
 

Repositório ISCTE-IUL
 

Deposited in Repositório ISCTE-IUL:

2019-03-29

 

Deposited version:

Pre-print

 

Peer-review status of attached file:

Unreviewed

 

Citation for published item:

Costa, J. L., Girão, P. M., Natário, J. & Silva, J. D. (2017). On the global uniqueness for the

Einstein–Maxwell-scalar field system with a cosmological constant: part 3. Mass inflation and

extendibility of the solutions. Annals of PDE. 3

 

Further information on publisher's website:

10.1007/s40818-017-0028-6

 

Publisher's copyright statement:

This is the peer reviewed version of the following article: Costa, J. L., Girão, P. M., Natário, J. & Silva,

J. D. (2017). On the global uniqueness for the Einstein–Maxwell-scalar field system with a

cosmological constant: part 3. Mass inflation and extendibility of the solutions. Annals of PDE. 3,

which has been published in final form at https://dx.doi.org/10.1007/s40818-017-0028-6. This article

may be used for non-commercial purposes in accordance with the Publisher's Terms and Conditions

for self-archiving.

Use policy

Creative Commons CC BY 4.0
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

� a full bibliographic reference is made to the original source

� a link is made to the metadata record in the Repository

� the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Serviços de Informação e Documentação, Instituto Universitário de Lisboa (ISCTE-IUL)
Av. das Forças Armadas, Edifício II, 1649-026 Lisboa Portugal

Phone: +(351) 217 903 024 | e-mail: administrador.repositorio@iscte-iul.pt
https://repositorio.iscte-iul.pt

https://dx.doi.org/10.1007/s40818-017-0028-6


ar
X

iv
:1

40
6.

72
61

v3
  [

gr
-q

c]
  1

 J
ul

 2
01

5

ON THE GLOBAL UNIQUENESS FOR THE

EINSTEIN-MAXWELL-SCALAR FIELD SYSTEM WITH A

COSMOLOGICAL CONSTANT

PART 3. MASS INFLATION AND EXTENDIBILITY OF THE

SOLUTIONS

JOÃO L. COSTA, PEDRO M. GIRÃO, JOSÉ NATÁRIO,
AND JORGE DRUMOND SILVA

Abstract

This paper is the third part of a trilogy dedicated to the following prob-
lem: given spherically symmetric characteristic initial data for the Einstein-
Maxwell-scalar field system with a cosmological constant Λ, with the data
on the outgoing initial null hypersurface given by a subextremal Reissner-
Nordström black hole event horizon, study the future extendibility of the
corresponding maximal globally hyperbolic development as a “suitably reg-
ular” Lorentzian manifold.

In the first part [2] of this series we established the well posedness of
the characteristic problem, whereas in the second part [3] we studied the
stability of the radius function at the Cauchy horizon.

In this third and final paper we show that, depending on the decay rate
of the initial data, mass inflation may or may not occur. When the mass
is controlled, it is possible to obtain continuous extensions of the metric
across the Cauchy horizon with square integrable Christoffel symbols. Under
slightly stronger conditions, we can bound the gradient of the scalar field.
This allows the construction of (non-isometric) extensions of the maximal
development which are classical solutions of the Einstein equations. Our
results provide evidence against the validity of the strong cosmic censorship
conjecture when Λ > 0.
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1. Introduction

This paper is the third part of a trilogy dedicated to the following prob-
lem: given spherically symmetric characteristic initial data for the Einstein-
Maxwell-scalar field system with a cosmological constant Λ, with the data
on the outgoing initial null hypersurface given by a subextremal Reissner-
Nordström black hole event horizon, and the remaining data otherwise free,
study the future extendibility of the corresponding maximal globally hyper-
bolic development as a “suitably regular” Lorentzian manifold.

We are motivated by the strong cosmic censorship conjecture and the
question of determinism in general relativity. More precisely, the existence of
(non-isometric) extensions of the maximal globally hyperbolic development
leads to the breakdown of global uniqueness for the Einstein equations. If
this phenomenon persists for generic initial conditions then it violates the
strong cosmic censorship conjecture. See the Introduction of Part 1 for a
more detailed account of the mathematical physics context of this work.

In Part 1, we showed the equivalence (under appropriate regularity con-
ditions for the initial data) between the Einstein equations (2)−(6) and the
system of first order PDE (15)−(24). We established existence, uniqueness
and identified a breakdown criterion for solutions of this system. In Part 2,
we analyzed the properties of the solution up to the Cauchy horizon,∗ prov-
ing, in particular, the stability of the radius function. See Section 2 for a
summary of our previous results, as well as for the definitions and notation
that will be used henceforth.

In this paper we examine the behavior of the renormalized Hawking mass
̟ (see (9)) and the scalar field at the Cauchy horizon. Depending on the
control that we have on these quantities, we are able to construct extensions
of the metric beyond the Cauchy horizon with different degrees of regularity.
The quotient

ρ :=
k−

k+
> 1,

∗We recall that when it is possible to isometrically embed the maximal globally hyper-
bolic development into a larger spacetime, the boundary of the maximal globally hyper-
bolic development is known as the Cauchy horizon.
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of the surface gravities (see (37)) of the Cauchy and event horizons r =
r− and r = r+ in the reference Reissner-Nordström black hole plays an
important role in our analysis.

We start by briefly recalling the strategy of Dafermos [4, 5] to establish
mass inflation (that is, blow-up of ̟ at the Cauchy horizon), which natu-
rally generalizes to the case of a non-vanishing cosmological constant. This
requires the initial field ζ0 (see (12) and (25)) to satisfy

ζ0(u) ≥ cus for some c > 0 and 0 < s <
ρ

2
− 1

(Theorem 3.1 whose proof is given in Appendix B). Since the mass is a
scalar invariant involving first derivatives of the metric, its blow up excludes
the existence of spherically symmetric C1 extensions.† Moreover, using the
techniques of [6], one can easily conclude that in this case the Christodoulou-
Chruściel inextendibility criterion holds, that is, there is no extension of the
metric beyond the Cauchy horizon with Christoffel symbols in L2

loc.
The previous approach only allows us to explore a particular subregion

of parameter space, corresponding to sufficiently subextremal reference so-
lutions (see the figure below). We proceed by extending the analysis to the
full parameter range. First we prove that if the field ζ0 satisfies the weaker
hypothesis

ζ0(u) ≥ cus for some c > 0 and 0 < s < ρ − 1,

then either the renormalized mass ̟ or the field
∣∣ θ
λ

∣∣ (see (8) and (11))
blow up at the Cauchy horizon (Theorem 3.2). As a consequence, the
Kretschmann curvature scalar also blows up (Remark 6.9).

On the other hand, when the initial field ζ0 satisfies

|ζ0(u)| ≤ cus for some c > 0 and s >
7ρ

9
− 1 > 0,

we show that the mass remains bounded (Theorem 4.1). This behavior is
in contrast with the standard picture of spherically symmetric gravitational
collapse.

The case where no mass inflation occurs is then analyzed in further detail.
We construct C0 spherically symmetric extensions of the metric beyond the
Cauchy horizon with the second mixed derivatives of r continuous. There are
two natural coordinate choices for the extension, corresponding to either λ =
−1 or κ = 1 (see (8) and (13)) on the outgoing null ray u = U . Interestingly,
these lead to inequivalent C2 structures for the extended manifolds, a fact
that is reflected on the behavior of the Christoffel symbols: when the initial
data satisfies

c2us2 ≤ ζ0(u) ≤ c1us1 for some
7ρ

9
− 1 < s1 ≤ s2 < ρ − 1,

we prove that one of the Christoffel symbols blows up on u = U at the
Cauchy horizon in the λ = −1 coordinates, but not in the κ = 1 coordi-
nates. Moreover, for both coordinate systems this Christoffel symbol blows
up along almost all outgoing null rays, which excludes the existence of C0,1

†In this paper we will only be concerned with spherically symmetric extensions.
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extensions of the metric. Nonetheless, in the κ = 1 coordinates the Christof-
fel symbols are in L2

loc and the field φ is in H1
loc for the whole range of ini-

tial data where there is no mass inflation (Corollary 5.11). Therefore, the
Christodoulou-Chruściel inextendibility criterion for strong cosmic censor-
ship does not hold in this setting.

Finally, assuming that

|ζ0(u)| ≤ cus for some s >
13ρ

9
− 1,

we can bound the field θ
λ

at the Cauchy horizon. This allows us to prove that
the solution of the first order system extends, non-uniquely, to a classical
solution beyond the Cauchy horizon (Theorem 6.5). We then show that
this solution corresponds to a classical solution of the Einstein equations
extending beyond the Cauchy horizon (Theorem 6.7). The metric for this
solution is C1 and such that r ∈ C2 and ∂u∂vΩ (see (1)) exists and is
continuous (Remark 6.8). However, we emphasize that the metric does not
have to be C2, in spite of the Kretschmann curvature scalar being bounded.
To the best of our knowledge, these are the first results where the generic
existence of extensions as solutions of the Einstein equations is established.

It should be noted that these results, while valid for all signs of the cos-
mological constant Λ, only provide evidence against the strong cosmic cen-
sorship conjecture in the case Λ > 0 (see the discussion in the Introduction
of Part 1).

In summary, for a given ρ and cus ≤ ζ0(u) ≤ Cus, the behavior of the
solution at the Cauchy horizon depends on the value of s as described in the
following figure.

9
7 2

1

4
9

s = ρ
2 − 1

s = ρ − 1

s = 7ρ
9 − 1

s = 13ρ
9 − 1

ρ

s

1
0

mass inflationmass inflationno mass inflation no mass inflationno mass inflation
θ/λ bounded θ/λ unbounded or θ/λ unbounded

smooth extension
beyond Cauchy horizon

In Appendix A we explain how ρ depends on the physical parameters r+,

r− and Λ. In particular, ρ is a function of r+

r−
and

Λr2
−

3 .
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Acknowledgments. The authors thank M. Dafermos for bringing the Epi-
logue of [6] to their attention.

2. Framework and some results from Parts 1 and 2

The spherically symmetric Einstein-Maxwell-scalar field system

with a cosmological constant. Consider a spherically symmetric space-
time with metric

g = −Ω2(u, v) dudv + r2(u, v) σS2 , (1)

where σS2 is the round metric on the 2-sphere. The Einstein-Maxwell-scalar
field system with a cosmological constant Λ and total electric charge 4πe

reduces to the following system of equations: the wave equation for r,

∂u∂vr =
Ω2

2

1

r2

(
e2

r
+

Λ

3
r3 − ̟

)
, (2)

the wave equation for the massless scalar field φ,

∂u∂vφ = − ∂ur ∂vφ + ∂vr ∂uφ

r
, (3)

the Raychaudhuri equation in the u direction,

∂u

(
∂ur

Ω2

)
= −r

(∂uφ)2

Ω2
, (4)

the Raychaudhuri equation in the v direction,

∂v

(
∂vr

Ω2

)
= −r

(∂vφ)2

Ω2
, (5)

and the wave equation for ln Ω,

∂v∂u ln Ω = −∂uφ ∂vφ − Ω2e2

2r4
+

Ω2

4r2
+

∂ur ∂vr

r2
. (6)

The first order system. Given r, φ and Ω, solutions of the Einstein
equations, let

ν := ∂ur, (7)

λ := ∂vr, (8)

̟ :=
e2

2r
+

r

2
− Λ

6
r3 +

2r

Ω2
νλ, (9)

µ :=
2̟

r
− e2

r2
+

Λ

3
r2, (10)

θ := r∂vφ, (11)

ζ := r∂uφ (12)

and

κ :=
λ

1 − µ
. (13)

Notice that we may rewrite (9) as

Ω2 = − 4νλ

1 − µ
= −4νκ. (14)
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The Einstein equations imply the first order system for (r, ν, λ, ̟, θ, ζ, κ)

∂ur = ν, (15)

∂vr = λ, (16)

∂uλ = νκ∂r(1 − µ), (17)

∂vν = νκ∂r(1 − µ), (18)

∂u̟ =
1

2
(1 − µ)

(
ζ

ν

)2

ν, (19)

∂v̟ =
1

2

θ2

κ
, (20)

∂uθ = − ζλ

r
, (21)

∂vζ = − θν

r
, (22)

∂uκ = κν
1

r

(
ζ

ν

)2

, (23)

with the restriction

λ = κ(1 − µ). (24)

Under appropriate regularity conditions for the initial data, the system of
first order PDE (15)−(24) also implies the Einstein equations.

