)^{1/q}

Collecting all the estimates above, we get (35). Similarly, using (23), (25),
and (37), we can prove (33) and (34).

Lemma 9. Let v_{f}, f be as in Lemma 8. Suppose that f(t) is H\"older
continuous for t(0\leq t<T) :

(38) ||f(t)-f(s)||_{L^{p}}\leq L(|t-s|^{\theta_{4}}+|t-s|^{\theta_{5}})

where L, \theta_{4}, \theta_{b} are constants, 0<\theta_{4}, \theta_{f}\leq 1 . Then v_{f}(t)\in D(A_{f}) , and
(39) ||A_{j}v_{j}(t)||_{L^{p}}\leq M+ML+M\Downarrow f(t)||_{L^{p}}

(0\leq t<T) , M being a constant independent of T_{\epsilon},f. Moreover, for any
\epsilon>0 we have (\epsilon\leq s<t<T)

(40) ||A_{f}v_{j}(t)-A_{f}v(s)||_{L^{p}}\leq M(t-s)e^{-1}+ML((t-s)^{\theta_{4}}+(t-s)^{\theta_{5}})

+M(t-s)\epsilon^{-1}||f(t){?}_{L^{p}

(For the proof, see T. Kato [4: Lmma IX 1. 28]).
B) We now proceed to the derivation of L^{\infty}-bounds of solutions. Let

p> \max\{n, 2\} . M denotes, as before, various constants independent of T
(which may depend on p, ||a_{f}||_{2,p}). We have :

Lemma 10. Let u=\{u_{1}, u_{2}\} be as in Lemma 1. Then
(41) ||u_{j}(t)||_{2,p}\leq M ;

(42) ||u_{j}(t)||_{L^{\infty}}\leq M ;

(43) \int_{0}^{t}||f_{j}(u(s))||_{L^{p}}^{3p}ds\leq M

for 0\leq t<T;j=1,2 .
PROOF. We claim: (0\leq t<T;j=1,2)

(44) ||f_{f}(u(t))||_{L^{q}}\leq M (q\geq 1) ;

(45) \int_{0}^{t}||f_{f}(u(s))||_{L^{p}}^{3p}ds\leq M\int_{0}^{t}|(f_{f}(u(s)), 1)|{?}_{u}(s)||_{L^{(ap-1)/2}^{3p-1}ds ;

(46) ||\nabla u_{j}(t)||_{L^{p}}\leq Ml

Indeed, by (5), (8), and (9), (44) holds for j=2. By the H\"older inequality,
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(45) with j=2 follows from (44), and hence we have, by (19), (43) with j=2.

Since u_{j}(t) satisfies (30) with f(t) replaced by f_{j}(u(t)) :

(47) u_{j}(t)=e^{-tA_{j}}a_{j}+ \int_{0}^{t}e^{-(t-s)A_{j}}f_{j}(u(s))ds

it follows from (33), (43) with j=2, and the H\"older inequality that (46) holds

for j=2. (42) with j=2 now follows from (46), (9) and the Sobolev lemma.

On the other hand, (42) with j=2, and (8) give (44) with j=1 . Hence by

the H\"older inequality, we have (45) with j=1 , which shows (43) with j=1 .
From (45), (33), we can see, as before, that (46), (42)hold for j=1. By

(34) and (43), (q=3p;\theta=1/4)

||u_{j}(t)-u_{j}(s)||_{L^{p}}\leq M(t-s)+M(t-s)^{2/3}+M(t-s)^{1/4}

and so
||f_{j}(u(t))-f_{j}(u(s))||_{L^{p}}\leq M(t-s)+M(t-s)^{2/3}+M(t-s)^{1/4}

.

By (39) and (44), we have (41).

