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ON THE GLOBAL STRUCTURE OF HOPF
HYPERSURFACES IN A COMPLEX SPACE FORM

A. A. BORISENKO

Abstract. It is known that a tube over a Kähler submanifold in a

complex space form is a Hopf hypersurface. In some sense the reverse
statement is true: a connected compact generic immersed C2n−1 reg-

ular Hopf hypersurface in the complex projective space is a tube over
an irreducible algebraic variety. In the complex hyperbolic space a con-
nected compact generic immersed C2n−1 regular Hopf hypersurface is

a geodesic hypersphere.

Introduction

A natural class of real hypersurfaces in a complex space form M(c) of
constant holomorphic curvature 4c is the class of Hopf hypersurfaces. For a
unit normal vector ξ of a hypersurface M the vector Jξ is a tangent vector to
M , where J is the complex structure of the complex space form M(c).

Definition. A hypersurface M ⊂ M(c) is called a Hopf hypersurface if
the vector Jξ is a principal direction at every point of M .

Y. Maeda [11] proved that for Hopf hypersurfaces in the n-dimensional
complex projective space CPn the corresponding principal curvature in the
direction Jξ is constant. It is known that a tube over a Kähler submanifold in
a complex projective space is a Hopf hypersurface. T.E. Cecil and P.J. Ryan
studied the local and global structure of Hopf hypersurfaces with constant
rank of the focal map Φr.

Let M be an embedded hypersurface of M(c) of the regularity class C2.
Let NM be the normal bundle of M with projection p : NM → M and let
BM be the unit normal bundle. For ξ ∈ NM let F (ξ) be the point in M(c)
reached by traversing a distance |ξ| along the geodesic in M(c) originating at
x = p(ξ) with the initial tangent vector ξ.

A point P ∈M(c) is called a focal point of multiplicity ν > 0 of (M, x) if
P = F (ξ) and the Jacobian of the map F has nullity ν at ξ.
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Definition. The tube of radius r over M is the image of the map Φr :
BM →M(c) given by Φr(ξ) = F (rξ), ξ ∈ BM .

T.E. Cecil and P.J. Ryan proved the following result.

Lemma 1 [1]. Let M be a connected, orientable Hopf hypersurface of CPn

with corresponding constant principal curvature µ = 2 cot 2r. Suppose the map
Φr has constant rank q on M . Then q is even and every point x0 ∈ M has
a neighborhood U such that Φr(U) is an embedded complex q/2-dimensional
submanifold of CPn.

We remark that, in Lemma 1 and in Lemma 13 below, C3 regularity is
enough. From Lemmas 1 and 13 we obtain that a Hopf hypersurface with
Φr of constant rank is an analytical hypersurface. It follows from this fact
that Φr(U) is a complex submanifold and parametrization functions of Φr(U)
satisfy an elliptic system of the PDE’s with analytical coefficients. From C2

regularity of Φr(U) we obtain that Φr(U) is analytic.
The global version of Lemma 1 has the following form [1] :
Let M be a connected compact embedded real Hopf hypersurface in CPn

with corresponding constant principal curvature µ = 2 cot 2r. Suppose the
map Φr has constant rank q on M . Then Φr factors through a holomorphic
immersion of the complex q/2-dimensional manifold M/T0 into CPn, where
T0 are (2n− q − 1)-dimensional spheres, the leaves of the distribution

T0(x) = {y ∈ TxM, (Φr)∗(y) = 0} .
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hospitality and for useful conversations. The author wishes to thank Vicente
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1. The main results

The following theorem gives a complete description of the global structure
of Hopf hypersurfaces in complex space forms.

Let M be an immersed regular hypersurface in a regular manifold N . Sup-
pose that for a point P ∈ N of self-intersection the linear span of the tangent
hyperplanes to the branches of M coincides with the tangent space TPN of
the ambient manifold. This point is called a generic point of self-intersection.
If every point of self-intersection of the hypersurface M is a generic point of
self-intersection then the hypersurface M is called a generic immersed hyper-
surface.
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Theorem 1. Let M be a C2n−1 regular compact generic immersed ori-
entable Hopf hypersurface in the complex projective space CPn (n > 2). Then
M is a tube over an irreducible algebraic variety.