Reissner-Nordström initial data. We take the initial data on the v axis
to be the data on the event horizon of a subextremal Reissner-Nordström
solution with mass M . So, we choose initial data as follows:





r(u, 0) = r0(u) = r+ − u,

ν(u, 0) = ν0(u) = −1,

ζ(u, 0) = ζ0(u),
for u ∈ [0, U ], (25)

and 



λ(0, v) = λ0(v) = 0,

̟(0, v) = ̟0(v) = M,

θ(0, v) = θ0(v) = 0,

κ(0, v) = κ0(v) = 1,

for v ∈ [0, ∞[. (26)

Here r+ > 0 is the radius of the event horizon. We assume that ζ0 is
continuous and ζ0(0) = 0. We will denote M by ̟0.

Lemma 2.1. Suppose that (r, ν, λ, ̟, θ, ζ, κ) is a solution of the character-
istic initial value problem (15)−(24), with initial conditions (25) and (26).
Then:

• κ is positive;
• ν is negative;
• λ is negative on P \ {0} × [0, ∞[;
• 1 − µ is negative on P \ {0} × [0, ∞[;
• r is decreasing with both u and v;
• ̟ is nondecreasing with both u and v.
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Well posedness of the first order system and stability of the radius

at the Cauchy horizon.

Theorem 2.2. Consider the characteristic initial value problem (15)−(24)
with initial data (25)−(26). Assume ζ0 is continuous and ζ0(0) = 0. Then,
the problem has a unique solution defined on a maximal past set P. More-
over, there exists U > 0 such that P contains [0, U ] × [0, ∞[,

inf
[0,U ]×[0,∞[

r > 0

and

lim
uց0

r(u, ∞) = r−. (27)

Here r− > 0 is the radius of the Cauchy horizon of the Reissner-Nordström
reference solution and

r(u, ∞) = lim
v→∞

r(u, v)

(which exists and is decreasing). Similarly, we also define

̟(u, ∞) = lim
v→∞

̟(u, v).

Theorem 2.2 implies that the spacetime is extendible across the Cauchy
horizon with a C0 metric.

Two effects of any nonzero field.

Theorem 2.3. Suppose that there exists a positive sequence (un) converging
to 0 such that ζ0(un) 6= 0. Then r(u, ∞) < r− for all u > 0.

Lemma 2.4. Suppose that there exists a positive sequence (un) converging
to 0 such that ζ0(un) 6= 0. Then

∫ ∞

0
κ(u, v) dv < ∞ for all u > 0. (28)

This lemma implies that the affine parameter of an outgoing null geodesic
is finite at the Cauchy horizon.

Well posedness for the backwards problem. In Section 6, we will ex-
tend the solutions of Einstein’s equations beyond the Cauchy horizon. For
this we will need to solve a backwards problem, already discussed in Part 1.
The initial conditions will be prescribed as follows:

(Iu)





r(u, 0) = r0(u),
ν(u, 0) = ν0(u),
ζ(u, 0) = ζ0(u),

for u ∈ ]0, U ] ,

(Iv)





λ(U, v) = λ0(v),
̟(U, v) = ̟0(v),
θ(U, v) = θ0(v),
κ(U, v) = κ0(v),

for v ∈ [0, V ],

We let

r̃0(v) = r0(U) +

∫ v

0
λ0(v′) dv′,
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for v ∈ [0, V ]. We assume the regularity conditions:

(h1) the functions ν0, ζ0, λ0, θ0 and κ0 are continuous, and

the functions r0 and ̟0 are continuously differentiable.

We assume the sign conditions:

(h2)





r0(u) > 0 for u ∈ ]0, U ] ,

r̃0(v) > 0 for v ∈ [0, V ],
ν0(u) < 0 for u ∈ ]0, U ] ,

κ0(v) > 0 for v ∈ [0, V ].

We assume the three compatibility conditions:

r′
0 = ν0, (29)

(h3) ̟′
0 =

1

2

θ2
0

κ0
, (30)

λ0 = κ0

(
1 − 2̟0

r̃0
+

e2

r̃2
0

− Λ

3
r̃2

0

)
. (31)

Theorem 2.5. The characteristic initial value problem with initial condi-
tions (Iu) and (Iv) satisfying (h1)−(h3) has a unique solution defined on
a maximal reflected past set R containing a neighborhood of ]0, U ] × {0} ∪
{U} × [0, V ].

Retrieving the Einstein equations from the first order system.

Henceforth, consider the additional regularity condition

(h4) ν0, κ0 and λ0 are continuously differentiable.

Lemma 2.6. Suppose that (r, ν, λ, ̟, θ, ζ, κ) is the solution of the charac-
teristic initial value problem, or the backwards problem, with initial data
satisfying (h1) to (h4). Then the function r is C2, and κ is C1.

Proposition 2.7. The functions r, φ and Ω satisfy (2), (3), (4) and (5).

Proposition 2.8. The first order system (15)−(24) implies (6). Since equa-
tions (2)−(5) imply the first order system, equations (2)−(5) also imply (6).

The partition of spacetime into four regions. In Part 2, we divide
[0, U ] × [0, ∞[ into four disjoint regions, separated by three curves, Γř+, Γř−

and γ, where different estimates can be obtained (see Appendix C). Next
we explain how these curves are constructed.
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u

v

Γř+

Γř
−

γ

U

The curves Γř. We denote by Γř the level sets of the radius function r−1(ř).
These are spacelike curves and consequently may be parameterized by

v 7→ (uř(v), v) or u 7→ (u, vř(u)).

We choose ř+ and ř− sufficiently close to r+ and r− with r− < ř− < ř+ < r+.

The curve γ = γř−,β. Given ř− as before and β > 0, we define γ to be the
curve parametrized by

u 7→
(
u, (1 + β)vř−

(u)) =: (u, vγ(u)), for u ∈ [0, U ].

The choice of β so that r and ̟ are controlled. Choose any β such
that

0 < β < 1
2

(√
1 − 8∂r(1−µ)(r+ ,̟0)

∂r(1−µ)(r− ,̟0) − 1

)
. (32)

Let 0 < ε < ε0. Then there exists Uε > 0 such that

r(u, v) ≥ r− − ε and ̟(u, v) ≤ ̟0 + ε (33)

for (u, v) ∈ J−(γ) ∩ J+(Γř−
) and 0 < u ≤ Uε, provided that the parameters

ř+, ε0 and δ are chosen so that

β < 1
2

(√
(1 + δ)2 − 8

(
ř+
r+

)δ̂2
minr∈[ř+,r+] ∂r(1−µ)(r,̟0)

∂r(1−µ)(r−−ε0,̟0) − (1 + δ)

)
. (34)

Here δ̂ is a bound for
∣∣ ζ
ν

∣∣ in J−(ř+). Suppose that there exist positive
constants C and s such that |ζ0(u)| ≤ Cus. Then, instead of choosing β

according to (32) we may choose

0 < β < 1
2

(√
1 − 8 (1+s)∂r(1−µ)(r+ ,̟0)

∂r(1−µ)(r− ,̟0) − 1

)
. (35)

In this case, (34) should be replaced by

β < 1
2

(√
(1 + δ)2 − 8

[(
ř+
r+

)δ̂2
+s] minr∈[ř+,r+] ∂r(1−µ)(r,̟0)

∂r(1−µ)(r−−ε0,̟0) − (1 + δ)

)
. (36)
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3. Mass inflation

We denote the surface gravities of the Cauchy and black hole horizons in
the reference subextremal Reissner-Nordström black hole by

k− = − 1

2
∂r(1 − µ)(r−, ̟0), k+ =

1

2
∂r(1 − µ)(r+, ̟0), (37)

and define (see Appendix A)

ρ :=
k−

k+
> 1. (38)

This parameter measures how close the black hole is to being extremal,
which corresponds to ρ = 1.

We start by presenting a sufficient condition for the renormalized mass ̟

to blow up identically on the Cauchy horizon.

Theorem 3.1 (Mass inflation). Suppose that ρ > 2 and

∃c>0 ζ0(u) ≥ cus for some 0 < s <
ρ

2
− 1. (39)

Then

̟(u, ∞) = ∞ for each u > 0. (40)

In Appendix A we see how the condition ρ > 2 translates into a relation-
ship between r−, r+ and Λ.

The proof of Theorem 3.1 generally follows the argument on pages 493–497
of [5], where the Λ = 0 case was studied. Nonetheless, the introduction of a
cosmological constant requires a different technical approach, in particular
the use of a foliation by the level sets of the radius function; moreover, since
later on we will need some of the estimates derived in the proof, we present
the relevant details in Appendix B.

The previous techniques only allow us to explore the subregion of param-
eter space determined by (39). The rest of this paper will be dedicated to
the analysis of the full parameter range. The first result in that direction is

Theorem 3.2 (Mass inflation or θ
λ

unbounded). Suppose that

∃c>0 ζ0(u) ≥ cus for some 0 < s < ρ − 1.

If there exists U > 0 such that ̟(U, ∞) < ∞, and U is sufficiently small,
then, for each 0 < δ < U ,

∣∣ θ
λ

∣∣(u, v) tends to +∞, uniformly for u ∈ [δ, U ],
as v ր ∞.

Proof. Suppose that there exists U > 0 such that ̟(U, ∞) < ∞. Going
through the proof of Theorem 3.1, we see that Case 3.2 must occur. So
−λ must be bounded above in J+(γ) as in (109). Furthermore, the lower
estimate on ζ0 guarantees the lower bound (112) for θ in J+(γ). Combin-
ing (109) with (112), we obtain

∣∣∣
θ

λ

∣∣∣(u, v) ≥ C

C(u)

e[−(s+1)∂r(1−µ)(r+ ,̟0)−δ̃]v

e[∂r(1−µ)(r− ,̟0)+δ̃]v

=
1

C(u)
e(2k+(ρ−s−1)−δ̃)v , (41)
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for (u, v) ∈ J+(γ). We choose ř+ sufficiently close to r+, ř− sufficiently
close to r−, β+ and β− sufficiently close to β, and U sufficiently small so
that δ̃ < ρ − s − 1. Let 0 < δ < U . The constant C(u) is bounded above by
C(δ) for u ∈ [δ, U ]. Then, estimate (41) shows that

∣∣ θ
λ

∣∣(u, v) tends to +∞,
uniformly for u ∈ [δ, U ], as v ր ∞. �

In Remark 6.9 we will see that under the hypothesis of the previous the-
orem the Kretschmann scalar always blows up at the Cauchy horizon, as a
consequence of either ̟ or θ

λ
blowing up.

4. No mass inflation

In this section we will prove that mass inflation does not occur if ζ0

decays sufficiently fast as u tends to zero. We also control the field ζ up to
the Cauchy horizon.

Theorem 4.1 (No mass inflation). Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1. (42)

Then

̟(u, ∞) < ∞ for each 0 < u ≤ U,

provided that U is sufficiently small. Furthermore, limuց0 ̟(u, ∞) = ̟0.

Given ε1 > 0, define

D = Dε1 =

{
(u, v) ∈ J+(γ) : u ≤ U and

∫ v

vγ(u)

∣∣∣
θ2

λ

∣∣∣(u, ṽ) dṽ ≤ ε1

}
.

The set D is connected and contains γ. Our goal is to prove that, for U

small enough, D = J+(γ). This is a consequence of

Lemma 4.2. Assume that ρ and ζ0 are as in Theorem 4.1. Then there exist
ε1 > 0 and U > 0 such that, for (u, v) ∈ D,

∫ v

vγ(u)

∣∣∣
θ2

λ

∣∣∣(u, ṽ) dṽ ≤ ε1

2
.

Indeed, for ε1 and U small enough, Lemma 4.2 implies D is open in J+(γ).
Since D is also closed in J+(γ), we conclude that D = J+(γ).

