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Abstract. We bound the number of plane segments in a crystalline minimal surface S 

in terms of its Euler characteristic, the number of line segments in its boundary, and a 

factor determined by the Wulff shape W of its surface energy function. A major 

technique in the proofs is to quantize the Gauss map of S based on the Gauss map of 

W. One thereby bounds the number of positive-curvature corners and the interior 

complexity of S. 

1. Introduction 

Let O, the surface energy per unit surface area, be a real-valued function defined on 

the unit sphere S z. By the surface energy of a two-dimensional oriented surface S in 

R 3 w e  mean the integral 

O(S) =- fx O(vs(x)) dx, 
~s 

when this is defined; here Vs(X ) denotes the unit oriented normal  to S at x ~ S 

(which should be defined for almost  all x e S) and dx denotes integration with 

respect to two-dimensional  surface measure. When  �9 is a constant  function, as in 

the case for an interface between liquids, this integral is propor t ional  to the area of  

S. In this paper we consider the opposite extreme in which the Wulff shape W of �9 

is a polyhedron instead of a sphere, and in which the surfaces S are polyhedral  

surfaces with boundary.  (The Wulff  shape is the equilibrium shape of a single 

isolated region; see Section 2 for definitions and Fig. 1 for the Wulffshape which we 

use for the examples of  Section 6.) 

*The support of the National Science Foundation and the Air Force Office of Scientific Research 
and the hospitality of Stanford University, where this paper was extensively rewritten, are gratefully 
acknowledged. 
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Fig. 1. An n-diagram (see Section 2) in stereographic projection, and a Wulff shape with that n- 
diagram. Figures 7-12 assume that �9 is such that its Wulff shape has this n-diagram. 

Suppose that S as above satisfies the following three properties (plane segments 

are defined later in this section and edges are defined in Section 4): 

(S1) S is composed of a finite number of plane segments with polygonal 

boundaries (these plane segments certainly need not be convex), 

($2) S is a continuous submanifold of R 3 with boundary B, and 

($3) no polyhedral deformation of S within some neighborhood of any (closed) 

interior edge which fixes B can either decrease the surface energy of S or 

maintain the same energy and increase the volume of any solid it partially 

bounds. 

Then a special case of the main result of this paper is that if the boundary B is in the 

kind of general position defined below, then the number of plane segments of S is 

bounded a priori  in terms of the structure of W, the Euler characteristic of S (which 

is determined by the number of connected components and handles of S and the 

number of cycles in its boundary B), and the number of line segments in the 

boundary B. That  is, in this case and in the other cases treated in this paper, how 

combinatorially complicated S can be in its middle is determined by its structure 

out near its boundary and its Euler characteristic and by which integrand measures 

its surface energy. 

The idea of the proof of the bound is to show that the Gauss map (and hence 

Gauss curvature) of S comes in the "quanta"  given by the generalized Gauss maps 

of the corners of W, and that positive Gauss curvature comes in isolated individual 

quanta. The Euler characteristic together with the boundary curvature gives us the 

net curvature (Gauss-Bonnet, reproved in Lemma 3 for completeness), so the 

quantization gives the bound if there is control over the amount of positive 

curvature. We obtain this bound by counting in two ways how much S bends up 

and down. Many difficulties arise due to the nongeneric positions of plane 

segments and to their behavior at the boundary, but if for the moment we ignore all 
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this and define quantities very loosely, the basic structure of the proof of this bound 

can be explained as follows. 

All edges E of the surface are taken to be oriented (and so interior edges are 

counted twice). Additionally, each interior edge is of either regular or inverse type, 

depending on whether the oriented normals to its adjacent plane segments point 

"away from" or " toward"  each other, and edges in the boundary are labeled by a 

convention described in Section 4. A basic parameter is the "label switch" n defined 

on edges by n(E) = 1 if the type of E differs from the type of the edge following E in 

the boundary of the (unique) plane segment E partially bounds, and define 

n(E) = 0 otherwise (except in special cases; see Section 4). For (standard) positive- 

curvature corners, n(E) = 0 for each edge coming into the corner, and so the sum 

over these incoming edges of 1 - n(E)/2 is at least three, since there are at least 

three edges coming into each interior corner. For nonpositive-curvature interior 

corners, this sum is at least two, since it must be an integer and each edge (except 

for those special cases) contributes 1 or �89 to the sum. Thus the number of 

positive-curvature corners plus twice the number of all corners is dominated by the 

sum over all oriented edges of 1 - n(E)/2, up to difficulties we are ignoring. The 

sum of n(E) over all oriented edges can equally well be regarded as the sum over all 

plane segments of the sum around each plane segment of n(E). The sum around a 

plane segment of n(E) (i.e., the number of times the surrounding planes change 

from bending up to bending down or vice versa) is shown in Proposition 5 to be at 

least four, under the hypotheses of this paper; note that this is analogous to area- 

minimizing surfaces being locally saddle-shaped. Therefore, except for boundary 

terms and other complications we ignore here, the number of positive-curvature 

corners is bounded above by the number of oriented edges, less twice the number of 

plane segments, less twice the number of corners --  that is, by -2z (S )  (Proposi- 

tions 4 and 6). 

The phenomenon of curvature quantization is, as far as I know, a new 

mathematical device. Certainly it has been known for a long time (probably Gauss 

knew it!) that a generalized unit normal (Gauss) map and thus a Gauss curvature 

can be assigned to corners in polyhedral embedded surfaces, but here we have a 

fixed subdivision of the unit sphere induced by W and the generalized Gauss map 

of the surfaces under consideration is always a sum of these particular regions (or, 

in case more than three faces meet at some vertex of W, some triangulations of 

these regions using the same vertices) as was shown in IT2]. This is crucial to much 

of the paper. 

Those who are combinatorially minded may also be intrigued both by the 

technique for counting positive-curvature corners as well as by the general 

combinatorial structure of these surfaces. Those interested in the shapes of physical 

interfaces where at least one of the regions is crystalline, including shapes which are 

quite topologically complex interfaces between interlocking regions as in Fig. 12, 

should find the results and their method of proof relevant. 

Specifically, let S be an oriented finite abstract two-dimensional simplicial 

complex which is a PL-manifold with polygonal boundary B, together with an 

immersion of S in R 3 which is locally a continuous embedding, affine on each 

simplex. If we require S to be embedded in R 3, as a physical surface of a crystal 



228 J.E. Taylor 

would be, then we can identify S with its embedding and not be concerned about 

the abstract manifold; the only harm in doing so is a loss of generality. (For 

example, the immersion of S could be derived from an integral currrent with 

multiplicity greater than one on various subsets.) We sometimes in fact drop the 

words "image of" and identify S with its immersion as if it were an embedding just 

for simplicity of language. By a line segment of B we mean a connected part of the 

boundary of S whose immersed image is a straight line segment in R 3 and which is 

maximal for this property. A corner of B is a common endpoint of two line 

segments of B. N B is the number of line segments of B (and thus the number of 

corners of B). 

By a plane segment P of S we mean a closed oriented subset of S (the union of 

finitely many closed triangles) such that its interior is connected, each triangle is 

embedded by the immersion in the same plane with the same orientation, and it is 

maximal in S with respect to these properties. Thus adjacent plane segments in S 

have different orienting normal vectors in the immersion. The immersion of a plane 

segment of S need not be convex. Neither need it be topologically a disk; it can 

have holes, and it can have one or more vertices on its boundary which are 

endpoints of four or more edges of its boundary, so that a small enough 

neighborhood of such a vertex intersected with the interior of P has more than one 

connected component. We use the terminology "plane segment" rather than "face" 

to emphasize the conditions that a plane segment must meet, and also to 

encompass the case where S is not embedded (even plane segments need not be 

embedded!) but is an abstract simplicial complex with many simplices per plane 

segment. An interior corner of S is a point of S which is in three or more plane 

segments of S and is not in B. 

We define below surface properties H 1-H3 which will always be required in this 

paper and possible other properties HZ and HB and prove that any such S in R 3 

which satisfies hypotheses S1, H 1 - H 3 ,  and either H Z  or HB,  has no more interior 

corners than 

(1 + A/a + 7z/a)(N n - 2z(S)), 

where N n is the number of line segments in the boundary B of S, z(S)  is the Euler 

characteristic of S, and a (resp. A) is the area of the smallest (resp. largest) tie region 

or subregion of the n-diagram of W (defined in Section 2; these are the "quanta"  

referred to above). A much better bound cari be given using more information 

about the boundary and the structure of S along the boundary; this bound is stated 

in Theorem 7, along with similar bounds on the number of plane segments and the 

relevant bounds if neither HZ nor HB holds. 

In order to state hypotheses H2 and H3, we need to define the notion of convex 

and concave corners. At any interior corner p, the embedded image of a neighbor- 

hood Sp ofp  in S divides a small ball centered at the image ofp  into two pieces U1 

and U2; let U1 be the piece "behind" S, so that the embedding of Sp is part of the 

oriented boundary of U1. If U~ (resp. U2) is convex, we say S has a convex (resp. 

concave) corner at p. (Normally, most corners of S are neither convex nor concave 

but "saddle-shaped".) 
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The hypotheses listed above are as follows: 

HI.  The images of the neighborhoods Sp of the interior corners p of S under the 

immersion gives configurations of the types in the catalog in IT2], and the images 

of the neighborhoods of corners of S on the boundary B gives configurations 

having Properties 1 and 2 of Section 4 of [T2] (see Section 3 below for a summary 

of the results of [T2]). In particular, the image of each plane segment of S lies in a 

plane parallel to a face of W (with the same orientation), and the embedded image 

of a sufficiently small neighborhood of each point of S is a O-minimizing surface in 

R 3 relative to its boundary. 

H2. There are no concave interior corners in S, and if two adjacent plane 

segments in S have the property that the faces of W which are parallel to them 

touch only at a corner of W, then that edge of S is of regular type (see Section 3 

below). 

H3. If a plane segment P of S has three successive interior edges all of the same 

type (regular or inverse), and if P is convex at each of the two intervening corners, 

then the directions of P and the three plane segments adjacent to it along those 

edges are contained in the set of directions of faces meeting at a single vertex of W. 

In particular, if all corners of W are trivalent, there is no edge of S with interior 

convex corners at each end. 

HZ. B is composed of line segments parallel to edges of W, and W is a generalized 

zonohedron: that is, each face of W has an even number of edges, and each pair of 

opposite edges on each face is parallel. (This was actually the original definition of 

the word zonohedron by the crystallographer Fedorov [F-I, but Coxeter 

[C1], [C2] has used a more restrictive definition which has by now become 

standard. See [T3] for more information concerning zonohedra.) 