Corollary. Let M be a C2n−1 regular connected compact embedded Hopf
hypersurface in the complex projective space CPn (n > 2). Then M is a tube
over an irreducible algebraic variety.

The following are some standard examples of Hopf hypersurfaces in CPn

of constant holomorphic curvature 4.
1. A geodesic hypersphere M is the set of points at a fixed distance r < π

2
from a point P ∈ CPn. It is obvious that M is also the tube of radius π

2 − r
over the hyperplane CPn−1 ⊂ CPn dual to the point P .

2. A tube over a totally geodesic space CP k (1 6 k 6 n− 1).
3. A tube over a totally geodesic real projective space RPn and over a

complex quadric Qn−1 = {(z0, . . . , zn} ⊂ CPn : z2
0 + z2

1 + · · ·+ z2
n = 0}.

A tube of small radius r over a closed irreducible algebraic manifold in
CPn is an analytic Hopf hypersurface. But let f = x6

0 x
2
3 + x3

1 x
5
2 = 0 be

the algebraic variety M in CP 3. Then the point P (1, 0, 0, 0) is a singular
point (since grad f/P = 0). In any neighborhood of the point P the normal
curvatures at smooth points vary from −∞ to +∞. From Lemma 12 below
it follows that normal curvatures of the tube of any radius r tend to +∞. It
follows that the tube of any radius r has regularity less then C1,1.

V. Miquel proved the following theorem:

Theorem (V. Miquel, [13]). Let M be a connected compact embedded
Hopf hypersurface in CPn contained in a geodesic ball of radius R < π

2 .
Suppose that

(1) M has constant mean curvature H.
(2) The principal curvature µ in the direction Jξ satisfies the inequality

µ > 2 cot
(

2 arc cot
[

(2n− 1)H − µ
2n− 2

])
.

Then M is a geodesic hypersphere.

We prove the following theorem.

Theorem 2. Let M be a C2n−1 regular connected compact generic im-
mersed orientable Hopf hypersurface in the complex projective space CPn

(n > 2) contained in a geodesic ball of radius R < π
2 . Then M is a geo-

desic hypersphere.

Let CHn be the complex hyperbolic space of constant holomorphic curva-
ture −4. We prove the following theorem.
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Theorem 3. Let M be a connected compact generic immersed orientable
C2n−1 regular Hopf hypersurface in the complex hyperbolic space CHn (n >
2). Then the Hopf hypersurface M is a geodesic hypersphere.

2. Lemmas

Lemma 2 (Y. Maeda, [11]). Let M be a connected Hopf hypersurface in
the complex projective space CPn. Then the principal curvature µ of M in
the direction Jξ is constant.

Let Aξ be the shape operator of M .

Lemma 3 (T.E. Cecil, P.J. Ryan [1]). Suppose Jξ is an eigenvector of
Aξ with an eigenvalue µ. Then we have:

(a) (F∗)rξ(X, 0) = 0 if λ = cot r is an eigenvalue of Aξ and X is a vector
in the eigenspace Tλ corresponding to the eigenvalue λ.

(b) (F∗)rξ(Jξ, 0) = 0 if µ = 2 cot 2r.
(c) (F∗)rξ(X, V ) 6= 0 except as determined by (a) and (b).

Now, let M be a real hypersurface of a complex space form M
n
(c) of

constant holomorphic curvature 4c and let ξ be a unit normal field on M . If
X ∈ TPM , P ∈M , then one has a decomposition

JX = φX + f(X)ξ

into the tangent and normal components, respectively. So, φ is a (1, 1)-tensor
field and f is a 1-form. These satisfy

φ2X = −X + f(X)U, φU = 0, f(φX) = 0

for any vector field X tangent to M , where U = −Jξ. Moreover, we have

g(φX, Y ) + g(X, φY ) = 0, f(X) = g(X, U),

g(φX, φY ) = g(X, Y )− f(X)f(Y )

with g the metric tensor in M
n
(c). We denote by A the shape operator on

TPM associated with ξ.