Proof of Lemma 4.2. Our goal is to improve the upper estimate (137) for
−λ in D, to obtain a lower estimate for −λ in D, and to obtain an upper

estimate for |θ| in D. These will allow us to prove that θ2

−λ
(u, v) decays

exponentially in v, from which the conclusion of the lemma will easily follow.
Note that the estimates used in this proof will be sharper than needed here,
for use in Section 6.

Integrating (20) as a linear first order ODE for ̟, starting from γ, leads
to

̟(u, v) = ̟(u, vγ(u))e

∫ v

vγ (u)

(
θ2

−λ
1
r

)
(u,ṽ) dṽ

+

∫ v

vγ(u)
e

∫ v

ṽ

θ2

−λ
1
r

(u,v̄) dv̄

(
1

2

(
1 +

e2

r2
− Λ

3
r2

)
θ2

λ

)
(u, ṽ) dṽ. (43)
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Let ε̃ > 0. If ε1 and U are sufficiently small, we have from (33) and (43)

|̟(u, v) − ̟0| < ε̃, (44)

for (u, v) ∈ D. On the other hand, we have r < ř− in J+(γ) and, using (27),
we know limuց0 r(u, ∞) = r−. Therefore,

−C12k− ≤ ∂r(1 − µ) ≤ −C−1
1 2k− in D,

with C1 > 1. The value of C1 can be chosen as close to one as desired by
decreasing ε1, ř− −r− and U . Henceforth, C1 will denote a constant greater
than one, which can be made arbitrarily close to one by a convenient choice
of parameters. Similarly, δ will denote a positive constant, which can be
made arbitrarily small by a convenient choice of parameters. C will denote
a positive constant.

We start by recalling some estimates over γ. Collecting (118), (130), (136)
and (42), we get

∣∣∣
θ

λ

∣∣∣(uγ(v), v) ≤ C|uγ(v)|se
−2

(
k+

1+β
−k−β−δ

)
v

≤ Ce
−2

(
k+(s+1)

1+β
−k−β−δ

)
v
. (45)

According to (133) and (134),

Ce
−2

(
k−β

1+β
+δ

)
v ≤ −λ(uγ(v), v) ≤ Ce

−2

(
k−β

1+β
−δ

)
v
. (46)

Combining (45) with (46),

|θ|(uγ(v), v) ≤ Ce
−2

(
k+(s+1)

1+β
−

k−β2

1+β
−δ

)
v
. (47)

Finally, according to (135) and (136),

1 + β−

2k+
ln
( c

u

)
≤ vγ(u) ≤ 1 + β+

2k+
ln
(C

u

)
. (48)

Recall that β− < β < β+ can be chosen arbitrarily close to β.
We now improve the upper estimate (137) for −λ in D. Taking into

account (131), for (u, v) ∈ D, we have

e

1
r(U,∞)

∫ v

vř−
(ū)

[∣∣ θ
λ

∣∣|θ|
]
(ū,ṽ) dṽ

≤ 1 + δ,

for ū ∈ [uγ(v), u]. Arguing as in (106),
∫ u

uγ(v)

ν

1 − µ
(ũ, v) dũ ≥ 1−δ

1+δ

maxΓř
−

(1−µ)

minΓř
−

(1−µ)
(vř−

(
uγ(v)) − vř−

(u)
)

≥ C−1
1 q

(1 + β)

(
v − vγ(u)

)
.

Here, 0 < q ≤ 1 is a parameter whose importance will become apparent
below. Equation (108) together with (46) now show that, for (u, v) ∈ D,

− λ(u, v) ≤ Ce
−2

(
k−β

1+β
−δ

)
v
e

−
C

−1
1

q

(1+β)
2k−(v−vγ (u))

= Ce
−2

(
k−(β+q)

1+β
−δ

)
v
e

C
−1
1

q

(1+β)
2k−vγ(u)

. (49)
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The parameter q makes the second exponential grow slower as u ց 0 (at
the cost of making the first exponential decay slower). Note that q = 0
corresponds to (137). This is our improved estimate for −λ from above.

We now obtain a lower estimate for −λ in D. Arguing as above, we have
∫ u

uγ(v)

ν

1 − µ
(ũ, v) dũ ≤ C1(vř−

(uγ(v)) − vř−
(u))

≤ C1

(1 + β)
v. (50)

Using (108) together with (46) once more, for (u, v) ∈ D, we obtain

− λ(u, v) ≥ Ce
−2

(
k−β

1+β
+

k−
1+β

+δ

)
v

= Ce−2(k−+δ)v. (51)

This is our estimate for −λ from below.
We will now control θ in D. Integrating (21) and (22) from γ leads to

θ(u, v) = θ(uγ(v), v) −
∫ u

uγ(v)

ζλ

r
(ũ, v) dũ

and

ζ(u, v) = ζ(u, vγ(u)) −
∫ v

vγ(u)

θν

r
(u, ṽ) dṽ.

It follows that

θ(u, v) = θ(uγ(v), v) −
∫ u

uγ(v)
ζ(ũ, vγ(ũ))

λ

r
(ũ, v) dũ

+

∫ u

uγ(v)

λ

r
(ũ, v)

∫ v

vγ(ũ)

θν

r
(ũ, ṽ) dṽ dũ . (52)

We fix u ≤ U . Given ū ∈ [uγ(v), u], since r is bounded below, from (52) we
obtain

θ(ū, v) ≤ |θ(uγ(v), v)| + C

∫ ū

uγ(v)
|ζ(ũ, vγ(ũ))| |λ(ũ, v)| dũ

+C

∫ ū

uγ(v)
|λ(ũ, v)|

∫ v

vγ(ũ)
|θ(ũ, ṽ)| |ν(ũ, ṽ)| dṽ dũ

=: |θ(uγ(v), v)| + I(ū, v) + II(ū, v). (53)

In the next two paragraphs we bound I and II.
Collecting (118), (129), (136) and (42), we obtain

∣∣∣
ζ

ν

∣∣∣(ũ, vγ(ũ)) ≤ C|ũ|se
−2

(
k+

1+β
−k−β−δ

)
vγ(ũ)

≤ Ce
−2

(
k+(s+1)

1+β
−k−β−δ

)
vγ (ũ)

. (54)

Using (138), (49) and (54), we have

I(ū, v) ≤ Ce
−2

(
k−(β+q)

1+β
−δ

)
v
∫ ū

uγ(v)
e

−2

(
k+(s+1)

1+β
−

k−(β2+β+q)

(1+β)
−δ

)
vγ(ũ)

ũp dũ.
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Here p = ρβ − 1 − δ. Using (48), the integral above can be estimated as

∫ ū

uγ(v)
e

−2

(
k+(s+1)

1+β
−

k−(β2+β+q)

(1+β)
−δ

)
vγ(ũ)

ũp dũ (55)

≤
∫ ū

uγ(v)
e

−2

(
k+(s+1)

1+β
−

k−(β2+β+q)

(1+β)
−δ

)
1+β
2k+

ln( C
ũ )

ũp dũ

≤
∫ ū

0

(
C

ũ

)−s−1+ρ(β2+β+q)+δ

ũp dũ

≤ Cūs+1−ρ(β2+q)−δ,

if

s > ρ(β2 + q) − 1 (56)

and if the parameters are chosen so that δ is sufficiently small. Therefore,
it is possible to bound I as follows:

I(ū, v) ≤ Cūs+1−ρ(β2+q)e
−2

(
k−(β+q)

1+β
−δ

)
v
. (57)

For v ≥ vγ(u), we define

Tu(v) := max
ũ∈[uγ(v),u]

|θ(ũ, v)| . (58)

We emphasize that the constants C will not depend on u. Using (138), (49)
and (58), we see that

II(ū, v) ≤ Ce
−2

(
k−(β+q)

1+β
−δ

)
v
∫ ū

uγ(v)
e

C
−1
1

q

(1+β)
2k−vγ(ũ)

∫ v

vγ(ũ)
Tu(ṽ)ũp dṽdũ

≤ Ce
−2

(
k−(β+q)

1+β
−δ

)
v
∫ ū

uγ(v)
e

C
−1
1

q

(1+β)
2k−vγ(ũ)

ũp dũ

∫ v

vγ(u)
Tu(ṽ) dṽ,

where we used the fact that vγ(u) ≤ vγ(ũ). Again, p = ρβ−1−δ. Using (48),
the first integral above can be estimated as

∫ ū

uγ(v)
e

C
−1
1

q

(1+β)
2k−vγ(ũ)

ũp dũ (59)

≤
∫ ū

uγ(v)
e

C
−1
1

(1+β+)q

(1+β)

2k−
2k+

ln(C
ũ )

ũp dũ

≤
∫ ū

0

(
C

ũ

)C−1
1

1+β+

1+β
ρq

ũpdũ

≤ Cūρ(β−q)−δ,

if

β > q (60)

and if δ is sufficiently small. Therefore it is possible to bound II as follows:

II(ū, v) ≤ Cūρ(β−q)−δe
−2

(
k−(β+q)

1+β
−δ

)
v
∫ v

vγ(u)
Tu(ṽ) dṽ. (61)
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For all v ≥ vγ(u), we estimate Tu(v) using (47), (53), (57) and (61):

Tu(v) ≤ Ce
−2

(
k+(s+1)

1+β
−

k−β2

1+β
−δ

)
v

+ Cus+1−ρ(β2+q)−δe
−2

(
k−(β+q)

1+β
−δ

)
v

+Cuρ(β−q)−δe
−2

(
k−(β+q)

1+β
−δ

)
v
∫ v

vγ(u)
Tu(ṽ) dṽ. (62)

We claim that

Tu(v) ≤ Ce
−2

(
k+(s+1)

1+β
−

k−β2

1+β
−δ

)
v

+Cus+1−ρ(β2+q)−δe
−2

(
k−(β+q)

1+β
−δ

)
v

(63)

for

s > ρ(β2 + β + q) − 1 (64)

and small δ.
We impose (64); it can be checked that considering also the opposite

inequality will not lead to an improvement of the statement of Theorem 4.1
(for the choice of parameters that we make below).

Proof of the claim. Inequality (62) is of the form

Tu(v) ≤ Ce−Av + Cube−av + Ce−av
∫ v

vγ(u)
Tu(ṽ) dṽ,

with

A = 2
(

k+(s+1)
1+β

− k−β2

1+β
− δ

)
, (65)

a = 2
(

k−(β+q)
1+β

− δ
)

, (66)

b = s + 1 − ρ(β2 + q) − δ.

Since we impose (64), A > a > 0, for small δ. Let T̃u(v) = eavTu(v). Then

T̃u(v) ≤ Ce−(A−a)v + Cub + C

∫ v

vγ(u)
e−aṽ T̃u(ṽ) dṽ.

Applying Gronwall’s inequality, we get

T̃u(v) ≤ Ce−(A−a)v + Cub + C

∫ v

vγ(u)

(
e−Aṽ + ube−aṽ

)
dṽ

≤ Ce−(A−a)v + Cub + Ce−Avγ(u) + Cube−avγ (u)

≤ Ce−(A−a)v + Cub + Cu
A

1+β

2k+
−δ

+ Cubu
a

1+β

2k+
−δ

≤ Ce−(A−a)v + Cub.

To estimate e−vγ(u) we used (135). We also used A1+β
2k+

−δ = s+1−ρβ2−δ >

b = s + 1 − ρ(β2 + q) − δ, for small δ. �

Obviously, for (u, v) ∈ D we have

|θ(u, v)| ≤ Tu(v). (67)
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Using (51) and (63), we obtain

∣∣∣
θ2

λ

∣∣∣(u, v) ≤ Ce
−2

(
2k+(s+1)

1+β
−

2k−β2

1+β
−k−−δ

)
v

(68)

+Cu2
(

s+1−ρ(β2+q)−δ
)
e

−2

(
k−(β+2q−1)

1+β
−δ

)
v
. (69)

The exponent in (68) can be made negative if

s > ρ
(
β2 +

β

2
+

1

2

)
− 1 (70)

and the second exponent in (69) can be made negative if

β > 1 − 2q. (71)

Below we will characterize a choice of parameters for which we have
∣∣∣
θ2

λ

∣∣∣(u, v) ≤ Ce−∆v, (72)

for (u, v) ∈ D, with ∆ > 0. However, before we do that, we note that
estimate (72) wraps up the bootstrap argument. Indeed, as limuց0 vγ(u) =
+∞, we can choose U such that

∫ v

vγ(u)

∣∣∣
θ2

λ

∣∣∣(u, ṽ) dṽ <
ε1

2
,

for (u, v) ∈ D.
We now bring together the conditions that we must satisfy in order for the

above argument to work, and we choose our parameters. The number β is
bounded above by (35) and bounded below by (60) and (71); in addition, s

is bounded below by (56), (64) and (70). In fact, the restrictions on s can be
stated in a simpler form: inequality (64) is stricter than (56); inequality (71)
implies that (64) is stricter than (70). So, all the restrictions on s amount
to saying that s is bounded below by (64).