HB. The boundary is in a "general position" relative to the surface S, as defined 

by the criterion that each line segment of the boundary is contained in a single 

plane segment of S. 

Assuming HZ and S1 hold and S is embedded, then H1-H3 are implied by 

properties $2 and $3. To see this, note first (as was shown in [T1]) that ifS satisfies 

S1-$3, then all directions for plane segments in S except the normals of W are 

excluded by barrier arguments using tangent cones to corners of W, which are 

volume-maximising among O-minimizing surfaces with the same boundary, or 

tangent cones to edges of W or its central inversion, which are uniquely O- 

minimizing. (In the proof of this implication for O-minimizing integral currents in 

[T1], there is a gap, in that there is an implicit hypothesis of local finite connectivity 

which is not known to be satisfied in general but which is assumed here via S1 or 

H 1.) Concave corners are prevented by use of the former type of barrier, and two 

convex corners which correspond to different corners of the Wulff shape at the ends 

of one edge are prevented by the use of barriers of the latter type. The proof that a 
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violation of the more general statement of H3 would lead to a violation of 

minimization of surface energy follows from that of Property 2 in Section 4 of [T2]: 

a trapezoid subset of P, with one of the parallel edges being the intersection with 

the middle plane segment and the two adjacent edges being parts of the intersec- 

tions with the outer two plane segments, is cut out and translated a short distance 

in height; it is patched back into S by adding small triangles at the corners, cutting 

thin strips from the three neighboring planes, extending the trapezoid along its two 

nonparallel edges, and adding a thin trapezoid with its direction v being that of the 

middle plane segment adjacent to P. The proof that this decreases energy when H3 

is violated is precisely that of I-T2]. 

Hypotheses H1-H3 are better than hypotheses $2 and $3 in several respects: 

H l -H3  are somewhat more general, H l -H3  are the conditions actually used in the 

proof in this paper; and checking that H1-H3 hold clearly involves checking only a 

finite number of specific conditions (as opposed to "all deformations"). 

If HZ does not hold, then S1-$3 still limit the number of plane directions that 

can occur; here, however, plane segments containing a line segment of B might 

have certain non-W directions (see IT1]). The presence of such "extra" directions 

for plane segments destroys the quantization of Gauss maps described above and 

thus the key step in the proof of the theorem; it also affects Proposition 5(b). Thus 

one either has to include the number of interior corners of such non-W plane 

segments as part of the bound, or, in what amounts to the same thing, to exclude 

plane segments with "extra" directions by using a new surface S' with boundary B' 

which lies in S but cuts off those planes with bad directions. We cover both 

approaches by simply requiring all normals of plane segments of S to be contained 

in the set of normals to W; a further justification for this is to think of S as being a 

part of a larger overall surface, so where we put the boundary B is rather arbitrary 

anyway. 

Volume maximization among surfaces of the same energy (or its implication as 

expressed in H2) is assumed because without some such assumption there can be 

no bound as in the theorem; see Fig. 2(a). It would, however, be equivalent to use 

volume minimization, which would mean interchanging the words convex and 

concave in H2 and H3 and replacing regular by inverse. Similarly, without H3 there 

can be no bound, since we could then put arbitrarily many small mesas in the 

(a) (b) 

Fig. 2. Examples of surfaces for which there can be no a priori bound. Example (a) does not satisfy H2; 
example (b) does not satisfy H3. 
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middle of any plane segment, as in Fig. 2(b). Tents could also be constructed if we 

allowed non-O-minimizing convex corners; thus that part of the O-minimization 

hypothesis is required. 

A reason to use HZ is that the bounds then do not depend on knowing the 

structure of S near B; it is thus better suited to the classical problem of finding a O- 

minimizing surface with a prescribed boundary. For this problem, however, the 

hypothesis that S be composed of a finite number of plane segments is major; 

general existence theorems only yield varifold or perhaps integral current solutions. 

We can speculate that it might be possible to bound the Euler characteristic 

of S by some function of N B, and that such a bound would both address this 

issue of finiteness and provide an absolute upper bound to the number of plane 

segments of S independent of the Euler characteristic of S. But as things now stand, 

this paper establishes the curious result that if a volume-maximizing O-minimizing 

surface is composed of a finite number of plane segments and if the surface 

is locally embedded, then there is an a priori upper bound to the number of plane 

segments. 

Hypotheses S 1, H 1, and H2 are not unreasonable from a physical point of view, 

since volume maximization among O-minimizing surfaces might well hold for an 

interface between two phases which has resulted from the slow growth of one phase 

into the other. But H3 (which is a consequence of O-minimization in the 

neighborhood of an edge, not a point, of S) may be a problem, since it is nonlocal. 

In particular, an interface may well not "see" that it can decrease surface free 

energy by retreating along a whole edge. Also, the system might be minimizing a 

free energy which includes more than surface free energy, or one that includes a 

volume constraint, or one which involves some other constraint. This configura- 

tion of two adjacent convex corners might therefore be minimizing for this other 

problem, as it is in the case of W itself. Even S1 and the requirement of only W- 

directions may fail to hold in these other problems, as it can for instance in the 

problem of the shape of a crystal under gravity [ATZ], [T5] or the shape of a 

surface near a grain boundary groove in the presence of a temperature gradient 

[VCMS]. 

The author has an algorithm for constructing surfaces having a prescribed 

boundary B and satisfying S1, $2, and H1-H3, and further for extracting one that is 

globally minimizing within this class, provided HZ holds and B is an extreme 

simple closed curve [T4]. This scheme has been implemented computationally; a 

sample result is shown in Fig. 3. 

Six examples of surfaces and the way the various estimates of the paper apply to 

them are given in the last section. They should be consulted initially as examples of 

the types of surfaces which are considered in this paper, in Section 4 for examples of 

the definitions, and at the end as examples in connection with the more precise 

bounds of the main theorem and its preceding propositions. 

This paper differs from earlier drafts primarily in that it handles arbitrary 

polyhedral Wulff shapes W, in particular those with nontrivalent corners and/or 

those that are not generalized zonohedra; it also keeps track of sources of 

inequality so that results can be explicitly stated for the case where neither HB nor 

HZ holds, and so that cases in which the bounds are exact can be identified. 
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Fig. 3. Examples of the output  of a program to compute qb-minimal surfaces, consisting of surfaces on 

a boundary together with the convex bodies which are the Wulff shapes for the different qb's. 

2. W and Its n-Diagram 

As in the introduction, let 

dO: sZ--. R 

be given; �9 can be any function so that its Wulff shape 

W =- { x E R 3 : x . v  <_ ~ ( v ) , V v e S  2} 

is a region of positive (nonzero and noninfinite) volume. W is the analog of the unit 

sphere for the surface free energy function which is constantly 1; that is, Wis the 

shape having a given volume for which the total surface free energy (as defined in 

Section 1) is the minimum possible value (see, for example, IT1] or better, [B1]). 

For the rest of this paper we assume that W is a polyhedron. We make no further 

assumptions on W or dO in general; as part of the optional hypothesis HZ, we 

assume that W is a generalized zonohedron. 

The n-diagram of W is the decomposition of the unit sphere into vertices, tie 

lines, and tie regions induced by the generalized Gauss map on W. For polyhedral 

W as we have here, the vertices of the n-diagram are the normals of faces of W, the 
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tie lines are the generalized Gauss map of edges of W and are the closed shorter 

great circle arcs connecting the two vertices which correspond to the faces of W 

meeting along that edge, and the tie regions are the generalized Gauss maps of the 

corners of W and are the closed regions of area less than 2n enclosed by the tie lines 

corresponding to the edges of W meeting at that corner. If more than three faces 

meet at some corner of W, then the corresponding tie region is not a tie triangle; the 

great circle segments which are not tie lines but which connect vertices of a tie 

region and lie within tie regions are called extra lines of the n-diagram. See [T2] or 

[TC] for more information, and see Fig. 1 for an example of an n-diagram for a 

generalized zonohedron and a Wulff shape with that n-diagram. W being a 

generalized zonohedron is equivalent to the property that the union of all tie lines 

of the n-diagram consists of a collection of complete great circles; these great circles 

triangulate the sphere when three faces meet at each corner of W. 

We define a subregion of the n-diagram of W to be any spherical region which 

lies in a single tie region of the n-diagram and which is bounded by complete 

(noncrossing) tie lines or extra lines; there are subregions that are not tie regions 

when more than three faces meet at some vertex of I4.. Let A be the area of the 

largest tie region and a the area of the smallest tie region or subregion. 

3. Local Structure 

All embedded O-minimizing cones with boundary on the unit sphere and center at 

the origin and consisting of a finite number of plane segments, the normal of each of 

which is a vertex of the n-diagram corresponding to O, were catalogued in [T2] and 

[TC]. By hypothesis H l, any S considered in this paper can have only these as its 

possible local interior structures. For  the convenience of the reader, we review here 

that catalog and the two properties implied by O-minimization used to derive it. 

We also prove a lemma which shows that we need to consider only some types of 

type-12 modification under the hypotheses of this paper. 

The cones all consist of a finite number of plane segments, which here are called 

wedges. The wedge of an edge E of S is the wedge following (in the natural 

orientation of the cone) the corresponding edge in the tangent cone to S at V. 

A cone of type 1 is a single plane segment, whose oriented unit normal is a vertex 

of the n-diagram. The standard cone of type 2 consists of two half-disks, being a 

tangent cone at an edge of either W or the central inversion of W (oriented so that 

the normals point inward). In the former case the two plane segments are said to 

meet along a regular edge, and in the latter they are said to meet along an inverse 

edge. In case W has more than three faces meeting at a vertex, there are extra type-2 

cones, consisting of a pair of half-disks whose directions are vertices of a single tie 

region of the n-diagram but are not the endpoints of a tie line; as in the standard 

case, those that are regular meet in such a fashion that when the cone is translated 

to the corresponding corner of W, W lies entirely behind that translated cone, and 

those that are inverse have the central inversion of W lying entirely in front the 

appropriate translation of the cone. However, extra inverse type-2 cones are 

excluded from S by hypothesis H2. (They are minimizing but not volume 

maximizing among minimizing surfaces.) 
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The remaining cones of the catalog are composed of wedges whose oriented unit 

normals are vertices of the n-diagram and which meet pairwise in type-2 cones, in 

either a regular or an inverse fashion. Since each edge thus maps to a tie line or 

extra line of the n-diagram, these cones can be described by means of their 

corresponding oriented cycles in the n-diagram labeled by edge types. For example, 
r i 

the fragment of a cycle consisting of n 1 , n  2 , n  3 describes a wedge of 

orientation n 2, intersecting a wedge of orientation n 1 along the ray with orientation 

- n  1 x n2 (negative since the " r "  denotes a regular edge) and a wedge of 

orientation tl 3 along the ray n2 x n 3 (positive since the " i"  denotes an inverse edge). 