Lemma 4.

1. ([9]) Let M be a Hopf hypersurface in M
n
(c). Then we have:

(a) −2cφ = µ(φA+Aφ)− 2AφA,
(b) Xµ = (Uµ)f(X),

and
(Uµ) g ((φA+Aφ)X, Y ) = 0,

where µ is the principal curvature in the direction U = −Jξ, X, Y are vectors
tangent to M , and Uµ is the derivative of the function µ in the direction U .
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Moreover, if φA+Aφ = 0 then

cg(X, φY ) = −g(φAX, AY ) = g(AφX, AY ),

cg(φX, φX) = −g(AφX, AφX)

and so c 6 0.
2. ([11]) Let M be a Hopf hypersurface in CPn. If X ∈ Tα ⊂ TPM , then

JX ∈ Tµα+2/2α−µ ⊂ TPM,

where Tα is an eigenspace corresponding to a principal curvature α.

It follows from equation (a) of the first part of the lemma that α cannot
be equal to µ or µ/2.

Definition. Let A be a subset of a metric space X. Let δ(A) denote the
diameter of A, and let

δp(A) = [δ(A)]p for p > 0,

δ0(A) =

{
1 if A 6= ∅,

0 if A = ∅.

For p > 0 and ε > 0 define

Hp
ε (A) = inf

{ ∞∑
i=1

δp(An) : A ⊂ ∪An and δ(An) < ε

}
,

Hp(A) = lim
ε→0+

Hp
ε (A) = supHp

ε (A).

We call Hp the Hausdorff p-measure.

Lemma 5 (H. Federer, [4]). If m > ν > 0 and k > 1 are integers, A is
an open subset of Rm, B ⊂ A, Y is a normed vector space and f : A→ Y is
a map of class Ck such that

Dim im f∗(x) 6 ν for x ∈ B,
then

Hν+(m−ν)/k[f(B)] = 0.

Definition. Let Ω be a complex manifold. A set A ⊂ Ω is called an
analytic set in Ω if for each point a ∈ Ω there exists a neighborhood U of a and
functions f1, . . . , fN holomorphic in U such that A∩U = Zf1 ∩ · · ·∩Zfk ∩U ,
where Zf is the set of zeros of a holomorphic function f .

A point a of an analytic set A is called a regular point if there exists a
neighborhood U of a in Ω such that A ∩ U is a complex submanifold of U .
The complex dimension of A ∩ U is then called the dimension of A at the
point a and is denoted by dimaA. The set of all regular points of an analytic
set is denoted by regA. Its complement A \ regA is denoted by sngA. The
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set sngA is called the set of singular points of the set A. It can be shown
by induction on the dimension of the manifold Ω that sngA is nowhere dense
and closed. This allows us to define the dimension of A at any point a of A
as

dimaA = lim
z→a

dimz A (z ∈ regA).

The set A is called purely p-dimensional if dimz A = p for all z ∈ A (see [2],
[3]).

Lemma 6 (B. Shiffman, [16]). Let E be a closed subset of a complex
manifold Ω and let A be a purely q-dimensional analytic subset of Ω \ E. If
H2q−1(E) = 0 then the closure A of the set A in Ω is a purely q-dimensional
analytic subset of Ω.

Definition (D. Mumford, [14]). Let U ⊂ Cn be an open set. A closed
subset X ⊂ U is a ∗-analytic subset of U if X can be decomposed as

X = X(r) ∪X(r−1) ∪ · · · ∪X(0),

where for all i, X(i) is an i-dimensional complex submanifold of U and X
(i) ⊂

X(i) ∪X(i−1) · · · ∪X(0). If X(r) 6= ∅, then r is called the dimension of X.