We now select the parameters q and β. The minimum of the maximum
of the lower bounds for β in (60) and (71) is obtained for q = 1

3 . This is our

choice of q. Inequality (35) can be satisfied when s > 2ρ
9 − 1 because

1

3
=

1

2

(√
1 + 82

9 − 1
)

< β <
1

2

(√
1 + 8(1+s)

ρ
− 1

)
.

For (64) to be satisfied we impose 7ρ
9 − 1 < s because

[
ρ(β2 + β + q) − 1

]∣∣∣
β= 1

3
q = 1

3

=
7ρ

9
− 1 <

[
ρ(β2 + β + q) − 1

]∣∣∣
q= 1

3

< s,

Obviously, 2ρ
9 −1 < 7ρ

9 −1. Therefore, if s > 7ρ
9 −1 and we choose β = 1

3 +ε,
with ε > 0 sufficiently small, both (35) and (64) are satisfied.

Therefore, our parameters will be chosen in the following way. Suppose
that we are given initial data ζ0 satisfying (42). We choose β > 1

3 (so

that (60) and (71) hold with q = 1
3) and such that (35) and (64) hold.

When
(ř+, ř−, β+, β−, ε0, ε1, U) → (r+, r−, β, β, 0, 0, 0),

the parameters δ above all converge to 0 (at the cost of increasing the con-
stants C). So, we may choose ř+ sufficiently close to r+, ř− sufficiently close
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to r−, β+ and β− sufficiently close to β, and ε0, ε1 and U sufficiently small
so that (36) holds, the exponent in (68) and the second exponent in (69)
are negative, the integrals (55) and (59) converge, and, finally, such that the
numbers A in (65) and a in (66) satisfy A > a. This will guarantee (72), for
a certain positive ∆ and (a maybe very large but finite value of) C.

The proof of Lemma 4.2 is complete. �

Since (44) holds in D, the fact that D = J+(γ), established as a conse-
quence of Lemma 4.2, implies Theorem 4.1.

We finish this section by controlling the field ζ in the following result.

Lemma 4.3. Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1.

Then there exists a constant C > 0 such that

|ζ(u, v)| ≤ Cus−ρβ2−δ, (73)

for (u, v) ∈ J+(γ), where δ > 0 can be chosen arbitrarily close to zero,
provided that U is sufficiently small.

Proof. Integrating (22), we have

ζ(u, v) = ζ(u, vγ(u)) −
∫ v

vγ(u)

θν

r
(u, ṽ) dṽ. (74)

Collecting (138), (48) and (54), we get

|ζ(u, vγ(u))| ≤ Ce
−2

(
k+(s+1)

1+β
−k−β−δ

)
vγ (u)

uρβ−1−δ

≤ Cus−ρβ2−δ. (75)

On the other hand, from (138), (48), (63) and (67), we obtain

∫ v

vγ(u)

|θν|
r

(u, ṽ) dṽ ≤ Ce
−2

(
k+(s+1)

1+β
−

k−β2

1+β
−δ

)
vγ (u)

uρβ−1−δ

+Cus+1−ρ(β2+q)−δe
−2

(
k−(β+q)

1+β
−δ

)
vγ(u)

uρβ−1−δ

≤ Cus−ρβ2+ρβ−δ + Cus−ρβ2+2ρβ−δ

≤ Cus−ρβ2+ρβ−δ. (76)

Using (75) and (76) in (74), we obtain (73). �

5. Extensions of the metric beyond the Cauchy horizon

In this section we assume that the field ζ0 satisfies

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1,

so that there is no mass inflation, and we examine the possibility of extending
the metric beyond the Cauchy horizon. We regard the (u, v) plane, the
domain of our first order system, as a C2 manifold. Since the Cauchy horizon
corresponds to v = ∞, we must change this coordinate to one with a finite
range. There are two natural choices to do so: either resorting to the radius
function along the outgoing null ray u = U for the new coordinate (i.e.
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choosing λ = −1 on u = U), or setting κ = 1 on the null ray u = U (as was
done for the initial data along the event horizon).

In the first coordinate system, v is then replaced by ṽ = r(U, 0) − r(U, v).
This is the coordinate system that we will later use in Section 6; it transforms
the domain [0, ∞[ of v into a bounded interval for ṽ, even when the field ζ0

is identically zero. In the second coordinate system, which has finite range
only when ζ0 is not identically zero, v is replaced by v̂ :=

∫ v
0 κ(U, v̄) dv̄.

Both maps v 7→ ṽ and v 7→ v̂ are C2([0, ∞[) and have a non-zero deriva-

tive, the first one with range [0, V [, say, and the second one with range [0, V̂ [.
So the map v̂ 7→ ṽ is C2. This map extends to a C1 map from the interval
[0, V̂ ] to the interval [0, V ] (see (86)). By Remark 5.5, the two coordinate
systems (u, ṽ) and (u, v̂) are not equivalent (as C2 coordinate systems) when∣∣ θ

λ

∣∣ is unbounded along u = U .
In both coordinate systems we can extend the metric continuously to the

Cauchy horizon, and consequently beyond the Cauchy horizon, with the
second mixed derivatives of r continuous. In the coordinate system (u, v̂)
this can be done so that the Christoffel symbols are in L2

loc and the field φ

is in H1
loc. Therefore, the Christodoulou-Chruściel inextendibility criterion

for strong cosmic censorship does not hold.

5.1. Coordinates with v replaced by ṽ = r(U, 0) − r(U, v). If there
exists a positive sequence (un) converging to 0 such that ζ0(un) 6= 0 then
we choose U such that (1 − µ)(U, ∞) < 0. In the proof of Lemma 2.4 we
showed that such a U exists; in Proposition 5.2 we will see that under the
present assumptions (1 − µ)(U, ∞) < 0 for any U > 0, so that actually any
choice of U will do. If ζ0 vanishes in a right neighborhood of the origin then
the solution is simply Reissner-Nordström and we can choose any U . We
define f : [0, ∞[→ R, by

f(v) = r(U, 0) − r(U, v), (77)

so that
f ′(v) = −λ(U, v),

and set
V = f(∞) = r(U, 0) − r(U, ∞).

We will change the v coordinate to

ṽ = f(v).

The functions ν0, κ0 and λ0 (equal to −1, 1 and 0, respectively) sat-
isfy hypothesis (h4) (see Section 2). By Lemma 2.6, the function r is C2.
Moreover, λ(U, · ) < 0. Therefore, the change of coordinates of the previous
paragraph is admissible (that is, C2).

We denote by r̃ the function r written in the new coordinates, i.e.

r̃(u, ṽ) = r̃(u, f(v)) = r(u, v).

We let λ̃ = ∂ṽ r̃ and ν̃ = ∂ur̃, whence

λ̃(u, ṽ) =
λ(u, v)

f ′(v)

and
ν̃(u, ṽ) = ν(u, v).
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In particular,

λ̃(U, ṽ) ≡ −1.

Similarly, we define

−Ω̃2(u, ṽ) dudṽ = −Ω̃2(u, f(v))f ′(v) dudv = −Ω2(u, v) dudv.

From (9) we then have

˜̟ (u, ṽ) = ̟(u, v),

and from (13)

κ̃(u, ṽ) =
κ(u, v)

f ′(v)
.

Finally, we also denote by φ̃ the function φ written in the new coordinates,

φ̃(u, ṽ) = φ̃(u, f(v)) = φ(u, v),

and from (11) and (12)

θ̃(u, ṽ) =
θ(u, v)

f ′(v)
, ζ̃(u, ṽ) = ζ(u, v).

Remark 5.1. It is obvious that the functions r̃, ν̃, λ̃, ˜̟ , θ̃, ζ̃ and κ̃ satisfy
the first order system (15)−(24), with respect to the new coordinates (u, ṽ).

Proposition 5.2. Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1.

Then there exists U > 0 such that for all 0 < δ < U , the functions r̃, ν̃, λ̃,
˜̟ , ζ̃ and κ̃ (but not necessarily θ̃) admit continuous extensions to the closed
rectangle [δ, U ] × [0, V ]. Equations (15) to (19), (23), and (24) are satisfied

on this set. Finally, ˜(1 − µ)(u, V ) is negative for u > 0, unless there exists
a right neighborhood of the origin where ζ0 vanishes.

Proof. If ζ0 vanishes in a right neighborhood of the origin, then the con-
clusion is immediate since the functions are obtained from the Reissner-
Nordström solution.

Assume that there exists a positive sequence (un) converging to 0 such
that ζ0(un) 6= 0. We fix 0 < δ < U , and proceed in three steps.

Step 1. We prove that our functions r̃, ν̃, λ̃, ˜̟ , ζ̃ and κ̃ converge uniformly
as functions of u ∈ [δ, U ] as ṽ → V . The convergence of r̃( · , ṽ) to r̃( · , V ) is
uniform on [δ, U ] because

∫ V

ṽ
|λ̃|(u, v̄) dv̄ =

∫ ∞

f−1(ṽ)
|λ|(u, v̄) dv̄ → 0

as ṽ ր V (by (137)).
The convergence of ˜̟ ( · , ṽ) to ˜̟ ( · , V ) is also uniform on [δ, U ] because

∫ V

ṽ

∣∣∣
θ̃2

λ̃

∣∣∣(u, v̄) dv̄ =

∫ ∞

f−1(ṽ)

∣∣∣
θ2

λ

∣∣∣(u, v̄) dv̄ → 0

as ṽ ր V (by (68)-(69)).
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For u ∈ [δ, U ], using (28),
∫ V

ṽ
κ̃(u, v̄) dv̄ ≤

∫ V

ṽ
κ̃(δ, v̄) dv̄ → 0, as ṽ → ∞. (78)

Integrating (18), for ṽ ≤ Ṽ < V ,

ν̃(u, ṽ) − ν̃(u, Ṽ ) = ν̃(u, ṽ)

(
1 − e

∫ Ṽ

ṽ
[κ̃ ˜∂r(1−µ)](u,v̄) dv̄

)
.

Using (138), (78), r(U, ∞) > 0 and ̟(U, ∞) < ∞, we conclude that we
may define ν̃( · , V ). Also, letting Ṽ ր V , the restriction of ν̃( · , ṽ) to [δ, U ]
converges uniformly to ν̃( · , V ) as ṽ ր V . Integrating (18) between ṽ and
V , we conclude that

ν̃(u, V ) < 0 (79)

for each u > 0.
Integrating (22),

ζ̃(u, Ṽ ) = ζ̃(u, ṽ) −
∫ Ṽ

ṽ

θ̃ν̃

r̃
(u, v̄) dv̄.

We use (138) and
∫ V

ṽ
|θ̃|(u, v̄) dv̄ =

∫ ∞

f−1(ṽ)
|θ|(u, v̄) dv̄ → 0

as ṽ ր V (by (63) and (67)). Note that the last convergence is uniform for
u ∈ [δ, U ]. Arguing as in the previous paragraph, we may define ζ̃( · , V ) as
the uniform limit of ζ̃( · , ṽ) when ṽ ր V .