A crucial fact is that these cycles turn out to bound currents on the sphere which 

are one or more complete subregions of the n-diagram, negatively oriented, except 

in the cases where the corresponding cone is a type-12 modification or a type- l l  

modification involving extra edges. When only three faces meet at each vertex of W, 

then there are no extra edges and no type-12 cones, when additionally W is a 

generalized zonohedron, only cones of the types 3, 4, 6, 8, 9, and 11 can occur as 

corners; typical examples of these types of cones are shown in Fig. 4 for the W of 

Fig. 1, along with their corresponding cycles on the n-diagram. 

The only convex corners in the catalog are type-3 corners. If W has only three 

faces meeting at each vertex, then every such convex corner is a (translation of a) 

tangent cone to W. If W has more than three faces meeting at a vertex, then 

additional completely convex type-3 cones are possible: the directions of the 

wedges must be entirely from one tie region of the n-diagram and the wedges must 

occur in the same order as the corresponding vertices do around that tie region. 

(All other type-3 corners are forbidden in S by hypothesis H2.) 

Type-4 and -5 cones consist of three wedges; two of the edges are regular and the 

other inverse, or vice versa, and the plane segment having two edges of the same 

(a) (b) (c) 

(d) (e) (r) 

Fig. 4. Examples of possible interior comers and their corresponding Gauss maps for surfaces 
satisfying HI: (a) type 3, (b) type 4, (c) type 6, (d) type 8, (e) type 9, (0 type 11. 
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type is nonconvex. Type-6 and -7 cones consist of six wedges, with edge types 

alternating; their cycles consist of overlapping triangles in the n-diagram and all 

the wedges are convex. Type-8 and -9 cones consist of four wedges, with edge types 

alternating. Type-10 cones have five wedges, one of which is a half-disk with both 

edges being of the same type and the other plane segment being convex with 

different edge types; the corresponding cycle goes around a triangle on the n- 

diagram and then into the interior of the triangle and back out. Type-11 cones are 

modifications of previously defined cones and result from replacing an edge in the 

cycle by two edges, with the same type as the replaced edge, in such a way that parts 

of the two wedges in the cone corresponding to the vertices of the original edge are 

cut off and replaced by a convex wedge corresponding to the newly inserted vertex. 

All three directions must be in one tie region (by minimality); it is only when the 

replacing edges are extra lines (and thus, under the hypotheses of this paper, 

labeled regular) and they cross another edge of the cycle that the cycle does not 

bound a current consisting of complete subregions, all negatively oriented. 

Type-12 cones also result from modifying previously defined cones. In this case 

one edge is replaced by three, with the outer two of those edges having their images 

in the n-diagram being extra edges which cross each other. Further requirements 

are that the outer two edges lie "inside" the two edges originally adjacent to the 

replaced edge (that is, that the angle ~t defined in the next section be smaller than 

that prior to modification at each end of the replaced edge), and that the number of 

nonconvex wedges in the cycle not be increased; also, if either vertex at an end of 

the original edge was convex even, then its nonreplaced edge must be part of the 

same tie region which contains the three new edges. 

Lemma 1. Any type-12 modification satisfying hypothesis H2 can be obtained by 

replacing a regular edge by three edges, the outer two being regular and the inner one 

inverse. Furthermore, a convex even wedge is never converted to a nonconvex even 

wedge by such a modification. 

Proof The proof is left to the reader. We remark, however, that although we can 

construct type-12 modifications which involve replacing an edge labeled inverse, 

the condition that the number of nonconvex wedges not be increased implies that 

the same cone can arise by starting with a different cone, where the corresponding 

edge is regular, and replacing that edge. In particular, type-12 modifications of all- 

inverse type-3 corners are not allowed, by the property that the number of 

nonconvex wedges is not to be increased plus the property that any edge 

corresponding to an extra line in the n-diagram must be labeled regular. [] 

The catalog was derived using the two major consequences of the assumption of 

O-minimality, called Property 1 and Property 2 in Section 4 of IT2-1. The first is 

that the normals of any two adjacent oriented wedges (i.e., wedges with a common 

line segment) must be vertices from a single tie region of the n-diagram (and thus 

correspond to a tie line or extra line), and the second is that convex wedges with 

both edges being regular or both being inverse must have the normal of that wedge 

and its two adjacent wedges be vertices of a single tie region (see p. 393 of IT2]). 
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These two properties are also assumed in H1 and are used in the very partial 

classification of possible corners at the boundary B of S which must be proved in 

Proposition 2(d) under hypothesis HZ. 

4. Notation 

For  examples of the definitions in this section, see the examples and associated 

figures (particularly Fig. 7) in Section 6. 

4.1. Parts of S 

The boundary of a plane segment P can be decomposed into one or more 

connected cycles, but not uniquely when these cycles are not disjoint simple closed 

curves. To obtain uniqueness and the properties we will need, we require the 

decomposition into cycles to have the property that for each pair of successive 

edges in a cycle, there is a single wedge of P partially bounded by those two edges. 

Let 1 + g(P) be the number of cycles in the boundary of P, assuming that the 

decomposition has this property. 

The set of all plane segments of S is denoted by ~ ;  S is the union of its plane 

segments. 

Let c~(I) denote the set of interior corners of S. We use the word "corner" rather 

than vertex to emphasize that more than two plane segments meet at a corner. Let 

'~U" 3 denote the set of type-3 corners in S or type-12 modifications of them, and let 

~//'12 denote the set of type-12 corners in S (see Section 3). 

Let cg 3 denote the set of points of S which are in the interior of a line segment of 

B and contained in more than one (and thus three or more) plane segments of S. 

The union of the interior corners, the corners of B and the corners in c~ 3 a r e  the 

points geometrically required to be corners of S. For  purposes of the proofs of this 

paper, it is convenient to require S to have one and only one more type of corner. 

The images of the line segments of B are partitioned into intervals by the images of 

the elements in the union of the corners of B and the points in cs we let the inverse 

images of the midpoints of these intervals in the corresponding parts of the 

boundary of S be denoted corners as well and let the union of these "midpoint 

corners" be denoted if0. We include these midpoint corners because the rules given 

below for labeling edges on the boundary of S are naturally determined to each side 

of the corners in c~ 3 and the corners of B which are contained in more than one 

plane segment, and these rules can be different for the different ends of a single 

interval in B. 

It is also convenient to divide the corners of B into two classes and to isolate a 

particular subclass of one of these classes. We thus let c~1 be the set of corners of B 

which are contained in only one plane segment and let c~ 2 be the remaining corners 

of B. We let cg~, be the set of "last" corners in cg~ _ that is, those corners in cg 1 

which are not immediately followed (after theappropr ia te  midpoint corner) by 

another corner in cgt. 
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The corners o f  S are thus the union of the elements of C~(l), r~o ' ~z, ~2, and cg3; 

the set of all corners is denoted rg, and the set of corners not in C~(l) is denoted Cg(B). 

The edges of S are now naturally defined, given the requirements on the plane 

segments and corners of S, except that we will find it convenient to deal exclusively 

with oriented edges. Thus E is an edge of S if and only if E is part of the oriented 

boundary of some plane segment of S, the boundary of E consists of two corners of 

S, and E contains no other corners of S. The final corner of E is denoted as V(E) 

and the initial one as E(E). Note that not only does E determine a unique such final 

and initial corner, but that it also determines a unique plane segment P(E) for 

which it is part of an oriented boundary and, unless E is part of the boundary of S, 

another unique plane segment Pi(E) for which it is part of the boundary with 

reversed orientation. To each edge E we can associate a unit vector v(E), the vector 

directing (the image of) E. (In Tables 2 and 3, we use the notation v(V) for v(E) 

when V = V(E) is in ~2 u rg3.) It is also convenient, in this section and in 

Proposition 5, to associate to each E the edge E+(E), defined to be the edge 

immediately following E in the appropriate cycle of the boundary of P(E). 

Let d ~ denote the set of all oriented edges of S, let 8(B) denote the set of edges orS 

contained in the boundary of S, and let r  = ~ ~ 8(B). It is convenient to have a 

notation for the set of edges E such that V(E) = V for a given V �9 rg; let F(V) be 

that set. Let ~x~ 3 be the set of edges such that V(E) e ~3  and E and E+(E) are both 

labeled regular. 

For Proposition 5 and following, the following notation will be useful: for 

V�9  cg 2 u ~3, E'(V) is the edge in ~(B) preceding the edge E � 9  ~(B) for which 

V = V(E), so that V(E+(E'(V))) = V; for V�9  rg 1, E'(V) ~ o~(B) is the edge such that 

v = v , ( E ' ( v ) ) .  

Note that in our notation the Euler characteristic x(S) is given by 

x(S) = card(~) - ~ g(P) + card(Cg) - (card(g) - card(g(B)))/2 - card(o*(B)) 
P e ~  

since the decomposition of S into plane segments, unoriented edges, and corners 

gives a polyhedral cell decomposition of S. 

Throughout the rest of this paper (and in particular for the definitions that 

follow) we require that S satisfy conditions S1, HI,  H2, and H3. 

4.2. Gauss Maps 

The Gauss maps, and thereby the Gauss curvatures, are relatively straightforward 

and standard to define on the interior of S (though this is not the case when S is not 

locally embedded!). However, things are not so obvious on the boundary. 

Furthermore, the fact that the Gauss maps come in predefined "quanta"  or chunks 

of the sphere is crucial to the results of this paper and it is only seen by examining 

the Gauss map in some detail. Finally, the definitions of the angles ~t, central to 

Proposition 5, will depend on the Gauss maps of the edges (in the boundary of S as 

well as in the interior). Therefore we will specify these Gauss maps fairly carefully. 

We use the notation v throughout for the Gauss map; we subscript it in its 
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various guises to emphasize the fact that it is a zero-, one- or two-dimensional 

current (subset of the sphere with orientation and multiplicity). 

For each P e ~ ,  define vo(P ) to be the oriented unit normal of the plane 

corresponding to P. By hypothesis HI,  this unit normal is a vertex of the n-diagram 

of W. 

For each E e ~(I), define vl(E ) to be the oriented shorter great circle segment 

from P(E) to P~(E). By hypothesis HI,  vl(E ) is an oriented tie line or extra line of 

the n-diagram of W. 