An analytic set is always ∗-analytic [14].

Lemma 7 (Chow’s Theorem, [14]). If X ⊂ CPn is a closed ∗-analytic
subset, then X is a finite union of algebraic varieties.

Lemma 8 [3] . An analytic set A in a complex manifold Σ is irreducible
if and only if the set regA is connected.

Let X ⊂ CPn denote a closed irreducible algebraic variety of dimension l
(which may have singularities), and let Xe ⊂ X denote the (non-empty) open
subset of its smooth points. (For the definitions of irreducible, singular and
smooth points see [14].) Define

V ′X =
{

(x, y) ∈ CPn ×CP̆n |x ∈ Xe and y is tangent hyperplane at x
}
,

where CP̆n is the dual complex projective space.
The closure VX of V ′X in the Zariski topology on CPn ×CP̆n is called the

tangent hyperplane bundle of X. It is a closed irreducible algebraic variety of
dimension (n− 1). The first projection maps VX onto X:

π1 : VX → X, (x, y)→ x.

Consider now the second projection

π2 : VX → CP̆n, (x, y)→ y.

Its image X̆ = π2(VX) is a closed irreducible variety of CP̆n of dimension at
most (n− 1), the dual variety of X [9].
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Lemma 9 (Duality Theorem) [6, 10]. The tangent hyperplane bundles
of a closed irreducible algebraic variety X and its dual variety X̆ coincide: We
have VX̆ = VX and hence ˘̆

X = X.

Let CPn be the complex projective space with a standard Fubini-Study
metric. To a hyperplane L ⊂ CPn passing through a point x ∈ CPn we
associate the point y ∈ CPn representing the complex line in Cn+1 orthogonal
to L. Then the distance ρ(x, y) is equal to π/2. One can identify CP̆n with
CPn in this way and consider X̆ as a subset in CPn.

It is possible to define a tube over a closed irreducible algebraic variety
X ⊂ CPn which may have singularities. Let (x, y) ∈ VX ⊂ CPn ×CP̆n =
CPn × CPn, x ∈ X, y ∈ X̆, and let L(x, y) be a complex projective line
through x, y ∈ CPn. Then L(x, y) is a totally geodesic two-dimensional
sphere in CPn of curvature 4, the distance ρ(x, y) is equal to π/2, and x and
y are poles of the sphere L(x, y). The set of points of L(x, y) at a distance r
from the point x is a circle Sr(x, y) with the center x. The union

Sr =
⋃

(x,y)∈VX

Sr(x, y)

is called the tube of radius r over X. The set Sr is also the tube of radius
π
2 − r over the dual variety X̆.

If all the points of X are regular, this definition coincides with one given
above.

The set of points sngVX ⊂ VX such that (x, y) ∈ sngVX if x ∈ sngX or
y ∈ sng X̆ is a closed algebraic subvariety of VX , regVX = VX \ sngVX is an
open set of VX in the Zariski topology.

Let X ⊂ CPn be a closed irreducible algebraic variety and let x0 be a
Zariski open set in X. Then the closure of x0 in the classical topology is X
[14].

Consider the Segre map

σ : CPn ×CP̆n → CP (n+1)2−1.

Then σ(VX) is a closed irreducible algebraic variety in CP (n+1)2−1, and the
set regVX is an open set of VX in the Zariski topology.

As corollary we obtain the following result.

Lemma 10. The closure of the set regVX ⊂ CPn ×CPn in the standard
topology coincides with the tangent bundle VX .

Therefore the tube over X is the closure of the set⋃
(x,y)∈RegVX

Sr(x, y).
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Lemma 11 [5]. Let X be a compact topological space. Suppose A is a
closed subset such that X \ A is a smooth n-dimensional orientable manifold
without boundary. Then

Hq(X, A) w Hn−q(X \A),

where Hi and Hi are homology and cohomology groups.