From κ̃(U, ṽ) = −1

(̃1−µ)(U,ṽ)
and (23), we get

κ̃(u, ṽ) =
−1

˜(1 − µ)(U, ṽ)
e

−
∫ U

u

(
ζ̃2

r̃ν̃

)
(ū,ṽ) dū

. (80)

Using ˜(1 − µ)(U, V ) = (1 − µ)(U, ∞) < 0, the uniform convergence of r̃, ν̃

and ζ̃ as ṽ ր V , and the fact that r̃ and ν̃ are bounded away from zero,
we see that we may define κ̃( · , V ). Furthermore, since we already proved
uniform convergence of r̃, ˜̟ , ν̃ and ζ̃, it is clear that κ̃( · , V ) is the uniform
limit of κ̃( · , ṽ) when ṽ ր V . We have

κ̃(u, V ) ≥ κ̃(U, V ) =
−1

˜(1 − µ)(U, V )
> 0

for u ∈ [δ, U ].
The function λ̃ clearly extends to a continuous function on [δ, U ] × [0, V ]

since λ̃ = κ̃ ˜(1 − µ).
Step 2. The functions r̃, ν̃, λ̃, ˜̟ , ζ̃ and κ̃ are continuous in the closed

rectangle [δ, U ] × [0, V ]. Indeed, let h̃ denote one of these functions. We
know h̃( · , V ) is continuous because it is the uniform limit of continuous
functions. Let u ∈ [δ, U ] and ε > 0. There exists δ̃ > 0 such that |ū − u| < δ̃

implies |h̃(ū, V )−h̃(u, V )| < ε
2 . Furthermore, again by uniform convergence,

there exists δ̂ > 0 such that |ṽ − V | < δ̂ implies |h̃(ū, ṽ) − h̃(ū, V )| < ε
2 for
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all ū ∈ [δ, U ]. So, if |ū − u| < δ̃ and |ṽ − V | < δ̂, then |h̃(ū, ṽ) − h̃(u, V )| < ε.
This proves continuity of h̃ at (u, V ).

Step 3. It is clear that the system (15) to (23), except (20), (21) and (22),
is satisfied also on the segment [δ, U ] × {V }. Indeed, to obtain the equa-
tions that involve the derivative with respect to u, we use the fact that if
h̃( · , vn) converges uniformly to h̃( · , V ) and ∂uh̃( · , vn) converges uniformly

to ĥ( · , V ) as vn ր V then ∂uh̃( · , V ) exists and is equal to ĥ( · , V ).
On the other hand, to obtain the equations that involve the derivative

with respect to v, we write these equations in integrated form, say from 0 to
ṽn, and let ṽn ր V . From the (trivial) continuity of the indefinite integral of
a continuous function and the Fundamental Theorem of Calculus, we deduce
that the equations are valid at V .

Obviously, (24) is satisfied on the segment [δ, U ] × {V }.
Finally, taking into account

ν(u, ∞)

(1 − µ)(u, ∞)
≤ ν(u, 0)

(1 − µ)(u, 0)
< ∞

(from (114)) and that ν̃ is negative on [δ, U ] × {V } (see (79)), we conclude

that ˜(1 − µ)(u, V ) is uniformly bounded above by a negative constant on
[δ, U ]. �

The metric and the field. Recall that the reason to study our first order
system is that its solutions allow the construction of spherically symmetric
Lorentzian manifolds (M, g) and fields φ̃ which solve the Einstein equations.
Here M = Q × S2, where Q admits the global null coordinate system (u, ṽ)
defined on [0, U ] × [0, V ] \ {(0, V )}, and the metric is

g = −Ω̃2(u, ṽ) dudṽ + r̃2(u, ṽ) σS2 ,

with Ω̃2 = −4ν̃κ̃. We give M the structure of a C2 manifold, i.e. we only
allow C2 changes of coordinates. Although Proposition 5.2 guarantees that
r is C1 on [0, U ] × [0, V ] \ {(0, V )}, the regularity of the metric is no better
than C0, since, as will become apparent in the proof of Proposition 5.3, ∂ṽκ̃

may blow up on the Cauchy horizon. This allows for C0 extensions of the
metric beyond the Cauchy horizon, by a similar construction as the one that
will be used below for the coordinate system (u, v̂).

The field φ̃ is determined, after prescribing φ̃(0, 0), by integrating (11)
and (12). According to [5, Proposition 13.2] (with the choice u1 = v1 = 0),∫ v

0 |θ|(u, v̄) dv̄ +
∫ u

0 |ζ|(ū, v) dū ≤ C. So, φ̃ is well defined, bounded and
continuous, with continuous partial derivative with respect to u in [0, U ] ×
[0, V ] \ {(0, V )}.
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The nonvanishing Christoffel symbols of the metric on M are

Γ̃C
AB,

Γ̃u
AB = 2Ω̃−2r̃λ̃ σAB = −r̃

1̃ − µ

2ν̃
σAB,

Γ̃ṽ
AB = 2Ω̃−2r̃ν̃ σAB = −r̃

1̃ − µ

2λ̃
σAB ,

Γ̃A
Bũ = ν̃r̃−1δA

B ,

Γ̃A
Bṽ = λ̃r̃−1δA

B ,

Γ̃u
uu = Ω̃−2∂u(Ω̃2) =

∂uν̃

ν̃
+

∂uκ̃

κ̃
,

Γ̃ṽ
ṽṽ = Ω̃−2∂ṽ(Ω̃2) =

∂ṽν̃

ν̃
+

∂ṽκ̃

κ̃
(81)

(see [7, Appendix A]).

Proposition 5.3. Suppose that

∃c1,c2>0 c2us2 ≤ ζ0(u) ≤ c1us1 for some
7ρ

9
− 1 < s1 ≤ s2 < ρ − 1,

For any δ > 0 the field
∣∣ θ̃

λ̃

∣∣(u, ṽ) tends to +∞ as ṽ ր V , uniformly for

u ∈ [δ, U ]. For all u ∈ [δ, U ], with one possible exception, Γ̃ṽ
ṽṽ(u, ṽ) is

unbounded as ṽ ր V . Moreover, Γ̃ṽ
ṽṽ(U, ṽ) tends to −∞ as ṽ ր V .

Proof. The upper bound on ζ0 and Theorem 4.1 imply that ̟(u, ∞) < ∞
for each 0 < u ≤ U , provided that U is sufficiently small. Fix 0 < δ < U .
Using the lower bound on ζ0 together with Theorem 3.2, we know that∣∣ θ̃

λ̃

∣∣(u, ṽ) tends to +∞, uniformly for u ∈ [δ, U ], as ṽ ր V . In particular,

|θ̃(U, ṽ)| → +∞, as ṽ ր V. (82)

Suppose, by contradiction, that there exist u1 < u2 in [δ, U ] for which
Γ̃ṽ

ṽṽ(u1, · ) and Γ̃ṽ
ṽṽ(u2, · ) are bounded. From Part 1, we recall the wave

equation for Ω̃2,

∂u∂ṽ log Ω̃2 = − 2θ̃ζ̃

r̃2
+

4κ̃ν̃e2

r̃4
− 2κ̃ν̃

r̃2
+

2λ̃ν̃

r̃2
.

Using (81) we know that Γ̃ṽ
ṽṽ = ∂ṽ ln(Ω̃2). Our hypotheses and Lemma B.1

imply that θ̃ and ζ̃ are positive on ]0, U ] × [0, Ṽ [. Thus, there exists a
constant C > 0 such that, for δ ≤ u1 < u2 ≤ U and ṽ ∈ [0, V [,

∫ u2

u1

2θ̃ζ̃

r̃2
(ū, ṽ) dū ≤ Γ̃ṽ

ṽṽ(u1, ṽ) − Γ̃ṽ
ṽṽ(u2, ṽ) + C.

According to Proposition 5.2 there exists a positive constant cδ such that

λ̃(u, ṽ) ≤ −cδ < 0 for (u, ṽ) ∈ [δ, U ] × [0, V [

because 1 − µ̃(u, V ) < 0 and κ̃(u, V ) ≥ κ̃(U, V ) > 0 for u > 0. Hence,

∫ u2

u1

2θ̃ζ̃

r̃2
(ū, ṽ) dū ≥ 2cδc2δs2

r̃2(U, V )

∫ u2

u1

θ̃

|λ|(ū, ṽ) dū → +∞ as ṽ ր V.
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This shows that Γ̃ṽ
ṽṽ(u1, · ) − Γ̃ṽ

ṽṽ(u2, · ) tends to +∞, which is a contra-
diction. Therefore, there is at most one u ∈ [δ, U ] for which Γ̃ṽ

ṽṽ(u, · ) is
bounded.

Arguing as in the proof of Proposition 5.10, we use (81) and (18), and
differentiate (80) to obtain

Γ̃ṽ
ṽṽ(U, ṽ) = − 1

˜(1 − µ)2(U, ṽ)

2∂ṽ ˜̟ (U, ṽ)

r̃(U, ṽ)

1

κ̃(U, ṽ)

= −
(

2κ̃∂ṽ ˜̟

r̃

)
(U, ṽ)

= −
(

θ̃2

r̃

)
(U, ṽ). (83)

From (83) we see that Γ̃ṽ
ṽṽ(U, ṽ) tends to −∞ as ṽ ր V . �

Remark 5.4. Note that:

(i) if Γ̃ṽ
ṽṽ(u, · ) is bounded, then Γ̃ṽ

ṽṽ(u1, ṽ) → +∞ as ṽ → V when u1 < u,
and Γ̃ṽ

ṽṽ(u2, ṽ) → −∞ as ṽ → V when u2 > u;
(ii) if Γ̃ṽ

ṽṽ(u, ṽ) → −∞, then Γ̃ṽ
ṽṽ(u2, ṽ) → −∞ as ṽ → V when u2 > u;

(iii) if Γ̃ṽ
ṽṽ(u, ṽ) → +∞, then Γ̃ṽ

ṽṽ(u1, ṽ) → +∞ as ṽ → V when u1 < u.

5.2. Coordinates with v replaced by v̂ :=
∫ v

0 κ(U, v̄) dv̄. Assume there
exists a positive sequence (un) converging to 0 such that ζ0(un) 6= 0. We
change the v coordinate to

v̂ :=

∫ v

0
κ(U, v̄) dv̄. (84)

According to (28), V̂ :=
∫∞

0 κ(U, v̄) dv̄ < ∞. From Lemma 2.6, κ is C1;
since κ is also positive, this change of coordinates is admissible (C2).

We denote by r̂, ν̂, λ̂, ˆ̟ , θ̂, ζ̂ and κ̂ the functions written in the coordi-
nates (u, v̂). In particular,

κ̂(u, v̂) =
κ(u, v)

κ(U, v)
and κ̂(U, v̂) ≡ 1.

From κ̂(U, v̂) ≡ 1 and (23), we get

κ̂(u, v̂) = e
−
∫ U

u

(
ζ̂2

r̂ν̂

)
(ū,v̂) dū

. (85)

Relationship between the ṽ and the v̂ coordinates. We now show that when∣∣ θ
λ

∣∣ is unbounded the change of coordinates from ṽ to v̂ is not C2 at the
Cauchy horizon. From (77) and (84), we write

dṽ

dv
(v) = −λ(U, v)

and
dv̂

dv
(v) = κ(U, v).

So
dṽ

dv̂
(v̂) = −(1 − µ)(U, v) = −(1̂ − µ)(U, v̂). (86)
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Using the chain rule, (10) and (20), we obtain

d2ṽ

dv̂2
(v̂) = − d

dv
(1 − µ)(U, v)

dv

dv̂
(v̂)

=

(
2

r
∂v̟

)
(U, v)

1

κ(U, v)
+ bounded terms

=

(
1

r

θ2

κ2

)
(U, v) + bounded terms

=

[
(1 − µ)2

r

(
θ

λ

)2
]

(U, v) + bounded terms. (87)

According to Proposition 5.2, (1 − µ)(U, · ) is bounded away from zero. So
indeed, we have

Remark 5.5. The change of coordinates from v̂ to ṽ is not C2 at the Cauchy
horizon when

∣∣ θ
λ

∣∣ is unbounded along u = U .

The next result is a direct translation of Proposition 5.3 to the new co-
ordinates (u, v̂).

Proposition 5.6. Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1,

and suppose there exists a positive sequence (un) converging to 0 such that
ζ0(un) 6= 0. Then there exists U > 0 such that for all 0 < δ < U , the

functions r̂, ν̂, λ̂, ˆ̟ , ζ̂ and κ̂ (but not necessarily θ̂) admit continuous

extensions to the closed rectangle [δ, U ] × [0, V̂ ]. Equations (15) to (19),

(23), and (24) are satisfied on this set. Finally, ̂(1 − µ)(u, V̂ ) is negative for
u > 0.