For each interior corner V, Zr~rtv)v~(E) is a cycle on the n-diagram. If V is type 

3 (a convex corner), then this cycle bounds a tie region or part of a tie region of 

positive orientation; let vz(V ) be this region and let K(V) be the area of the region. 

Note that K(V) < A. If Vis type 4, 5, 8, 9, or 10, then the cycle bounds a region of 

negative orientation (triangular, in the first two cases) composed of tie regions; 

define v2(V ) to be this region and define K(V) to be the negative of its area. If V is 

type 6 or 7, then the cycle bounds two overlapping triangles of negative orienta- 

tion; let v2(V) be the sum of these two negatively oriented regions and let K(V) be 

the negative of the sum of their areas. Note that for types 4-10, v 2 is composed of 

one or more subregions of the n-diagram and thus K(V) < - a. 

If V is a type-11 modification of one of these types, then normally the effect for 

each such modification is to remove a tie triangle or subregion from the Gauss map 

of V, and thus to subtract the negative of the area of that triangle from K(V). 
However, if some tie region of the n-diagram contains five or more vertices, it is 

possible for the modification to consist, when described in terms of its effect on the 

cycle in this n-diagram, of replacing a single regular edge (extra or not) by a pair of 

extra regular edges, and these edges may cross some other extra regular edge of the 

cycle. In this case, v2(V ) may have a region of positive orientation, and we only 

know that K(V) is less than A times the number of these awkward type-l l  

modifications. We thus let r ~ be the set of oriented edges such that the wedge of 

P(E) at V(E) comes from one of these awkward type-11 modifications, and know 

that we will have to make a special effort to count these edges. We also let ~a~ ~ be 

the set of corners V such that V = V(E) for some E E d'~ x. 

If V is a type-12 corner, then for each type-12 modification a triangle of positive 

orientation and one of negative orientation must be added to make the corre- 

sponding modification to v 2. The areas of these regions must be respectively added 

to and subtracted from the K(V)'s. This may result in some regions of the sphere 

having positive orientation. Note, however, that for any such modification, the 

triangle of positive orientation is contained inside a single tie region. 

We complete the definition of interior quantities by defining re(V) to be 1 if V is 

a type-6 or -7 corner or a type- l l  modification of such a corner, re(V) = 0 if V is 

any other interior corner not in ~ 2 ,  and we define m(V) for type-12 corners by 

starting with a value of re(V) appropriate to the basic corner type and adding 1 for 

each type-12 modification of it. Thus re(V) > 0 if and only if the Gauss map of V 

has a branch point for corners of type 4-11, and re(V) > 0 for each type-12 corner. 

We now turn to the boundary. 

By definition, each V in qr is in two edges in #(B); let E be the first (so 

V = V(E)) and F the next. Define vo(V) to be the unit vector in the direction of 

v(E) x v(F). Thus if there were a convex piece of a plane having these two line 
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segments of B as part of its boundary, it would have normal vo(V). (It is possible to 

define phantom plane segments in the corners, but this device of assigning a 

direction to a corner vertex works more easily.) 

For each Vin ~1 w ~0, define vo(V) to be vo(P ) for the unique plane segment P 

of S containing V. 

We define v~(E) only for some edges in ~'(B); on these noninterior edges vl need 

not be a tie line but it is always a great circle segment in the plane perpendicular to 

v(E), the vector orienting the edge. (It is not absolutely necessary to define vl on 

edges in g(B), but it is useful in that it gives a geometric meaning to the angles 

defined below.) For E ~ d~(B) with V(E) (resp. V/(E)) in ~z, define vl(E ) to be the 

shorter great circle segment (if it is uniquely defined) from vo(P(E)) to vo(V(E)) 
(resp. from vo(V(E) ) to vo(P(E). If v 1 remains undefined on both of the boundary 

edges containing a V in cg 2, then their adjacent planes have the same value of v o, 

and v~ need not be defined on those edges. Otherwise, for only one E in g(B) 

containing V is vo(P(E)) antipodal to vo(V ). If V is V(E), let vl(E ) be the half-circle 

so that the angle at vo(V) from that half-circle to v~ of the other edge is less than rt, 

and orient it so that vo(V ) is its final corner. If V is V~(E), then let v~(E) be the 

half-circle so that the angle from va of the other edge to it is less than rr and orient it 

so that vo(V) is its initial corner. 

For V in cgo or ~ ,  define K(V) to be zero (and, for consistency, define v2(V) to 

be the zero two-dimensional integral current). For V in cs 2 such that there are only 

two plane segments of S containing V, there is a unique interior edge E with 

V = V(E), as well as two boundary edges E' and E" containing V, and v~(E) + 
v~(E') + v~(E") is a cycle on the sphere. Let vz(V ) be the negatively oriented 

spherical triangle bounded by this cycle, and let K(V) be the negative of its area. 

For  all remaining V in ~g(B), just define 

K(V)= - -K(V)--  ~ 7 (E)+r t ,  
E~F(V) 

where ~ and 7 are defined below; leave vz(V) undefined. (There are geometric ways 

of defining the Gauss curvature at these more complicated corners, but they can get 

pretty involved, and this is the formula that we need to have hold eventually 

anyway.) 

Define re(V) = 0 for each V in Cs 

4.3. Angles and Edge Labels (•, n, or, and 7) 

We define the exterior angles of the boundary B in the natural way: For V in ~o or 

cs 3, define ~c(V) = 0. For each V in cg 2, define K(V) to be the angle between v(E) and 

v(F), where E, F are the edges in 8(B) containing V (so that 0 < x(V) < n). For V 

in ~ ,  define •(V) to be the exterior angle of the boundary B at V in the oriented 

plane segment containing V. Note that x(V) + K(V) is the true geodesic curvature 

o f B i n S a t  V. 

For each E in g(l),  define Label(E) to be regular or inverse according to whether 

the plane segments P(E) and Pi(E) make a regular or inverse union along E (that is, 



240 J.E. Taylor 

according to whether that union is like that of a tangent cone to W or to its central 

inversion; see Section 3). Once again, we have to be careful at the boundary: for E 

in g(B) with V(E) (resp. V~(E)) in rg2 or rg 3, define Label(E) to be the opposite of 

Label(E + (E)) (resp. the opposite of the label of the edge immediately preceding E in 

a cycle of the boundary of P(E)). For all remaining edges in g(B), define Label(E) to 

be the same as the label of the last edge in g(B) preceding E for which Label is 

defined. Note that both edges to any corner in C1 have the same label, and that the 

label can change at a corner in Co only if that corner immediately precedes a corner 

in rg2 or rg3. 

For each E in g, define 7(E) to be the angle of the wedge of P(E) containing E at 

V(E), so that 7r - 7(E) is the exterior angle of that wedge at V(E). 

If neither E nor E +(E) is in g(B), define ~t(E) to be the angle, between 0 and 2~, 

at vo(P(E)) from v~(E +(E)) to v~(E), unless those geodesics coincide along at least 

part of their lengths; in that case define ~t(E) to be 2n if v2(V(E)) is defined and 

covers a neighborhood of vo(P(E) ) and 0 otherwise. If V(E) e rgl, define ~(E) = 

~, (E)-  ~. If V(E)ergo, define ct(E) to be 0 if Label(E)= Label(E+(E)) and 7r 

otherwise. If V(E)e cg 2 w cga and E or E+(E) is in g(B), then define ~(E) = 7(E). 

The object is to ensure that ct is the angle of the Gauss map of P(E) at V(E), if that 

Gauss map is defined. 

Finally, we want to define a number which indicates whether Label changes (or 

"ought"  to change) in going from E to E+(E) or not. For each E in ~, we thus 

define n(E) to be 1 if Label does so change. However, we define n(E) = 2, rather 

than 0, when Label does not change provided ~t(E) > n and V r ~3 and V(E) is not 

in rg o (and define n(E) = 0 otherwise). If n = 2, then a small change in the position 

of the plane segments at V(E) can introduce new edges with the opposite edge type, 

so n is the number of times the edge label "should" change in going from E to 

E+(E). Note that ~t(E) = 7(E) whenever n(E) = 1, that ct(E) = y(E) - 7r if n(E) = 0 

and Vr ~//~3, and that ct(E) = ~,(E) + 7r if n(E) = 0 and Ve ~3 or if n(E) = 2. 

5. Results 

Proposition 2. 

(a) For each P e ~,  

Z 
g ~ Po(P) 

(b) For each V e ~(I),  

K(V) - 2n + 

and, for each V e Cg(B), 

K(V) - 2~ + 
E e F ( V )  

(Tr -- y(E)) - 27t(1 - 9(P)) = 0. 

y~ ~(E) = 0 
E~F(V) 

~(E) + ~ + x(V) = O. 
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(c) 

( 1  - n ( E ) / 2 )  - 2 ~ 

EEF(V) 

>_ 1 + re(V) /f v e */3, 

= m(V) if  V e eg(l) ~ W3, 

= - 1  if VEeg l ,  

> --1 if VEegz ,  

>_-�89 if v e eg 3, 

= -- 1 if V ~ ego and n(E) = O for  the 

E 6 F(V), 
3 

= --~ if  V ~ e g o a n d n ( E ) =  l f o r t h e  

E ~ F(V), 

(d) 
and, when V ~ eg2, equality holds if  there are exactly two elements in F(V). 

If V e */3 ~ ~U12 , then K ( V )  < A and vz(V ) is a union of  subregions from a 

single tie region of  the n-diagram. I f  V ~ ~tFI2, then K(V)  < Am(V)  and 

re(V) > 1. I f  V ~ ~ ,  then K ( V )  < A c a r d { E e ~ a l l :  V(E) = V}. 

I f  V eeg(1) ~ (~3 w ~/r12 w ~'atX), then K ( V )  < --a and vz(V ) is com- 

posed of  one or more subreoions of  the n-diagram. 

I f  V ~ egz w eg3, then K ( V )  < O, and whenever equality holds in (c) above 

and HZ holds and V ~ eg3, K ( V )  <_ - a .  

I f  V ~ cgo w egl, then K ( V )  = O. 

Proof  (a) This is the classical Gauss-Bonnet  theorem for P, since the immersion 

of P has no branch points and no interior curvature. 

(b) For V ~ eg(l), the statement in (b) is a result of the Gauss-Bonnet  theorem, 

since S is locally embedded and for small enough 6 > 0 the exterior angle of the 

boundary o fS  n {x: Ix - VI < 6} is ~(E) within each P(E) for which E ~ F(V) and 

0 at each intersection between wedges. (Alternatively, we could apply the Gauss-  

Bonnet theorem to the mapping vz(V). ) 

If V e eg2 and F(V) has only two edges, then v2(V ) is defined and is a spherical 

triangle with negative orientation. The assertion of part (b) follows from applying 

the Gauss-Bonnet  theorem to v2(V ) with positive orientation on the sphere (so 

that its curvature is I K(V)I = - K ( V  )), since then the geodesic curvature of dv2(V) 

at vo(V ) is 7t - x(V) and at vo(P(E)) is ~ - ~(E) for each E in F(V), and ct(E) = 7(E) 

when n(E) = 1. 