Lemma 12 [1]. Suppose Jξ is an eigenvector of the shape operator Aξ of
a Hopf hypersurface M in the complex projective space, with the correspond-
ing eigenvalue 2 cot 2Θ, 0 < Θ < π

2 . Suppose Jξ, X2, . . . , Xn is a basis of
principal vectors of Aξ with AξXj = cot ΘjXj, 2 6 j 6 n, 0 < Θj < π; ∂

∂tj

(2 6 j 6 k) are normal vectors. Then the shape operator Ar of the tube Φr is
given in terms of its principal vectors by

(a) Ar

(
∂
∂tj

)
= − cot r

(
∂
∂tj

)
, 2 6 j 6 k;

(b) Ar (Xj , 0) = cot (Θj − r) (Xj , 0) , 2 6 j 6 n;
(c) Ar(Jξ, 0) = cot (2(Θ− r)) (Jξ, 0).

For a complex hyperbolic space CHn the following analog of Lemma 1
holds:

Lemma 13 [13]. Let M be an orientable Hopf hypersurface of CHn such
that the principal curvature µ in the direction Jξ is constant and equal to
µ = 2 coth 2r. Suppose that Φr has constant rank q on M . Then for every
point x0 ∈ M there exists an open neighborhood U of x0 such that ΦrU is a
q/2-dimensional complex submanifold embedded in CHn.

Lemma 14 [15]. Let Ω be a Hermitian complex manifold with exact funda-
mental form ω = dγ. Let A be an analytical q-dimensional set with boundary
∂A ⊂ Ω such that A ∪ ∂A is compact. Then

H2q(A) 6
1
q

(max∂A|γ|) H2q−1(∂A),

where H2q(A), H2q−1(∂A) are Hausdorff measures, and

|γ|(z) = max {|γ(υ)| : υ ∈ TzΩ, |υ| = 1} .

Lemma 15 [8]. Let M be a Hopf hypersurface of a complex space form
M

n
(c) (c 6= 0). If U is an eigenvector of A, then the principal curvature

µ = g(AU, U) is constant.

3. Proofs of the theorems

Let Ms be the set of points of M such that rank (Φr)∗(Ms) = s, Fs =
Φr(Ms), F = Φr(M). From Lemma 4 we obtain that if X ∈ Tα ⊂ TPM ,
where Tα is the eigenspace corresponding to the principal curvature α = cot r,
then JX ∈ Tα. Hence s is even and if s < 2q then s 6 2q − 2.
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Let
E =

⋃
s<2q

Fs ∪ F0,

F0 =
{
x ∈ F :x = Φr(L1) = Φr(L2), L1 6= L2 ⊂M,

rank (Φr)∗(P1) = rank (Φr)∗(P2) = 2q
}
,

for Pi ∈ Li, where the Li are leaves of the distribution Ker(Φr)∗.

Proof of Theorem 1. Let M be a compact Hopf hypersurface in CPn. This
means that the vector Jξ is a principal direction of M , where ξ is the unit
normal vector and J is the complex structure in CPn. From Lemma 2 it
follows that the corresponding principal curvature µ is constant and µ =
2 cot 2r. Let 2q be the maximal rank of (Φr)∗ on M . Let P ∈ M be a point
such that rank (Φr)∗(P ) = 2q and let M2q be the corresponding connected
component of M such that P ∈ M2q and for Q ∈ M2q, rank (Φ)∗(Q) = 2q.
Set F2q = Φr(M2q), F̃ = F2q ∩ (CPn \ E). From Lemma 1 we obtain that F̃
is a purely analytic set, dimzF̃ = q, z ∈ F̃ .

Locally, F0 is a transversal intersection of two complex submanifolds of
dimension q. Hence F0 is an analytic set of real dimension 6 2q − 2 and
Hausdorff measure

H2q−1(F0) = 0.
Now apply Lemma 5 to the set E1 =

⋃
s<2q

Fs and the map Φr. Then ν 6 2q−2.