4. The proof of the theorem

Let p>n+1 . Let T>0 . Set X_{1}=C([0 ,^{T] };^{W^{1,p}(\Omega))} . Then X_{1} is the

Banach space with an appropriate norm. We define a sequence \{u^{(k)}\}_{k=1}^{\infty} in

X_{1}\cross X_{1} inductively by : (u^{(k)}=\{u_{1}^{(k)}, u_{2}^{(k)}\})

u_{j}^{(1)}(t)=e^{-tA_{j}}a_{j} ;

u_{f}^{(k+1)}(t)=u_{j}^{(1)}(t)+ \int_{0}^{t}e^{-(t-s)A_{j}}f_{j}(u^{\chi k)}(s))ds

By the standard argument, we can see from (31)-(35) that \{u^{(k)}(t)\} is a

Cauchy sequence in X_{1}\cross X_{1} if T is sufficiently small. Let u(t) be the limit

of the Cauchy sequence \{u^{(k)}\} in X_{1}\cross X_{1} . Then the u(t) is cleary asolution

of(47). Hence, in the same way as in the proof of Lemma 9, we can show

that u_{j}(t)\in D(A_{j}) , A_{j}u_{j}(t) is H\"older continuous for 0<t<T, u_{j}(t) is con-

tinuously differentiate for 0<t<T, its derivative du{t)/dt is H\"older con-

tinuous for 0<t<T, and u_{j}(t) satisfies the (abstract) equation in L^{p}(\sqrt) :

du_{j}(t)/dt+A_{j}u_{j}(t)=f_{j}(u(t)) with u_{j}(0)=a_{j} . On the other hand this implies

that u_{j}\in W^{1,p}(\overline{\Omega}\cross[0, T)) . Hence, by the Sobolev imbedding theorem, u is

H\"older continuous on \overline{\Omega}\cross(0, T) , and so is f_{j}(u(t)) . Hence, by the existence

and regularity theorem for solutions of paraboic equation (see S. It\^o [3])

a classical solution v_{j} of \partial v_{j}/\partial t=\mu_{j}\Delta v_{j}+f_{j}(u(x, t)) with conditions (3) and (4)

exists and coincides with u_{j} ; compute d||v_{j}(t)-u_{f}(t)||_{L^{2}}^{2}/dt . This implies u_{f}
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is a classical solution of (2), (3) and (4). The uniqueness of solution can
be proved by a routin argument. Since we have a priori bounds (41), we
have actually a unique global solution; note it suffices to assume that a_{j}\in

W^{2,p}(\Omega) .
We finally show the asymptotic behavior in t of the solution of (2), (3),

(4). By (43), the right-hand sides of (32), (33) with f(t) replaced by f_{j}(u(t))

tend to zero as tarrow\infty . Hence ||Q_{j}u_{j}(t)||_{L}parrow 0 , ||\nabla u_{f}(t)||_{L}parrow 0 as tarrow\infty . By
the Sobolev imbedding theorem, Q_{f}u_{f}(t) converges to zero as tarrow\infty , uniformly
on \overline{\Omega} . By (13) and the assumption 3 (i), the second and third terms on the
right-hand side of (14) with j=1 are monotone and bounded, and hence
are convergent for tarrow\infty . Hence (u_{1}(t), 1) converges to some non-negative
constant \alpha_{1} as tarrow\infty . By (19), (f_{2}(u(t)), 1) is integrable on [0, \infty) , since
-(f_{1}(u(t)), 1) is integrable on [0, \infty) . Hence by (14) with j=2, (u_{2}(t), 1)

converges to some non-negative constant \alpha_{2} as tarrow\infty . Hence, P_{j}u_{j}(t) con-
verges to c_{j} as tarrow\infty , where c_{j}=\alpha_{j}/|\Omega| . Hence, u_{j}(t) converges to c_{j} as
tarrow\infty , uniformly on \overline{\Omega};c_{f}\geq 0 . Note c_{j}=0 if \alpha_{j}(x_{0})<1 for some x_{0}\in\Gamma

Since ||f_{j}(u(t))||_{I}^{3p_{p}}
, is, by (43), integrable on [0, \infty) , there is a sequence \{t_{k}\}_{4},

tending to the infinity, such that ||f_{j}(u(t_{k}))||_{L^{p}}arrow 0 . Since u_{j}(t)arrow c_{j}, uniformly
on \overline{\Omega} (as tarrow\infty), we have : ||f_{j}(c)||_{L^{p}}=0(c=\{c_{1}, c_{2}\}) , which implies f_{f}(c)=0 .
Thus the proof of the theorem is completed.

PROOF OF THE \varphi oROLLARY . It suffices to show (6). Adding (14) withj–1, and (14) with j=2, and letting t tend to the infinity, we have (6) ;
note f_{1}(u)+f_{2}(u)=0 .
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