For  all remaining corners in eg(B), the statement in (b) follows immediately from 

the definition of K ( V )  and x(V).  

(c) From the catalog of corners and hypothesis H2, we know that, for 

V e */3 "~ "U12, all edges in F(V) are labeled regular and there are at least three 

plane segment wedges at V (exactly three if the tie lines in the n-diagram 

triangulate the sphere) and each is convex; thus n(E) = 0 for each such E. Each 

type-12 modification adds two edges with n(E) = 1 and thus 1 to the sum; the first 

bound follows. For Ve eg(I) ~ */3, the equality likewise follows from the descrip- 

tion of the corners in the catalog and the definition of n and m. For V e egl u ego, 
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there is only one edge in F(V), and the equalities are immediate from the definition 

of n and the labels on edges in 8(B). 

For V in qr or cr 3, Label was defined on edges in 8(B) so that n(Ei) = I for the 

edge E 1 in 8(B) for which V(E1)= V and for the edge E2 in ~'(I) for which 

V(E2) = V, so the left-hand side is automatically at least - 1 and equals - 1 in case 

there are only those two edges in F(V). 

We claim that for V e cr 3, local embeddedness implies that there is at least one 

additional edge E in F(V) with n(E) > 0, and thus that the left-hand side is at least 

- �89 By hypothesis HI ,  if n(E) = 2 for some E in F(V), then P(E) and the two plane 

segments adjacent to it have as their normals the vertices of a single tie region; thus 

all directions of plane segments at such a corner would have to lie in the same tie 

region of the n-diagram. We can now construct such cones where there are only 

n(E) = 2 wedges between P(E 0 and P(E2), and see that in these cones two wedges 

must intersect, contradicting local embeddedness. In particular, assume without 

loss of generality that all interior edges at V are labeled regular, and let n I = vo(P1). 
Let n o denote a unit vector such that v(E 0 = c(n: x no) for some c > 0. Note that 

this implies that n o is on the great circle corresponding to the boundary line 

segment containing V, and that the image of E~ is that of the labeled cycle fragment 
r 

nl ~ no, as defined in Section 3. By embeddedness, the image of PI cannot contain 

any of the image of the boundary line segment on the other side of V. Thus 7(E~) 

must be less than rt, and thus n o lies on a specific side of the great circle containing 

the tie line or extra line corresponding to the edge in P(E1) following E 1 . The same 

considerations apply to P(E2) and a direction n~, leading to the conclusion that 

either the shorter great circle segment from n I to no intersects the interior of the tie 

region, or the shorter great circle arc from n~ to vo(P(E2) ) does. If n 1 = vo(P(E2) ), 
then no = nb and this position of no implies that both wedges must contain at least 

the wedge corresponding to s -~ nt -~ t, where in the tie region, positively oriented, 

is the vertex immediately preceding nt and t is the vertex immediately following it. 

This means that they overlap, a contradiction of embeddedness. If n I ~- vo(P(E2) ), 
we treat the case that the arc from nl to no is inside; the other case is similar. Thus 

P(E 0 is a relatively fat wedge; it contains the rays corresponding to nl L, x for each 

vertex x in the tie region which is on the other side of the boundary-line great circle 

from the direction w of its adjacent wedge at V. The wedge Y next to P(E2) is 
t 

similarly fairly large, as it contains the rays corresponding to z ~ y, for y the 

direction of Y and z any vertex on the same side as n~ of the great circle through y 

and vo(P(E2)). (The fact that 7(E2) < n implies that y and w are on opposite sides of 

the great circle corresponding to the boundary line segment.) In particular, both 

wedges Y and P(E~) contain the ray n~ -~ y, and thus P(EO and the wedge adjacent 

to P(E2) intersect. Since these two wedges are not themselves adjacent, this 

contradicts embeddedness. (See the Comment  below for further discussion of this 

case; the construction of cones corresponding to labeled cycles is given in detail in 

[T2].) 

(d) The assertions for V ~ ~( I )  follow directly from the catalog and the resulting 

natural definition of K, as described in Section 4. On the other hand, this is the key 

property that makes the a priori bound of this paper work. 
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K(V) = 0 for V �9 cgo w ~gl by definition. 

Suppose that V �9 (~2 and that F(V) has only two members, E 1 and E 2 with 

E 1 �9 g(B). (Note that the edge F �9 g(B) such that V~(F) = V is not in F(V).) Then 

v2(V) is a spherical triangle with negative orientation, and so automatically 

K(V) < 0. If vl(Ei) and va(F) are each composed of one or more tie lines of the 

n-diagram (as is the case under assumption HZ), then v2(V ) is composed of one or 

more tie regions and so K(V) < - a  

If V �9 ~2 and F(V) has more than two members, then the statement K(V) < 0 is 

equivalent to ~ e~rlv~ 7(E) > n - x(V), which holds because the right-hand side is 

the angle of a convex plane segment in that corner of B whereas the left-hand side is 

the sum of the angles of wedges spanning the same corner. 

Finally we examine the case V � 9  Here, K ( V ) < 0  if and only if 

~', E~v~v) 7(E) > n. But this must always be true, since the union of the wedges of the 

plane segments at V must span the straight line segment made by the two edges E1 

and F in ~(B) containing V. 

In order for equality to hold in (c), there must be one additional edge E 3 with 

n(E3) = 1 and n must be 2 on all other edges. We will show that this would imply 

that K(V) is the negative of the area of a region of the sphere which is bounded by 

tie lines ( ~  vl(E), where the sum is over all E in F(V) except El) and one of the two 

portions bounded by vo(P(E1)) and vo(P(E2) ) of the great circle C perpendicular to 

v(EO. 

As in the proofs above, n(E) = 2 implies that P(E) and the two plane segments 

adjacent to it have as their normals the vertices of a single tie region. By local 

embeddedness, the directions of a sequence of plane wedges at V meeting along 

n = 2 edges travel around the vertices of the tie region at most once. (As above, we 

can show that a repeated direction leads to an overlap of those plane segments, 

since they must each contain a minimum-size wedge; if extra edges of the cycle 

cross in the n-diagram, then we show that a specified ray is contained in each of two 

wedges, proving self-intersection.) 

Suppose first that ro(P(E1) ) # vo(P(E3) ) # ro(P(E2) ). Whether there are wedges 

on each side or not, hypothesis H1 implies that there must be a tie line in the n- 

diagram between vo(P(E3) ) and vo(P(EO) and between vo(P(E3)) and ro(P(Ea)). By 

local embeddedness again,, vo(P(E1) ) # vo(P(E2) ). One of the two portions of C 

with these two endpoints makes angle ~(E1) with vl(E~): we check that it also 

makes angle ~(E2) with v~(E2). (Note that this might be the longer portion of C). 

This portion of C, appropriately oriented, together with vl(E1) and vx(E2), bounds 

a spherical triangle with negative orientation. If there were no edges in F(V) 

with n = 2, then we see that the Gauss-Bonnet theorem requires that ]K(V)I be 

the area of this spherical triangle. If n = 2 wedges are also present on one or both 

sides, the area(s) of the appropriate union of subregions of the tie region(s) 

must be subtracted from the area of the spherical triangle with vertices 

{vo(P(E3)), vo(P(Ea)), vo(P(EO) } to give I K(V)I. 

We are left with the case that vo(P(E3) ) = vo(P(EO) and/or vo(P(E3) ) = 
vo(P(E2)); suppose without loss of generality that vo(P(E3) ) = vo(P(El)); by 

hypothesis H2, that direction together with the directions of the intervening wedges 

are vertices of a tie region of the n-diagram. Local embeddedness now implies that 



244 J.E.  Taylor 

B 

i i! r 

B 

B ! 

P 1  - -  r 

i 

B 

..i I 

Fig. 5. Examples of two types of embedded corners which can occur along the boundary B in surfaces 

satisfying HI,  together with their associated Gauss maps. 

the situation must be one of the two sketched in Fig. 5. Thus there is a region of the 

sphere, negatively oriented, bounded by the longer portion of C (or all of C, in case 

also vo(P(E3) ) = vo(P(E2))) plus the sum, over all edges E in F(V) except E 1, of 

vl(E); this region is a hemisphere less two tie regions or portions thereof. Since the 

angles ~(E), for all E in F(V), are precisely the interior angles of this region, the 

Gauss-Bonnet theorem once again tells us that the area of this region is I K(V)]. 

Under hypothesis HZ, all the curves bounding this region lie within union of all 

tie lines or extra lines of the n-diagram, and thus the region is composed of one or 

more complete subregions, and has area at least a. In general, its curves lie on the 

tie lines and extra tie lines plus the great circle C, and thus its area is bounded 

below by a'. [] 

Comment. The delicacy of some of the definitions and arguments is illustrated by 

considering one of the nonembedded cones which arose in the proof of part (c), one 

where there are exactly three edges in F(F)  and n(E3)= 2. This situation is 

illustrated in Fig. 6. Although this cone is nonembedded, it "just misses" being 

embedded, in that P(E2) intersects P(E1) only along one of its edges, and that edge 
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B 
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v,(p2) 

Fig. 6. An example of a (barely) nonembedded corner with a line segment of B as part of its boundary 

and with all edges having n(E) = 0 except for the two required by convention to have n(E) = 1; the 

relevant portion of the n-diagram is also indicated. See the Comment  at the end of Proposition 2. 

is in the boundary B; if that part of the boundary could be slightly moved, there 

would be no self-intersection (although then the corner would no longer be a 

candidate for a ~3 corner). If we were to attempt to define a Gauss map for this 

corner, we would immediately run into difficulties, as neither portion of C would 

have both the correct angle o~(E1) at vo(P(E1) ) and the correct angle ~(E2)  a t  

vo(P(E2)). Thus in order to handle the situation where S can have local self- 

intersections while preserving the useful notion of Gauss maps, we have to 

abandon the convenient labeling of edges in r which ensures that n(E1) = 1 = 

n(E2). But that is a problem for another paper. 

Lemma 3. ~',v~, K(V) + ~',w,~e~ ~c(V) = 2n;((S). 

Proof. This is essentially the Gauss-Bonnet  theorem in this polyhedral context. 