If the class of regularity of M is greater or equal to 2(n − q + 1), then the
class of regularity of Φr is k > 2(n− q + 1)− 1 and

ν +
2n− 1− ν

k
6 2q − 2 +

2n− 1
k

6 2q − 1

for k > 2n−1. From Lemma 5 we have H2q−1(E1) = 0 and so H2q−1(E) = 0.
From Lemma 6 we obtain that the closure of F̃ is a purely q-dimensional an-
alytic subset of CPn. Since any analytic subset is ∗-analytic we obtain from
Chow’s Theorem (Lemma 7) that cl F̃ ⊂ CPn is a finite union of algebraic
varieties. An analytic set A is irreducible if and only if the set regA is con-
nected. From Lemma 8 it follows that cl F̃ is irreducible as analytic set and
we obtain that cl F̃ = X is an irreducible algebraic variety.

Let Sr be a tube over X = cl F̃ . By Lemma 10 we have Sr ⊂ M and
Sr = clM2q. We will prove that clM2q = M . Suppose that clM2q 6= M . Then
in every neighborhood of a point P ∈ ∂M2q there exist points Q ∈M \clM2q.
Let P ∈ ∂M2q. Then P ∈ Sr(x, y) such that x ∈ sngX, y ∈ sng X̆. Then

∂M2q =
⋃

x∈sngX,y∈sng X̆

Sr(x, y).
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Otherwise some neighborhood of P belongs to clM2q and P ∈ int clM2q. The
set of points

sng (X, X̆) = sngX ×CPn ∩CPn × sng X̆ ⊂ VX ⊂ CPn ×CPn

is a closed algebraic subvariety of VX . The dimension of sng (X, X̆) is 6 n−2
because the dimension of VX is equal to n−1. The set ∂M2q is a fiber bundle
over sng (X, X̆) with the circle S1 as a leaf. The real dimension of sng (X, X̆)
is 6 2(n− 2), whence

H2n−3

(
sng (X, X̆), Z

)
= 0.

For E = ∂M2q, B = sng (X, X̆), F = S1 the exact Thom-Gysin sequence has
the form [17]

H2n−1

(
sng (X, X̆), Z

)
→ H2n−3

(
sng (X, X̆), Z

)
→

→ H2n−2 (∂M2q, Z)→ H2n−2

(
sng (X, X̆), Z

)
,

0→ 0→ H2n−2 (∂M2q, Z)→ 0.
We obtain

H2n−2 (∂M2q, Z) = 0.
Next, we apply Lemma 11 with X = M , A = ∂M2q. Then

H2n−1 (M, ∂M2q) = H0 (M \ ∂M2q) .

But M \ ∂M2q has m > 1 connected components and

H0 (M \ ∂ M2q, Z) =
m⊕
i=1

Z

is the direct sum of m copies of Z [17].
For the pair (M, ∂M2q) the exact homology sequence has the form

H2n−1 (∂M2q, Z)→ H2n−1 (M, Z)→ H2n−1 (M, ∂M2q, Z)→
→ H2n−2 (∂M2q, Z) ,

H2n−1 (∂M2q, Z) = H2n−2 (∂M2q, Z) = 0; H2n−1 (M, Z) = Z.
It follows that H2n−1 (M, ∂M2q, Z) = Z, contradicting the above result.
Thus clM2q = M and M is a tube over the irreducible algebraic variety
cl F̃ = X. �

Proof of Theorem 2. Let S be the hypersphere of minimal radius r0 such
that the hypersurface M is contained in the ball D with boundary ∂D = S.
Let P be a point of tangency of M and S. Let ξ be the inward unit normal
vector at the point P . Then the principal curvature in the direction Jξ is
µ = 2 cot 2ρ > 2 cot 2r0, and so ρ 6 r0 < π/2. Another principal curvature
ki = cot Θi at the point P satisfies cot Θi > cot r0, where 2 cot 2r0, cot r0
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are principal curvatures of the hypersphere S. Then Θi 6 r0. Let r = ρ−π/2.
From Lemma 12 we obtain that the principal curvatures of the tube Φr over
M are equal to

(ki)r = tg (ρ−Θi) 6 tg (r0 −Θi) <∞.