Proof. This is a consequence of Propostion 5.2 and the fact that the map
v̂ 7→ ṽ extends to a C1 map from [0, V̂ ] to [0, V ]. For example, to check (16)
at the Cauchy horizon, note that from ∂ṽ r̃(u, ṽ) = λ̃(u, ṽ) we conclude that

∂v̂ r̂(u, v̂) = ∂ṽ r̃(u, ṽ)
dṽ

dv̂
(v̂) = λ̃(u, ṽ)[−(1 − µ)(U, v)]

=
λ(u, v)

λ(U, v)
(1 − µ)(U, v) =

λ(u, v)

κ(U, v)
= λ̂(u, v̂).

�

The spherically symmetric Lorentzian manifold M is now Q̂ × S2, where
Q̂ admits the global null coordinate system (u, v̂) defined on [0, U ] × [0, V̂ ] \
{(0, V̂ )}, and the metric is

g = −Ω̂2(u, v̂) dudv̂ + r̂2(u, v̂) σS2 ,

with Ω̂2 = −4ν̂κ̂. The field φ̂(u, v̂) equals φ(u, v) and so φ̃(u, ṽ). The
nonvanishing Christoffel symbols of the metric on M are written as the
ones above, with tildes replaced by hats. For example, instead of (81), we
have

Γ̂v̂
v̂v̂ = Ω̂−2∂v̂(Ω̂2) =

∂v̂ν̂

ν̂
+

∂v̂κ̂

κ̂
. (88)
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Proposition 5.7. Suppose that

∃c1,c2>0 c2us2 ≤ ζ0(u) ≤ c1us1 for some
7ρ

9
− 1 < s1 ≤ s2 < ρ − 1.

For any δ > 0 the field
∣∣ θ̂

λ̂

∣∣(u, v̂) tends to +∞ as v̂ ր V̂ , uniformly for

u ∈ [δ, U ]. Moreover, Γ̂v̂
v̂v̂(u, v̂) → +∞ as v̂ ր V̂ for each u ∈ [δ, U [.

Proof. The fact that
∣∣ θ̂

λ̂

∣∣(u, v̂) tends to +∞, uniformly for u ∈ [δ, U ], as

v̂ ր V̂ follows from Proposition 5.3 because this quantity is invariant under
changes of coordinates.

The coordinate transformation from ṽ to v̂ has regularity C1([0, V ]) ∩
C2([0, V [). As a coordinate transformation is a diffeomorphism, we have
that both dv̂

dṽ
and dṽ

dv̂
are always different from zero. Hence, the fact that

λ̃ is bounded and bounded away from zero in [δ, U ] × [0, V ] implies that λ̂

is bounded and bounded away from zero [δ, U ] × [0, V̂ ]. So, obviously, κ̂ is

bounded in [δ, U ] × [0, V̂ ]. Therefore, the proof of Proposition 5.3 applies to

the present case and for all u ∈ [δ, U ], with one possible exception, Γ̂v̂
v̂v̂(u, v̂)

is unbounded as v̂ ր V̂ .
In this case we have that Γ̂v̂

v̂v̂(U, v̂) is bounded because κ̂(U, v̂) ≡ 1. It
follows from Remark 5.4 that

Γ̂v̂
v̂v̂(u, v̂) → +∞ as v̂ → V̂

for each u ∈ [δ, U [. �

Remark 5.8. Examining the proof of Proposition 5.7, we see that we only
used the specific form of the coordinates v̂ in the last paragraph. So, if ṽ 7→ v̊

is any coordinate transformation with regularity C1([0, V ]) ∩ C2([0, V [), we

conclude that there is at most one value u > 0 for which Γ̊v̂
v̊v̊(u, v̊) is bounded.

If Γ̊v̊
v̊v̊(ū, v̊) is bounded, then Γ̊v̊

v̊v̊(u, v̊) → −∞ as v̊ → V̊ for u > ū, and

Γ̊v̊
v̊v̊(u, v̊) → +∞ as v̊ → V̊ for u < ū. This excludes the existence of C0,1

extensions of the metric using these coordinates.

Remark 5.9. Suppose that the hypotheses of Proposition 5.3 hold. Then
Γ̃ṽ

ṽṽ(U, ṽ) tends to −∞ as ṽ → V , and Γ̂v̂
v̂v̂(U, v̂) is bounded. From elemen-

tary Riemannian geometry we have

Γ̂v̂
v̂v̂ =

dṽ

dv̂
Γ̃ṽ

ṽṽ +
dv̂

dṽ

d2ṽ

dv̂2
,

and so d2ṽ
dv̂2 must blow up at the Cauchy horizon (as was already shown in

(87) by direct computation). This again shows that the two coordinate sys-
tems (u, ṽ) and (u, v̂) are not C2 compatible. More generally, the same rea-
soning can be applied to show the C2 incompatibility of any two coordinate
systems whose Christoffel symbols Γv

vv have different asymptotic behavior at
the Cauchy horizon. In particular, different choices of U yield incompatible
(u, v̂) coordinates (when θ

λ
is unbounded).

It turns out that, although unbounded, the Christoffel symbols of the
(u, v̂) coordinates are in L2.
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Proposition 5.10. Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1.

For any 0 < δ < U , the Christoffel symbols Γ̂C
AB, Γ̂u

AB, Γ̂v̂
AB, Γ̂A

Bû, Γ̂A
Bv̂

and Γ̂u
uu are bounded in [δ, U ] × [0, V̂ ]. Furthermore,

∫ V̂
0 |Γ̂v̂

v̂v̂|2(u, v̂) dv̂ and
∫ V̂

0 |θ̂|2(u, v̂) dv̂ are bounded for u ∈ [δ, U ]. Consequently, the Christoffel

symbols and θ̂ (and also ζ̂) belong to L2(Mδ), with Mδ the preimage of

[δ, U ] × [0, V̂ ] by the double null coordinate system (u, v̂).

Proof. In the proof of Proposition 5.6 we showed that all the functions in
the first order system except θ̂, i.e. the functions r̂, ν̂, λ̂, ˆ̟ , ζ̂ and κ̂, extend
to continuous functions in [δ, U ] × [0, V̂ ], with r̂ > 0, ν̂ < 0 and κ̂ > 0. In
addition, we proved that all the equations of the first order system (15)−(24),

except (20), (21) and (22), are satisfied in [δ, U ] × [0, V̂ ]; in particular (23)
(the equation for ∂uκ̂) is satisfied in this rectangle; moreover, the expression
for ∂uν̂ is obtained from

ν̂(u, v̂) = −e
−
∫ v̂

0

(
2κ̂ 1

r̂2

(
e2

r̂
+ Λ

3
r̂3− ˆ̟

))
(u,v̄) dv̄

.

Therefore, Γ̂C
AB, Γ̂u

AB , Γ̂v̂
AB, Γ̂A

Bû, Γ̂A
Bv̂ , and Γ̂u

uu are bounded in [δ, U ]× [0, V̂ ].

By (20), we know that
∫ V̂

0 |θ̂|2(u, v̂) dv̂ is bounded for u ∈ [δ, U ]. Differ-
entiating both sides of (85) with respect to v̂, and using (18) and (22), we
get

∂v̂κ̂

κ̂
(u, v̂) = −2

∫ U

u

ζ̂∂v̂ ζ̂

r̂ν̂
(ū, v̂) dū +

∫ U

u

ζ̂2λ̂

r̂2ν̂
(ū, v̂) dū

+

∫ U

u

ζ̂2∂v̂ν̂

r̂ν̂2
(ū, v̂) dū

= 2

∫ U

u

ζ̂θ̂

r̂2
(ū, v̂) dū +

∫ U

u

ζ̂2λ̂

r̂2ν̂
(ū, v̂) dū

+

∫ U

u

ζ̂2κ̂∂r̂(1̂ − µ)

r̂ν̂
(ū, v̂) dū

Let 0 < δ < U . From the proof of Theorem 2.3 (see Part 2) we have

ν̂(u, V̂ ) ≤ −c < 0 for u ∈ [δ, U ]. The previous equality, (18) and (88) then
imply that there exists a C > 0 such that

|Γ̂v̂
v̂v̂|(u, v̂) ≤ C

(
1 +

∫ U

u
|θ̂|(ū, v̂) dū

)

for (u, v̂) ∈ [δ, U ] × [0, V̂ [, and so, using Hölder’s inequality,

|Γ̂v̂
v̂v̂|2(u, v̂) ≤ C

(
1 +

∫ U

u
|θ̂|2(ū, v̂) dū

)
.



GLOBAL UNIQUENESS WITH A COSMOLOGICAL CONSTANT - PART 3 27

Therefore,
∫ V̂

0
|Γ̂v̂

v̂v̂|2(u, v̂) dv̂ ≤ C

(
1 +

∫ V̂

0

∫ U

u
|θ̂|2(ū, v̂) dūdv̂

)

= C

(
1 +

∫ U

u

∫ V̂

0
|θ̂|2(ū, v̂) dv̂dū

)

≤ C,

for u ∈ [δ, U ].

Finally, note that the square of the L2 norm of a function ĥ on Mδ is
given by

∫

Mδ

ĥ2 dV4 = 4π

∫

[δ,U ]×[0,V̂ ]

[
r̂2 Ω̂2

2
ĥ2

]
(u, v̂) dudv̂.

Since the functions r̂ and Ω̂2 = −4ν̂κ̂ are bounded in [δ, U ] × [0, V̂ ], we

conclude that the Christoffel symbols and θ̂ are in L2(Mδ). �

So, in our framework the Christodoulou-Chruściel formulation of strong
cosmic censorship (see [1]) does not hold:

Corollary 5.11. Suppose that

∃c>0 |ζ0(u)| ≤ cus for some nonnegative s >
7ρ

9
− 1.

Then (M, g) and φ̂ extend across the Cauchy horizon (in a non-unique way)

to spherically symmetric (M̌, ǧ) and φ̌, with M̌ = Q̌ × S2 a C2 manifold
and

ǧ = −Ω̌2(u, v̂) dudv̂ + ř2(u, v̂) σS2

a C0 metric on M̌. Here Q̌ has a global null coordinate system (u, v̂) defined

on [0, U ] × [0, V̂ ] \ {(0, V̂ )} ∪ V, with V a neighborhood of ]0, U ] × {V̂ }.
Furthermore,

Γ̌ ∈ L2
loc and φ̌ ∈ H1

loc. (89)

Proof. For (u, v̂) with u > 0 and v̂ > V̂ , define

Ω̌2(u, v̂) = Ω̂2(u, V̂ ), φ̌(u, v̂) = φ̂(u, V̂ ),

and
ř(u, v̂) = r̂(u, V̂ ) + λ̂(u, V̂ )(v̂ − V̂ ).

Choose a neighborhood V of ]0, U ] × {V̂ } such that ř > 0 on [0, U ] × [0, V̂ ] \
{(0, V̂ )}∪ V. The extensions Ω̌2, φ̌ and ř of Ω̂2, φ̂ and r̂ are continuous. For

u > 0 and v̂ > V̂ , we get

∂uΩ̌2(u, v̂) = ∂uΩ̂2(u, V̂ ), ∂v̂Ω̌2(u, v̂) = 0,

∂uφ̌(u, v̂) = ∂uφ̂(u, V̂ ), ∂v̂φ̌(u, v̂) = 0,

ν̌(u, v̂) = ν̂(u, V̂ ) + ∂uλ̂(u, V̂ )(v̂ − V̂ )

and
λ̌(u, v̂) = λ̂(u, V̂ ).

Clearly, ∂uΩ̌2, λ̌ and ν̌ are also continuous. Therefore, Γ̌C
AB , Γ̌u

AB , Γ̌v̂
AB , Γ̌A

Bû,

Γ̌A
Bv̂, and Γ̌u

uu are continuous, and so is the field ζ̌. Finally, Γ̌v̂
v̂v̂ and θ̌ are
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zero for v̂ > V̂ . It would be easy to construct other extensions of (M, g)

and φ̂ satisfying (89). �

Note that there is no guarantee that the extensions above satisfy the
Einstein equations. Moreover, the function θ̂ may not admit a continuous
extension to the Cauchy horizon.