We prove it here to show both that it applies to our types of polyhedral surfaces 

and that our definitions are consistent. 

We sum the results of Proposition 2(a) and (b) over all P in ~ and all V in (g and 

use the fact that Y'p~,~, ZEE 0P 1 = Z w ~  ZE~r(v)l = card(g) to obtain 

0 = - 27r card(~) + 2n~ 9(P) + n card(g) 

+ ~ K(V) + ~ x(V) - 2rr card(Cg) + lr card(g(B)) 
V ~  Ve~f(B) 

= ~ K ( V ) +  ~ ~c(V)-2nz(S).  [] 
V~g V~f(B) 
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Proposition 4. 

~ ( 2 - - ~  n(E)/2)>card(~t/~3)+ 
P ~  E ~ P  

Proof 

Y, m(V) + 2z(S ) + 2 y, g(P) 
V ~ f ( l )  

--(�89 card{V ~ ego: n(E) = 1} + card(~3) 

-(�89 card{V ~ (~3: Z (  I - -  n(E)/2) = I}. 

J. E. Taylor 

We look carefully at 

VE~' E V) 

If we arrange it, it becomes 

~, ~ 1 -  Z ~. n(E)/Z-Zcard(Cg), 
P ~  E ~ OP P e ~  E ~ OP 

wh;,;h is in turn equal to 

card(~) - 2 card(~) + ~ (2 - ~ n(g)/2) - 2 card(Cg). 
P E ~  E ~ OP 

Now we recognize most of -2z(S);  this expression is in fact equal to 

-2z(S)  - eard(8(B)) - 2 ~, g(P) + ~ (2 - ~ n(E)/2). 
P~t~ E ~ OP 

But by part (c) of Proposition 2, the initial expression is at least as large as 

cardCVa) + ~ re(V) - card(Cg(B)) + card(Cg3) 
Vr162 

-(�89 card{V ~ ~3:~(1  - n(E)/2) = 3} 

-(�89 card{V ~ ~o: n(E) = 1}. 

Since card(8(B)) = card(~(B)), we can rewrite this inequality as in the statement of 

the proposition. 

Proposition 5. 

(a) I f  g(P) ~ O, then 

[] 

2 - ~_, n(E)/2 <_ 2g(P). 
E r  
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(b) I f  P ~ ~ has g(P) = O, and no edge in c3P is in ~(B), 

_ ~, n(E)/2 
E ~ O P  

< card{E ~ c~P: E ~ ~f3} - (1/270 
E r  

< - 1 - card{E~ t3P: E~g~11} .  

or(E) 

(c) For each P ~ ~ with g(P) = 0 and with an edge in c3P ~ ~(B), let d = 0 if  

n(E) = 0 for all E such that V(E) e cK o c~ t3P and d = 1 otherwise. Then 

2 ( l - g ( P ) ) -  ~ n(E)/2 
E ~ P  

~card{ V ~ c611 ~ OP: n(E'(V)) = O} 
< ~ 1 - d  

/ fHZ holds, 

in general. 

(Recall that for  V ~ ~1,  E'(V)  ~ o~(B) is the edge such that V = VI(E'(V)). ) 

(d) 

~ ( 2 ( 1 - g ( P ) ) - ~  n(E)/2) 
P E ~  E ~ dP 

~card{ V ~ c~lt: n(E'(V)) ,= 0} 

< - card( ,~l  1) + (card{ V ~ c~ 2 w ~3 : n(E (V)) = 0} 

/ fHZ holds, 

in general. 

(Recall that for Vr cK 2 • (b~3, E'(V) is the edge in o~(B) preceding the edge 

E ~ ~(B)  for which V =  V(E), so that V(E+(E'(V)))  = V.) 

Proof. (a) This is obvious, since n(E) is always 0, 1, or 2. 

(b) From the definitions, we see that, for each E in c~P, 

ct(E) = - ~  + 7(E) + gn(E) + 2~6(E), 

where 6(E) = 1 if E ~ o~3 and is 0 otherwise. Summing over all E in t~P and applying 

Proposition 2(a) gives the first inequality. 

The second inequality is proved by considering the angles on the sphere at vo(P) 

between the images v I(E) of successive edges of t?P and looking at how many times 

the sum of these angles wraps around vo(P); these angles are precisely the ~t(E) 

defined in Section 4 (and they are always nonnegative). A crucial fact is that the 

angles must wrap around exactly an integral number of times, since we begin and 

end with v 1 of the same edge. 

Let E 1 . . . . .  E, be a maximal sequence of edges labeled regular in c~P. Note that 

by hypothesis H2, every E e c~P such that E e ~'al 1 u 8 3 lies in some such sequence. 

However, not all edges in 0P can be in 8a~ ~ W ~3, since then, by H3, vx(Ei) would 

be in the same tie region for each i, all with vo(P) as an endpoint and going 
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counterclockwise around it; this is impossible, since we have to get back to Vl(E 0 

and vo(P ) is on the boundary, not the interior, of the tie region. So suppose 

E e ~al1 w ~3 for k = i, i + 1 . . . . .  j < n and Es+ 1 ~ d'al 1 u ~s; if all edges in t3P are 

labeled reoular, then number the edges so that i =  1. By hypothesis H3, 

(,.Yk=i v2(V (Ek)) lies in one tie region (and thus i = j if that tie region is triangular). 

Furthermore, Label(E j) = regular = Label(E j+ O, so j + 1 < n. Note that ot(E k) is 

2rt less the angle at vo(P) of a subregion of that tie region. Either ~(Es+ t) and the 

angles at subsequent negative-curvature corners (if any) within the maximal 

sequence sweep completely through that tie region and go on into another tie 

region, and thus have an ~t which is at least the sum of the differences of each of 

the previous angles from 27z, or the next edge in ~al 1 w t~ 3 in the maximal sequence 

has its image under v 1 lying within the same tie region. We see that if all edges were 

labeled regular, so that this maximal sequence encompassed all of c~P, we would 

have 

n 

2rr card{E ~ c3p: E ~ O~all L) g3} --  ~ ~(Es) < O, 
1 

and hence 

~, (rt - 7(E)) < 0, 
E e O P  

which would contradict Proposition 2(a). (It is this step in the proof  that invokes 

H3 and prevents occurrences of mesas as in Fig. 2(b).) 

Thus we see that there is an edge E following E, and it has Label(E) = inverse, so 

hypothesis H2 guarantees that v~(E) is a tie line of the n-diagram. Again we get 

2rc(j - i + 1) - ~ or(E i) < 0. 
1 

Since 0t(E) > 0 for every E and in particular for those E with Label(E) = inverse 

(and since E r 8a~ ~ w ~3 for those e d g e s -  it is this step which prevents the 

occurrence of steps as in Fig. 2(a)), we sum over all edges in 6P to conclude 

27r card{E ~ OP: E ~ #al 1U ows} - ~ ~ (E)<O.  
E e t3P 

Since this quantity is an integral multiple of 2n, we obtain the second inequality. 

(c) Since there is an edge in c~P which is in 6r(B), there are corners V 1 and V 2 in 

cg 2 w cg 3 at the end and beginning respectively of some connected string of edges in 

both ~'(B) and t~P; either there is one edge in cg 0 between E2 and E 1 or there is one 

such edge followed by one or more pairs of alternating edges in cg 1 and cs o. Let 

E 1 (resp. E2) be the edge such that V1 = V(E 0 (resp. V 2 = V(E2)); note that 
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n(E1) = 1 = n(E2). Thus ~E ~ ol, n(E)/2 is at least 1; since it is even, it must  be at 

least 2 unless for all other E in 6P (and in particular, such E with 

V(E) ~ ego), n(E) = 0; this is the second part  of  the conclusion of part  (c). If we 

assume hypothesis HZ, then in this case where ~" n(E)/2 = 1 we will show that 

there must be a corner V in 6P which is also in cg 1, which implies the HZ part  of 

part (c). 

We assume ~ n(E)/2 = 1 and thus that n(E) = 0 for all interior edges except E 2. 

If each such E is labeled inverse, then ?(E) > n for each such E except the last (E2), 

SO 

- ?(El)  + ~" (n - 7(E)) < 2n, 
E ~ ~P c~ ~( I )  

which would contradict  Proposi t ion 2(a) unless there were another E in OP with 

7(E) < n; for such an E, V(E) ~ ~r 

If all interior edges are labeled regular, then as in the proof  of part  (b), the sum of 

the exterior angles 7(E) of P over the interior edges E is less than n; hypothesis HZ 

plays the role of the second part  of hypothesis H2 in forcing the final angle ~t(E2) to 

finish sweeping out an entire tie region, and the fact that n(E2) = 1 accounts  for the 

n. Therefore (assuming that n(E) = 0 for all E except E 1 and E2) 

- ~;(EO + Y~ ( ~  - ~(E)) 
E E 0 P n S ( l )  

< n - 7 ( E 0  + 

< 2n. 

By Proposi t ion 2(a), therefore, there must be at least one more E with ?(E) < n; for 

such an E, V(E)~ ~ .  

(d) Sum the results of parts (a), (b), and (c) and rearrange to get 

(2(1 - g(P)) - ~ n(E)/2) <_ -card{E E OP c~ ~'axl} 
E e O P  

~card{ V ~ cg ll c~ OP: n(E'(V)) = 0} 

+ ~ 1 - d  

if HZ holds, 

in general, 

and then sum over all P. [] 

P r o p o s i t i o n  6. Let T be the set of corners V in ~3 such that 

(i) equality holds in Proposition 2(c), 

(ii) n(E'(V)) = 1 (recall that E'(V) is the edge in ~(B) preceding the edge E 1 in 

d(B) .for which V = V(E1)), and 

(iii) V~(E'(V)) q~ ~1. 
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Let X = card{ V e qr n(E'(V)) = 0} if H Z  holds, or card{ V e ~a u ~r n(E'(V)) = 

0} in 9eneral. Then 

card(U3) + ~" m(V) + card(g.l l)  
V E: "1[/" 12 

< - 2 z ( S )  + X + (�89 ~ c~2: n(E'(V)) = 1} 

-(�89 card(C~3 ~ T) - M, 

where 0 < M = ~v~,~v ,2  re(V). 

Proof. We combine the results of Proposi t ion 4 and 5(d) to get 

card(q/'3)+ ~ m(V) + 2z(S) + 2 ~ 9(P) 
VE~(1)  P e ~  

-(�89 card{V ~ C~o: n(E(V)) = 1} 

+card(C~3) - (�89 V 6c~3: ~ ( 1 -  n(E)/2) = 

< ~" ( 2 -  ~ n(E)/2) 
P ~  E ~ OP 

<<_ X + 2 ~ g(P) - card(gaal). 