Hence rank (Φr)∗(P ) = 2(n− 1), and from Theorem 1 we get that Φr(M) =
cl F̃ = X is an irreducible hypersurface of degree d. Let Xk be a sequence
of smooth algebraic hypersurfaces such that limXk = X, degree Xk = d [7] ,
and let X̆ and X̆k be dual algebraic varieties. Then

M = Φπ
2−r(X) = Φr(X̆),

and from Lemma 9 we obtain X̆ = lim X̆k. From the above argument we have
for Φπ

2−r(Xk) = Mk,
limMk = M.

For large k, Mk is contained in the balls Dk of radius R < π/2, and Mk does
not intersect complex projective space x0 = 0.

Let f = 0 be the equation of the algebraic hypersurface Xn where f is a
homogeneous polynomial, grad f 6= 0. By Bezout’s Theorem [15] the system
of equations

x0 = 0, f = 0, fx0 = 0

has a nontrivial solution if n > 3 and the degree of the polynomial f is > 2.
This means that Mk intersects the hyperplane x0 = 0. It follows that f is a
linear function and the Xk are all hyperplanes, and the Mk are hyperspheres.
Then the hypersurface M is a geodesic hypersphere, too.

For n = 2 the equation of the tube has the parametric form

zj = xj cos r + sin r
∂f
∂xj

|grad f |
eit,

where the xj are coordinates of points of the algebraic variety, 0 6 t 6 2π,
0 6 r 6 π

2 , and r is radius of the tube Φr; j = 0, 1, 2.
From the real point of view X is a compact two-dimensional manifold.
Let

g1 = |x0 cos r|, g2 =

∣∣∣∣∣∣
∂f
∂x0

|grad f |
sin r

∣∣∣∣∣∣ .
If the degree of the polynomial f is > 2, the zero sets of these regular functions
on the manifold X are non empty on the manifold X. Hence there exists a
point P ∈ X such that g1 = g2 = ρ. Then z0 = ρ

(
eiα + ei(β+t)

)
. Moreover,

if t = α − β − π then z0 = 0. This means that Mk intersects the hyperplane
x0 = 0. Thus f is a linear function and Mk and M are geodesic hyperspheres
as in the case n > 3. �
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Proof of Theorem 3. Let S be the hypersphere of minimal radius r0 such
that the hypersurface M is contained in the ball D with boundary S. Let P0

be a point of tangency of M and S. Let ξ be the inward unit normal vector
of M at the point P0. From Lemma 15 it follows that the principal curvature
µ in the direction Jξ is constant. At the point P0 this curvature satisfies
the inequality µ > 2 coth 2r0 and µ = 2 coth 2r. We now follow the proof of
Theorem 1, using Lemma 13 instead of Lemma 1. Consider the map Φr. For
a Hopf hypersurface, rank (Φr)∗ is always even. This follows from Lemma 4.

Suppose 2q is the maximal rank of (Φr)∗ at the points of M . Let P ∈ M
be a point such that rank (Φr)∗(P ) = 2q and M2q is the connected component
of M such that for Q ∈M2q, rank (Φr)∗(Q) = 2q. As in the proof of Theorem
1, set

F = Φr(M), F2q = Φr(M2q), Fs = Φr(Ms),

E = F0

⋃
s<2q

Fs, F̃ = F2q ∩CHn \ E.

We obtain that cl F̃ = X is a compact analytic set in CHn with boundary
∂X ⊂ E. The Hausdorff measure H2q−1(∂X) is equal to 0. From Lemma 14
it follows that H2q(X) = 0. This is possible only if q = 0 and X is a point.
Thus M is a tube over a point and M is a geodesic hypersphere. �
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