Remark 5.12. Since in the previous extension

∂v̂ν̌(u, v̂) = ∂uλ̌(u, v̂) = ∂uλ̂(u, V̂ ),

for v̂ > V̂ , we constructed a C0 extension of the metric such that ( Γ̌ ∈ L2
loc,

φ̌ ∈ H1
loc and) the second mixed derivatives of ř are continuous. This would

not be possible if ˆ̟ ( · , V̂ ) were +∞ (see (17) and (18)). In [5, Theorem 11.1]
M. Dafermos constructs C0 extensions of the metric without assuming any
restriction on the continuous function ζ0, so without any control on ˆ̟ ( · , V̂ ).

6. Extensions of solutions beyond the Cauchy horizon

It is clear that in order to improve on the results of the previous section
we need to control the field θ

λ
. In view of Proposition 5.3, this requires a

stronger restriction on the exponent s. Once the field is controlled, it turns
out to be possible to construct smooth extensions of our spacetime which in
fact are solutions of the Einstein equations.

More precisely, in the main part of this section we assume that

∃c>0 |ζ0(u)| ≤ cus for some s >
13ρ

9
− 1.

In Lemma 6.1, we obtain the desired bound for θ
λ

in J+(γ). We then start
by proving that our solution of the first order system (15)−(24) can be
extended to the closed rectangle [δ, U ]× [0, V ], for any 0 < δ < U , while still
satisfying (15)−(24). By taking the values of the functions at the Cauchy
horizon as initial data on [δ, U ] × {V }, and choosing new initial data on
{U}×[V, V +ε], we can build (non-unique) extensions of the solution beyond
the Cauchy horizon. The new initial data can be chosen with the required
regularity so that we obtain classical solutions of the Einstein equations. We
finish the section by analyzing the behavior of the Kretschmann scalar at
the Cauchy horizon, under the hypotheses used in this and in the previous
sections.

Lemma 6.1 (Bounding θ
λ

). Suppose that

∃c>0 |ζ0(u)| ≤ cus for some s >
13ρ

9
− 1.

Then there exists a constant C > 0 such that
∣∣∣
θ

λ

∣∣∣(u, v) ≤ C, (90)

for (u, v) ∈ J+(γ), provided U is sufficiently small. Furthermore,

lim
(u,v)→(0,∞)

∣∣∣
θ

λ

∣∣∣(u, v) = 0. (91)
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Proof. Integrating (115), we obtain

θ

λ
(u, v) =

θ

λ
(uγ(v), v)e

−
∫ u

uγ (v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

−
∫ u

uγ(v)

ζ

r
(ũ, v)e−

∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ. (92)

By Theorem 4.1, we know that we have |∂r(1 − µ) + 2k−| < δ in J+(γ) for
sufficiently small U . Using (45) and (50),

∣∣∣
θ

λ

∣∣∣(uγ(v), v)e
−
∫ u

uγ (v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ Ce
−2

(
k+(s+1)

1+β
−k−β−δ

)
v
e

2

(
k−

1+β
+δ

)
v

≤ Ce
−

2k+
1+β

(s+1−ρ(β2+β+1)−δ)v
. (93)

This exponent can be made negative for

s > ρ(β2 + β + 1) − 1. (94)

Now, according to (121)

ν

1 − µ
(ū, v) ≤ 1 + δ

2k+ū
,

due to the monotonicity of ν
1−µ

. Thus,

e
−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū ≤ e(ρ+δ) ln( u

ũ) =

(
u

ũ

)ρ+δ

≤
(

U

ũ

)ρ+δ

. (95)

Combining this with (73), if s > ρ(β2 + 1) − 1 and if the parameters are
chosen appropriately, we get

∫ u

uγ(v)

|ζ|
r

(ũ, v)e
−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ

≤ C

∫ u

uγ(v)
ũs−ρβ2−δũ−ρ−δ dũ

≤ Cus+1−ρ(β2+1)−δ . (96)

Using (93) and (96) in (92), taking into account that the right-hand side

of (94) would be 13ρ
9 − 1 if β were 1

3 , and recalling that we can choose

β = 1
3 + ε, we obtain (90).

To prove the last assertion, notice that for (u, v) ∈ J−(γ) ∩ J+(Γř−
)

the estimate on the right-hand side of (45) applies since u ≤ uγ(v). Also,
recall (122). All this information, together with (92) and the bounds (93)
and (96), implies (91). �

Theorem 6.2 (Extending the solution of the first order system up to the
Cauchy horizon). Suppose that

∃c>0 |ζ0(u)| ≤ cus for some s >
13ρ

9
− 1.

Then there exists U > 0 such that for all 0 < δ < U , the functions r̃, ν̃, λ̃,
˜̟ , θ̃, ζ̃ and κ̃ satisfy the first order system (15)−(24) on the closed rectangle
[δ, U ] × [0, V ].
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Remark 6.3. Theorem 3.2 and Proposition 5.3 imply that there is no hope
of lowering the constant 13

9 below 1.

Proof of Theorem 6.2. We fix 0 < δ < U . We already did most of the
work in Proposition 5.2. So, we just need to prove the assertion for θ̃ and
that (20), (21) and (22) are satisfied on [δ, U ]× [0, V ]. As before, we proceed
in three steps.

Step 1. We prove that θ̃ satisfies

∀ε>0 ∃δ̃>0 ∀u∈[δ,U ] |ṽ − V | < δ̃ ⇒ |θ̃(u, ṽ) − θ̃(u, V )| < ε. (97)

We let v ր ∞ in (92). Taking into account the estimate (93) for the first
term on the right-hand side, and using Lebesgue’s Dominated Convergence
Theorem and (96) for the second term on the right-hand side, we conclude
that

θ

λ
(u, ∞) = −

∫ u

0

ζ

r
(ũ, ∞)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,∞) dū

dũ.

Hence (̃
θ

λ

)
(u, V ) =

θ

λ
(u, ∞)

is well defined and θ̃(u, V ) =
(̃

θ
λ

)
(u, V )λ̃(u, V ) is also well defined. We now

wish to prove uniform convergence of θ
λ

( · , v) to θ
λ

( · , ∞), as v ր ∞. We
write

θ

λ
(u, v) − θ

λ
(u, ∞) =

θ

λ
(uγ(v), v)e

−
∫ u

uγ (v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

−
∫ u

δ̂

ζ

r
(ũ, v)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ

+

∫ u

δ̂

ζ

r
(ũ, ∞)e−

∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,∞) dū

dũ

−
∫ δ̂

uγ(v)

ζ

r
(ũ, v)e−

∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,v) dū

dũ

+

∫ δ̂

0

ζ

r
(ũ, ∞)e

−
∫ u

ũ

[
ν

1−µ
∂r(1−µ)

]
(ū,∞) dū

dũ

=: I + II + III + IV + V.

Suppose that we are given ε > 0. Notice the upper limits of the integrals in
IV and V : the outer integrals have upper limit δ̂, while the inner integrals
have upper limit u. Nevertheless, we may do computations similar to (96),

using (95), to conclude that we may choose δ̂ > 0 so that |IV | + |V | < ε
3 ,

for all u ∈ [δ, U ]. We fix such a δ̂. By (93), there exists Ṽε > 0 such that
for v ≥ Ṽε we have |I| < ε

3 , again for all u ∈ [δ, U ]. When estimating
|II + III| we replace the upper limit of integration u by U . Finally, by
uniform convergence of the functions in the integral II to the functions in
the integral III, in [δ̂, U ], there exists Vε ≥ Ṽε such that |II + III| < ε

3 , for
v ≥ Vε. So for v ≥ Vε and for all u ∈ [δ, U ], we have

∣∣∣
θ

λ
(u, v) − θ

λ
(u, ∞)

∣∣∣ < ε.
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This establishes the desired uniform convergence.
Step 2. As in Step 2 of the proof of Proposition 5.2, we conclude that θ̃

is continuous in the closed rectangle [δ, U ] × [0, V ].
Step 3. As in Step 3 of the proof of Proposition 5.2, we conclude that (20),

(21) and (22) are satisfied also on the segment [δ, U ] × {V }. �

Remark 6.4. The function ˜̟ (U, · ) is continuously differentiable on [0, V ]
due to (20).

On the choice of initial data beyond the Cauchy horizon. Fix 0 < ε̂ <

r̃(U, V ), and consider the continuous extension λ̃(U, · ) ≡ −1 to the interval
[0, V + ε̂]. According to this choice, define

r̃(U, ṽ) = r̃(U, V ) +

∫ ṽ

V
λ̃(U, v̄) dv̄ = r̃(U, V ) − (ṽ − V ),

for ṽ ∈ ]V, V + ε̂]. The upper bound on ε̂ is imposed to guarantee that

r̃(U, V + ε̂) = r̃(U, V ) − ε̂ > 0.

Choose a continuously differentiable extension of ˜̟ (U, · ) to the interval

[0, V + ε̂], with ∂ṽ ˜̟ (U, · ) ≥ 0, for ṽ ∈ ]V, V + ε̂]. Since ˜(1 − µ)(U, V ) < 0,
by continuity, there exists 0 < ε ≤ ε̂ such that

˜(1 − µ)(U, ṽ) =

(
1 − 2 ˜̟

r̃
+

e2

r̃2
− Λ

3
r̃2

)
(U, ṽ) < 0,

for ṽ ∈ ]V, V + ε]. For ṽ ∈ ]V, V + ε], define

κ̃(U, ṽ) =
−1

˜(1 − µ)(U, ṽ)
(98)

and
θ̃(U, ṽ) = sign θ̃(U, V )

√
2κ̃∂ṽ ˜̟ (U, ṽ). (99)

Take the sign of θ̃(U, V ) to be +1 if θ̃(U, V ) ≥ 0, and −1 if θ̃(U, V ) <

0. These choices guarantee (30) and (31). Together with the values of
r̃(u, V ), ν̃(u, V ) and ζ̃(u, V ), they provide initial data for the first order
system (15)−(24) on ]0, U ] × {V } ∪ {U} × [V, V + ε].

Theorem 6.5 (Extending the solution of the first order system beyond the
Cauchy horizon). Suppose that

∃c>0 |ζ0(u)| ≤ cus for some s >
13ρ

9
− 1.

Then there exist (non-unique) extensions of the solution of the first or-
der system (15)−(24) beyond the Cauchy horizon, which are still solutions
of (15)−(24).

Proof. Choose any continuously differentiable extension of ˜̟ (U, · ), with
∂ṽ ˜̟ (U, · ) ≥ 0. As described above, this determines initial data for the
first order system (15)−(24) on ]0, U ] × {V } ∪ {U} × [V, V + ε], for some
ε > 0. According to Theorem 2.5, there exists a unique solution defined on
a maximal reflected past set R containing a neighborhood of ]0, U ] × {V } ∪
{U} × [V, V + ε]. This is an extension of the original solution beyond the
Cauchy horizon: as explained in Part 1, solutions of (15)−(24) can be glued
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along a common edge of two rectangles provided that all functions coincide
on that edge, since the extended functions are clearly continuous and the
equations imply the continuity of the relevant partial derivatives. �

Remark 6.6. The original version of the existence and uniqueness theorem
in Part 1 could have been used here instead of Theorem 2.5, by defining our
coordinate ṽ using the values of r(δ, · ) instead of the values r(U, · ), i.e. we
could have replaced (77) by

ṽ = f(v) = r(δ, 0) − r(δ, v).

In this case, we should consider the first order system with initial data on
[δ, U ] × {V } ∪ {δ} × [V, V + ε]. We would then obtain an extension of the
solution to [δ, U ] × [V, V + ε̃] for some 0 < ε̃ < ε. However, our approach
above, using Theorem 2.5, guarantees that the domain of our extended so-
lution contains a neighborhood of the whole Cauchy horizon ]0, U ] × {V }.
If we had insisted on using the original existence and uniqueness theorem
in Part 1, we would only have known that there existed a solution whose
domain contained a neighborhood of ]δ, U ]×{V }, for δ arbitrarily small; but
if δ changed, the solution might change, because we would have to change
the initial data.