This rearranges to 

card(~t/-3) + (�89 + ~ re(V) + card(o~11) 
V ~ 1 2  

< X -- 2z(S) - ~ m(V) + (�89 card{ V E c~ o: n(E(V)) = 1 } 
V e W( / )  ~"!g'l  2 

-(�89 card(C~3) + (�89 card{V ~ c~3: ~ (1 - n(E)/2) : 3}. 

We use the definition of T and the fact that  if n(E(V)) = 1 for V~ c~ o, then the 

next corner  which lies on the boundary  B ( = V(E'(V))) is in cg 2 ~ ~3 to get 

card(q/~3) + (�89 card(Cg3) + ~" re(V) + card(gall) 
V~*V12 

_< x - 2 ~ ( s )  - y~ re(v) 
V e ~ f ( 1 )  ~ ' V 1 2  

+ (�89 card{V ~ c~2: n(E'(V)) = 1} + (�89 card(T). [] 

Theorem 7. Assume S is a two-dimensional locally embedded manifold in R 3 

satisfyino hypotheses S1 and H 1 - H 3  and havin9 plane segments, boundary line 

seoments, etc., as defined in Sections 1 and 4. Then 
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(1) if hypothesis HZ holds, then the number of interior corners of S is less than 

(1 + A/a + n/a)(N n - 2x(S)) 

and the number of plane segments in S is less than 

(2) 

(3 + A/a + n/a)(N n - 2z(S)); 

/f HZ does not hold, these bounds are, respectively 

(1 + A/a + n/a)(N B - 2~(S)) + (�89 + A/a) card(<g3) 

and 

(3 + A/a + n/a)(N n -- 2~(S)) + (�89 n + (3 + A/2a) card(Cg3). 

(3) More precisely, with X and T as defined in Proposition 6, and with 

N+ = card(g 3) + ~v~v12 re(V) + card(gall), we have 

N+ < - 2 z ( S ) + X  

+ (�89 Ve ~2: n(E'(V)) = 1 } - card(C~3 ,,~ T)), 

card(Cg(I)) <_ (l + A/a)N+ + ( 1 / a ) ( - 2 n z ( S ) +  v~,,m ~ (K(V) + K(V)) ) ,  

card(~) < - z ( S )  + card(C~(I)) + (�89 + card(~2) + card(Cg3). 

(4) Equality holds in the bounds in (3) above on N + and card(C~(1)) when A = a, 

hypothesis HZ holds, and the surface S itself is in a kind of "general position" 

defined by the following properties: all interior corners are of type 3 or 4, 

equality holds in Proposition 2(c) for all boundary corners, g(P) = 0 for each 

plane segment P, and ~,r~ev n(E) = 4for each plane segment P except those 

with a corner V in c~ u for which n( E'(V)) = 0 and for those the sum is 2. (Note 

that A = a implies that only three faces meet at any vertex of W and hence 

card('l/'12 ) = card(tYa11) = 0.) Equality holds in the more precise bound for 

card(~) if the number of edges around each plane segment is four (which is in 

general not a reasonable expectation). 

Proof The bound on N+ was proved in Proposition 6. Using the fundamental 
facts on the quantization of Gauss curvature stated in Propos i t ion  2(d), we see that 

card(~( I)) = card(~lY 3 w '](/'12 k..) ' ~ a l  1) 

+ card{V ~Cg(l) ,,~ (~3 u "t/12 u ~11)} 

< card(~ 3 u "~U'12 k.) "~U'al 1) AI- E - -  K(V)/a 
VEff(I)~('I/'3 w f12 u ~t'~l 1) 
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Applying Lemma 3 we obtain 

card(C~(I)) <_ (1 + A/a)N+ + (1/a)(-2rrz(S) + v~cm ~ x ( V ) +  vE,~m ~ K(V)) ,  

which is the more precise estimate on card(C(l)) of the theorem. The statement 

concerning equality comes from noting the possible sources of inequality at each 

stage of the argument. 

The simpler estimates of the theorem also follow directly from the above bound, 

using x ( V ) < n  for each VEt4 2wcg~ and x ( V ) = O  otherwise, K ( V ) < O  for 

V ~ OK(B), card(C~l u cs = N B, and careful bookkeeping on corners in cg 3 in case 

HZ does not hold. 

By the definition of the Euler characteristic, 

card(~) = z(S) + ~ 9(P) - card(OK(l)) - card(C~(B)) + (�89 + card(g(B))). 

Since there are at least four edges in g for each P e .r (by Proposition 5(b) and (c); 

remember the use of midpoints ego) and each (oriented) edge is in exactly one plane 

segment, we have that 

4 card(~) < card(g) 

or, more precisely, 

4 card(~) <_ card(g) - 2 card(C~l) + card(Cg'l,), 

where Cg'lt is the set of V ~ cs such that P(V) contains no interior corners. 

We put this lower bound on card(g) into the formula for card(~) to obtain 

card(~) > z(S)  + ~ g(P)  - card(Cg(l)) - (�89 card(Cg(B)) 

+ 2 card(~) + card(OK1) - (�89 card(Cg'lt). 

Note that (�89 card(Cg(B)) = card(~gl w cg 2 w cg3). Thus when terms in card(~) are 

combined and ~ 9(P) is dropped and this formula for (�89 card(~(B)) is used, we get 

card(~) <_ - x ( S )  + card(C~(I)) + card(C~2) + card(C~3) + (�89 

as claimed. 

We get the simplified bound for card(~) in the general case by replacing 

card(C~(l)) by its simplified bound. However, if we did that for the case when HZ 

holds, we would obtain a term involving card(C~3); we are trying to avoid such 
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terms when possible so that only Nn and )~(S) appear in the bound. Thus we apply 

the more precise bound for card(~(l)) to get 

card(,~) < (1 + A/a ) ( -2 z (S )  + S + (~)(card{V ~ <g2" n(E'(V)) = 1} 

+ card(T) - card(~3))) 

+ ( l /a ) ( -2ng(S)  + ~ Oc(V) + K(V))) - z(S) 
V ~ ( B )  

1 , t + card(~2) + card(Cs + (~) card(C~xt). 

We would like 

card(Us) + (1 + A/a)(�89 --  card(C3)) - - K(V)/a 
V ~ 3  

to be nonpositive so that all these terms can be dropped; we note that it is bounded 

above by 

card(Us) + (1 + A/a)(�89 - card(Us)) - card{ V ~ cg3: K(V)  <_ -a} .  

As stated in Proposition 2(d), under hypothesis HZ, K(V)  >_ - a  for all V ~ T, so 

the above is less than or equal to 

card{V ~ % :  K(V) > - a }  + (1 + A/a)(�89 ~ % :  K(V) > -a})  

- ( 1  + A/a)(card(Cg3) - card(T)), 

which is indeed nonpositive since (1 + A/a)(�89 _> 1 and T is contained in Us. Thus 

with hypothesis HZ, we have 

card((,~) <_ - x ( S )  + card(C~2) + (1 + A/a ) ( -2 z (S )  + card(C~lt) + (�89 card(C~2)) 

+ ( 1 / a ) ( - 2 n z ( S )  + v~r  (tc(V) + K(V) ) )  + (~) card(c~'l') 

< --z(S) + (1 + A/a) ( -2x (S )  + card((~2 c2 qYl)) 

+ (n /a ) ( -  2x(S) + NB) + (�89 card(Cg'xt) 

= - z ( S )  + (1 + A/a + n /a ) ( -2z (S )  + Nn) + (�89 

< (3 + A/a + n/a)(--2x(S) + NB), 

as claimed. [] 

Note. The appearance of card(C~3) in the non-HZ-case bound means that we 

have to know enough about  the structure of S along B to know how many corners 
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there are in the middle of boundary line segments. If we think of extracting S from a 

larger surface by drawing a boundary B on that larger surface, then for the generic 

choice of such a B, card(OK3) will be zero, as in hypothesis HB in Section 1. 

6 .  E x a m p l e s  

We present six examples of surfaces with boundary which satisfy hypotheses S1 

and H l -H3,  comparing the actual number of interior corners and plane segments 

to the bounds of Theorem 7. We also use these examples and their corresponding 

figures to demonstrate some of the definitions of Section 4. 

For each of these examples, we use any surface energy function r whose Wulff 

shape W is such that its n-diagram is as shown (in stereographic projection) in Fig. 

l(a). For  example, W could be a 14-sided figure obtained by cutting off squarely the 

corners of a regular octahedron as shown in Fig. l(b); each square face could have 

a different size and still the n-diagram would be the given one. Any W with this n- 

diagram is a generalised zonahedron since the union of the tie lines of the n- 

diagram is a set of complete great circles. Note that a = A = n/6 for this n-diagram. 

The vertices of the n-diagram and the directions perpendicular to the great circles 

of its tie lines are given in Table 1. A physical example of such a �9 is that for a 

potassium aluminum alum crystal in a saturated solution [B2]. 

In each example, we let the set of boundary line segments be {Bi, i = 1 . . . . .  Ns}, 

with the index i increasing in positive direction of the boundary, and we let V~ be the 

final corner of the line segment Bi for each i = 1 . . . . .  Nn. 

Table 1. Names for directions of edges and faces of the W used in the examples. 

Faces nl n2 n3 

O, o, o) (0, 1,0) (0,0, 1) 

n8 = -n7 n9 = -n6 nlO = -n5 

Edges A B C 

( 1  1 ) ( 1  1 ) ( , 1 )  
- - , - - , 0  O, 

Faces n5 n6 n7 

Edges 

n12 = -n3 n13 = -n2 

E F 

1 1 1 1 

n14 = -n l  

n4 

j3',/3',/3j 

nll= -n4 

D 

1 , 0 , - -  
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Fig. 7. The surface of Example 1, together with some of its associated Gauss maps and angles. Regular 
edges are labeled r and inverse edges are labeled i. 

Example 1 (see Fig. 7). Here B consists of three line segments; HZ does not hold 

since these line segments are not parallel to edges of W. Thus Theorem 7 gives no 

bound on the number of interior corners or plane segments depending only on NB 

and z(S); we need to look at S near B enough to see that card(~3) = 0 (there are no 

corners of S in the middle of line segments of B) to obtain the bounds card(~g(I)) < 

( 1 + 1 + 6 ) ( 3 - 2 ) = 8  and c a r d ( ~ ) < ( 3 + l + 6 ) ( 3 - 2 ) + 2 3 - = 1 0 .  We expect 

these bounds to be much too large since the Gauss curvature of S at the boundary 

corners was ignored and the curvature x of B at each of those corners was replaced 

by n in deriving these bounds. 

In fact, S consists of three plane segments and these plane segments meet in 

precisely one interior corner V o, which is a convex type-3 corner; the more precise 

bounds of the theorem should yield exactly these numbers, since a = A and we see 

that S is in the type of general position specified in the theorem and that there are 

exactly four edges in ~ for each plane segment (remember that we insert midpoint 

corners into geometric edges of S along B). We compute these more precise bounds 

using only information about S near B (and x (S )=  1) as follows. For i =  

1, 2, 3, v2(Vi) is a subset, negatively oriented, of the tie region whose vertices are the 

directions of the three plane segments; these subsets are disjoint except along their 

boundaries and their union is the whole tie triangle. Thus a = - K(V~) - K(V2) - 

K(Va). We note that the interior edges which have a corner in C~(B) as initial or 

final corner (this includes all interior edges in this example) are of regular type; thus 

all boundary edges are labeled inverse by the convention of Section 4, in order that 

the label will change at each wedge with one interior and one boundary edge. We 

see that this means all edges from a corner of B to a boundary midpoint corner 

have n = 0. x(V1) + kT(V2) + RT(V3) = 2n, since the three corners are coplanar. We 
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Fig. 8. The surface of Example 2. 

therefore obtain 

card{V: K(V) > 0} < - 2 z ( S )  + X + (�89 ~ c~2: n(E'(V)) = 1} = 1, 

since X = c a r d ( V ~ C C 2 : n ( E ' ( V ) ) = O } = 3 .  The more precise bound on 

card(CO(I)) (1 _< (1 + 1)(1) + 6 ( - 2  + 2 - -~)) is also an equality, as claimed. The 

more precise bound on card(P) is then - 1 + 1 + 3 and is also exact. 

Example 2 (see Fig. 8). Here B is a skew quadrilateral; since its line segments are 

parallel to edges of W, HZ holds and we know immediately (using z(S) = I) that 

card(Cr + 1 + 6 ) ( 4 - 2 ) =  16 and c a r d ( ~ ) < ( 3 +  1 + 6 ) ( 4 - 2 ) = 1 7 .  

Again, we expect these bounds to be much too large because we overestimated 

many quantities to get these bounds. S in fact has no interior corners and consists 

of five plane segments, one spanning each corner of B and one hanging in the 

middle with a corner on each boundary line segment. We will compute the more 

precise bounds using only information on S near B; knowing this local structure of 

S near B we can tell that they will in fact be exact since S is in the kind of general 

position specified by the theorem and since there are just the minimum number of 

edges around each plane segment. 

We note card(Cg2) = O, card(Cg3) = 4, and card(Off1) = card(Cgll) = 4. For  each 

i = 1, 2, 3, 4, x(Vi) = 27t/3 and K (Vi) = 0. For  each V ~ cr 3, x(V) = 0 and K(V) = 
- a .  Since edges around the hanging plane have their labels alternating, the 

convention that n(E)= 1 when the wedge of E contains one interior and one 

boundary edge (and that the label changes on a string of boundary edges only 

when it is forced to) turns out to require that all the boundary edges between any 

successive pair of corners in cr 3 have the same label. Thus the bound on 

card{V: K(V) > 0} is - 2  + 4 + (1)(0 - 4) = 0 (whether we use the formula for 

X appropriate to HZ or not) and the more precise bound on card(Cr is 

(1 + 1)(0)+ 6 ( - 2  + 4 ( 2 ) -  4(~))= 0, as claimed. The more precise bound on 

card(~) is - 1 + 0 + 2 + 4 = 5, which is indeed exact. 

Example 3 (see Fig. 9). Here B consists of eight line segments forming one simple 

closed curve; each of these line segments is parallel to an edge of W so HZ holds. 

We immediately conclude (using z(S) = 1) that card(Cgi) < (1 + 1 + 6)(8 - 2) = 

48 and card(~) < (3 + 1 + 6)(8 - 2) = 51, but expect these bounds to be much too 
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Fig. 9. The surface of Example 3. 

large. In fact, S again has five plane segments;  the S of the previous  example  is a 

subsurface of this S, but  the four outer  plane segments  have been extended so that  

there are now four in ter ior  type-4 corners  and  (~3 is empty.  Ha l f  of the corners  of B 

are in ~ l t  and  for them x = 27z/3; the o ther  half are in ~2 and for them x = 7z/3 and 

K = - 2 a  = - re /3 .  The labels on b o u n d a r y  edges turn  out  to have to change jus t  

before each V ~ cg 2. The b o u n d  on card{ V: K(V) > 0} is exact  whichever defini t ion 

of X is used: - 2  + 0 + (�89 - 0) = 0. The more  precise b o u n d  on card(Cg(l)) is 

also exact  ((1 + 1)(0) + ( 6 ) ( - 2  + 4(2) + 4(~ - ~)) = 4) but  the more  precise 

bound  on card(~) ( ( -  1 + 4 + (�89 + 4 = 9)) is off because there is one more  edge 

on each of the outer  plane segments than  the min imum which went into comput ing  

the bound.  

Example  4 (see Fig. 10). Here B consists of 16 line segments;  H Z  holds,  and  

z ( S ) =  1. Thus we know that  card(C~(l))<(1 + 1 + 6 ) ( 1 6 - 2 ) =  112 and 

v, / ~ A' 

N 

Fig. 10. The surface of Example 4; see also Tables 1 and 2. 
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card(~) < (~ + 1 + 6)(16 - 2) = 119, but we expect these bounds to be much too 

large. 

Looking  at S near B, we see that six of  the boundary  corners are in qql and the 

other  ten are in cg2; the values of  x(Vi), K(Vi), and, where appropriate,  n(E'(V~)) are 

given in Table 2. Thus the more precise bounds  are 

card(Cg+) < - 2  + 2 + (�89 - 0 = 3, 

card(C~(I)) < (1 + 1)(3) + 6 ( - 2  + ~ - ~ )  = 18, 

card(~) < - 1  + 18 + (�89 + 10 + 0 = 29�89 

In fact, S has one posit ive-curvature corner  (where P2, PT, Ps intersect), 14 

interior corners, and 13 plane segments. The bounds  on ~ + and ~ ( I )  fail to be exact 

because the bounds  of  Proposi t ion  5 are not exact for Pk with k = 2, 4, 6, 10. 

Example 5 (see Fig. 11). The surface has the same boundary  B as the previous 

surface and the same Euler characteristic; therefore the bounds  which do not  

require knowing anything else about  S are the same. However,  this surface is 

different near B compared  with the previous surface; the new values of K and n are 

given in Table 3 (the values of  x remain the same since they depend only on B). 

There are also eight new corners in ~(B), all in cg 3, and the information on them is 

also in Table 3. The more  precise bounds  are now 

card(OK+) < - 2  + 7 + (�89 - (�89 = 3, 

card(C~(I)) < (1 + 1)(3) + 6 ( - 2  + ~ - ~ )  = 16, 

card(~) _< - 1 + 16 + (1)(9) + 4 + 8 = 31�89 

p u 

Fig. 11. The surface of Example 5; see also Tables 1-3. 



On the Global Structure of Crystalline Surfaces 259 

~f 
..9.o 
e ~  

E 

~o 

Q 

t~ 

~o 

e4 

. ~  -,~ o ~o  ~ 

OO 

O~ 

OO 

g-.. 

7 

7 

7 

7 

7 

~o  

to-'-" ~ .  to -'" 



260 J.E. Taylor 

The surface is obtained from the surface of Example 4 by changing the position 

of the four plane segments for which the estimates were previously not exact; in 

doing so, one of the plane segments (P4) had to be split into two plane segments 

(P4, P19) and two plane segments (PI7, P18) had to be added to accomplish that 

splitting; three more plane segments (P14, P15, P16) had to be added along the 

boundary when the remaining three plane segments (P2, P6, P~o resp.) were 

moved. There are two new interior corners, both with K > 0 (one where 

P1, P6, P15 meet and one where P4, PIT, e18 meet). As the surface is now in the 

type of "general position" specified in the theorem, the bound for the number of 

positive-curvature corners and the more precise bound on the total number of 

interior corners are exact. 

Example 6 (see Fig. 12). Here there are 54 boundary components, each consisting 

Fig. 12. The surface of Example 6, having 28 handles and 54 connected boundary components. 
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of four line segments,  and  

z(S) = 2 - 2 • (number  of handles)  - (number  of b o u n d a r y  components )  

= 2 - 5 6 -  54 = - 108. 

The b o u n d a r y  line segments are paral le l  to edges of W, so H Z  is satisfied. We 

thus ob ta in  

and 

card(Cgi) < (1 + 1 + 6)(54(4) - 2 ( -  108)) 

card(~) < (3 + 1 + 6)(54(4) - 2 ( -  108)); 

these bounds  are huge but  cer ta inly finite. 

We now look at S near  B in o rder  to compute  the more  precise bounds.  Each 

b o u n d a r y  corner  is in cg 2 and  has x(V) = ~/2 and  K(V)  = - 5 a .  All b o u n d a r y  

edges are labeled inverse. We thus have 

and 

card(~+) < - 2 ( - 1 0 8 )  + 0 + ( � 8 9  0 = 216, 

card(Cg(l)) < (1 + 1)(216) + 6 ( ( - 2 ) ( -  108) + 4(54)(�89 - 5)) = 1296, 

eard(~) <_ ( - 2 ) ( -  108) + 1296 + 54 = 1566. 

In fact, S is const ructed  by tak ing  27 copies of the 2-skeleton of a centra l ly  

symmetr ic  t runca ted  oc t ahedron  with the same n -d i ag ram as W, cut t ing out  all 

their  square faces, and  then s tacking them square b o u n d a r y  to square bounda ry ,  

three deep in each coord ina te  direction.  There  are 4(54) = 216 inter ior  corners,  

each one satisfying H1 since it is a type-9 corner ;  there are 8 ( 2 7 ) =  216 p lane  

segments  in S. The more  precise bounds  of the theorem are  not  very good  for two 

reasons:  the in ter ior  corners  have Gauss  curva ture  - 4 a  ra ther  than  - a ,  and none  

of  the a l lowed corners  of  posit ive Gauss  curvature  are  present  due to the 

pos i t ioning  of  the planes. Wi th  a slightly different pos i t ioning of  the b o u n d a r y  

componen t s  and  plane segments,  B should  b o u n d  a surface with the same number  

of  handles,  with all 216 possible  pos i t ive-curvature  corners,  and  with each type-9 

corner  b roken  up into four type-4 corners ;  the more  precise bound  on card(Cg(I)) 

would  then be achieved. 
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