We now wish to see that the solution of our first order system corresponds
to a solution of the Einstein equations. Using Propositions 2.7 and 2.8, we
know that this is the case provided that the regularity hypothesis (h4) (see
Section 2) is satisfied, which it is. Indeed, the extended solution is a solution
of the backward problem where λ̃(U, ṽ) ≡ −1 and κ̃(U, ṽ) are C1 on [0, V +ε]
by our choice of initial data. On the other hand, ν̃(u, 0) = ν0(u) ≡ −1.
Hence, we proved

Theorem 6.7 (Extending the solution of the Einstein equations beyond
the Cauchy horizon). Under the hypotheses of Theorem 6.5, there exists a

neighborhood V of ]0, U ] × {V } such that the extended functions ř, φ̌ and Ω̌
are (classical) solutions of the Einstein equations (2), (3), (4), (5) and (6)
in [0, U ] × [0, V ] \ {(0, V )} ∪ V.

Remark 6.8. By Lemma 2.6 we conclude that ř is C2, and ν̌ and κ̌ are
C1. Therefore, Ω̌2 is C1, and so the metric is also C1. The field φ̌ is
also C1 because θ̌ and ζ̌ are continuous. Furthermore, ∂u∂ṽΩ̌2 exists and is
continuous in this (u, ṽ) chart. We emphasize that Ω̌2 does not have to be
C2 in this (u, ṽ) chart. Indeed,

Ω̌2(u, 0) = −4ν0(0)κ(u, 0) = 4e
−
∫ u

0

ζ2
0

(u′)

r(u′,0)
du′

.

This implies

∂uΩ̌2(u, 0) = −4
ζ2

0 (u)

r(u, 0)
e

−
∫ u

0

ζ2
0 (u′)

r(u′,0)
du′

, (100)

and

∂2
uΩ̌2(u, 0) = 4

(
− ζ2

0 (u)

r2(u, 0)
+

ζ4
0 (u)

r2(u, 0)
− (ζ2

0 )′(u)

r(u, 0)

)
e

−
∫ u

0

ζ2
0

(u′)

r(u′,0)
du′

,
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with r(u, 0) = r+ − u. So, if 0 ≤ u ≤ U is a point where ζ2
0 is not differen-

tiable, then ∂2
uΩ̌2(u, 0) does not exist.

The Kretschmann scalar. Consider M as a C3 manifold. We finish with
some remarks about the behavior of the Kretschmann scalar

RαβγδRαβγδ ,

whose blowup prevents the existence of C2 extensions of the metric across
the Cauchy horizon. A straightforward, though lengthy, computation shows
that

RαβγδRαβγδ =
16

r6

[(
̟ − 3e2

2r
+

Λ

6
r3

)
+

r(1 − µ)

2

( ζ

ν

)( θ

λ

)]2

+
16

r6

(
̟ − e2

2r
+

Λ

6
r3

)2

+
16

r6

(
̟ − e2

r
− Λ

3
r3

)2

+4
(1 − µ)2

r4

(ζ

ν

)2( θ

λ

)2

(see [9, Section 2], [4, Section 2] and [8, Appendix A]). Note that if e =

Λ = 0, the Kretschmann scalar reduces to 48̟2

r6 , the well known value for
the Schwarzschild metric.

Remark 6.9 (Kretschmann scalar).

(i) Under the hypotheses of Theorem 3.2, for each 0 < u ≤ U ,

(RαβγδRαβγδ)(u, ṽ) → ∞, as ṽ ր V.

(ii) Under the hypotheses of Theorem 6.2,

∃C>0 |RαβγδRαβγδ| ≤ C.

Proof. In case (i), the conclusion is immediate if ˜̟ (u, V ) = ∞. When
˜̟ (u, V ) < ∞, we know that ˜̟ (u, V ) is close to ̟0 for small u. We have
estimates (138) and (111), for −ν from above and for ζ from below, re-
spectively, and also that (1 − µ)(u, · ) is bounded from above by a negative
constant (see the proof of Proposition 5.2; it applies to the present situation
because we only need ˜̟ (u, V ) to be close to ̟0 to show that ν̃(u, V ) < 0).

Therefore, the result follows from
∣∣ θ̃

λ̃

∣∣(u, ṽ) → +∞, as ṽ ր V , for u > 0.

In case (ii), the renormalized mass ̟ and
∣∣ θ̃

λ̃

∣∣ are bounded (see (90)). �

Appendix A. On the choice of the parameters and its
consequences

The objective of this appendix is to study the behavior of ρ (defined
in (38), the quotient of the surface gravities at r− and at r+ of the reference
subextremal Reissner-Nordström black hole) as a function of the parameters
Λ, ̟0 and e. It turns out that it is easiest to express ρ in terms of the new
parameters σ and Υ, defined in (101). The formula for ρ in terms of σ and
Υ is given in (103). At the end of this appendix, the reader can find a figure
showing the behavior of ρ in the (σ, Υ) plane.
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We consider the fourth order polynomial

p(r) := r2(1 − µ)(r, ̟0) = − Λ

3
r4 + r2 − 2̟0r + e2.

Since we assume p has zeros at r− and r+, it can be factored as

p(r) = [r2 − (r+ + r−)r + r−r+]
[
− Λ

3 r2 + cr + e2

r−r+

]
.

The constant c can be computed by imposing that the coefficient of p in r3

is equal to zero. We obtain c = − Λ
3 (r− + r+). Hence, p can be factored as

p(r) = [r2 − (r+ + r−)r + r−r+]
[
− Λ

3 r2 − Λ
3 (r− + r+)r + e2

r−r+

]
.

Since the coefficient of p in r is equal to −2̟0, we must have

̟0 =
e2

2r−
+

e2

2r+
+

Λ

6
(r− + r+)r−r+.

On the other hand, since the coefficient of p in r2 is equal to 1, we must
have

e2

r−r+
= 1 − Λ

3
(r2

− + r−r+ + r2
+).

We define

σ :=
r+

r−
and Υ :=

Λr2
−

3
. (101)

Then
e2

r−r+
= 1 − Υ(σ2 + σ + 1).

A simple computation shows that

̟0

r−
=

1

2
(σ + 1)[1 − Υ(σ2 + 1)].

Of course, we could think of Λ, ̟0 and e as the independent parameters,
and use the equation p(r) = 0 to determine r− and r+. Instead, we think of
r−, r+ and Λ as the independent parameters, and ̟0 and e as the dependent
ones. More precisely, we regard r−, σ and Υ as the independent parameters

and e2

r−r+
and ̟0

r−
as the dependent ones. Clearly, σ > 1.

When Λ > 0, the polynomial p has a third positive root rc, the radius
of the Reissner-Nordström de Sitter cosmological event horizon. This is the
positive solution of

r2 + (r− + r+)r − 3e2

Λr−r+
= 0.

The value of rc is given by

rc =
−(r− + r+) +

√
(r− + r+)2 + 12e2

Λr−r+

2
.

The fact that r+ < rc imposes a restriction on our independent parameters,
namely

3e2

Λr−r+
> 2r2

+ + r−r+.
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In terms of σ and Υ, this can be written as

1 − Υ(σ2 + σ + 1)

Υ
> 2σ2 + σ,

or

Υ <
1

3σ2 + 2σ + 1
. (102)

If Λ ≤ 0, condition (102) is also trivially satisfied. We say that a choice of
parameters (σ, Υ) is admissible if σ > 1 and (102) holds.

Now we compute ρ as defined in (38), obtaining

ρ =

(
r+

r−

)2 e2

r−
+ Λ

3 r3
− − ̟0

− e2

r+
− Λ

3 r3
+ + ̟0

=

(
r+

r−

)2 e2

r−r+

r+

r−
+

Λr2
−

3 − ̟0
r−

− e2

r−r+
− Λr2

−

3

r3
+

r3
−

+ ̟0
r−

= σ2 (1 − Υ(σ2 + σ + 1))σ + Υ − 1
2(σ + 1)[1 − Υ(σ2 + 1)]

−(1 − Υ(σ2 + σ + 1)) − Υσ3 + 1
2(σ + 1)[1 − Υ(σ2 + 1)]

= σ2 1 − Υ(σ2 + 2σ + 3)

1 − Υ(3σ2 + 2σ + 1)
. (103)

Taking into account (102), in the region of interest, the condition ρ > 1 is
equivalent to

Υ <
1

3σ2 + 2σ + 1
and Υ <

1

(σ + 1)2
.

As the first upper bound is smaller than the second, we conclude that for
all admissible choices of parameters we have ρ > 1, that is

−∂r(1 − µ)(r−, ̟0) > ∂r(1 − µ)(r+, ̟0).

We prove mass inflation in the region ρ > 2. Using (102) and (103), the
condition ρ > 2 is equivalent to

σ2 − 2

σ4 + 2σ3 − 3σ2 − 4σ − 2
< Υ <

1

3σ2 + 2σ + 1

if

σ < σ0 :=
1

2

(
−1 +

√
9 + 4

√
6

)
≈ 1.66783.

The value σ0 is the only positive solution of σ4 +2σ3 −3σ2 −4σ −2 = 0. For
σ ≥ σ0, the condition ρ > 2, with the restriction (102), is always satisfied.
Indeed, for σ > σ0, we have

σ2 − 2

σ4 + 2σ3 − 3σ2 − 4σ − 2
>

1

3σ2 + 2σ + 1

because the difference

σ2 − 2

σ4 + 2σ3 − 3σ2 − 4σ − 2
− 1

(σ + 1)2

is equal to
2σ2

(σ4 + 2σ3 − 3σ2 − 4σ − 2)(σ + 1)2
,
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and this is positive for σ > σ0.
In the next figure we sketch part of the (σ, Υ)-plane. As we just saw,

the restriction r+ < rc translates into (102) and this region (shaded in the
figure) is the only relevant one for our purposes. We remark that on the line
σ = 1 the value or ρ is equal to one.

√
2 σ0

σ =
r+
r

−

Υ =
Λr2

−

3

1
6

1
4

r+ = rc

ρ = 1

ρ = 1 ρ = 2

ρ = 2

1

ρ = +∞
ρ = −∞

Appendix B. Proof of Theorem 3.1

We start by establishing the following useful result.

Lemma B.1. Assume that ζ0(u) > 0 for u > 0. Then θ > 0 and ζ > 0 in
P \ {0} × [0, ∞[.

Proof. The proof proceeds in three steps.
Step 1. If θ0 > 0 and ζ0 > 0, then θ > 0 and ζ > 0 in P. Otherwise, there

would exist a point (u, v) ∈ P such that θ(u, v) = 0 or ζ(u, v) = 0 but θ > 0
and ζ > 0 in J−(u, v). Integrating (21) and (22), we obtain a contradiction.

Step 2. Since in Part 1 we proved continuous dependence of the solution
on θ0 and ζ0, if θ0 ≥ 0 and ζ0 ≥ 0, then θ ≥ 0 and ζ ≥ 0.

Step 3. Suppose that (u, v) ∈ P \ {0} × [0, ∞[. Since ζ0(u) > 0 for u > 0,
(22) implies that ζ(u, v) > 0, because, from the previous step, θ ≥ 0. So
ζ > 0 in P\{0}×[0, ∞[. Now (21) implies that θ is positive on P\{0}×[0, ∞[
because λ is negative on this set. �

Proof of Theorem 3.1. We follow the argument on pages 493–497 of [5]. We
consider the same three cases as in the proof of Lemma 2.4 presented in
Part 2.

Case 1. If (40) holds, there is nothing to prove.
Case 2. If limuց0 ̟(u, ∞) > ̟0, then (40) holds (see page 494 of [5]).
Case 3. Suppose now that limuց0 ̟(u, ∞) = ̟0. As in the proof of

Lemma 2.4, we have
(

e2

r
+ Λ

3 r3 − ̟
)

(u, v) ≥ 0. Then, from (17) it follows

that ∂u(−λ) ≤ 0 in J+(Γř−
), whereas from Lemma B.1 it follows ∂uθ ≥ 0.

As a consequence, the integral

I(u) :=

∫ ∞

vř−
(u)

[
θ2

−λ

]
(u, ṽ) dṽ

is a nondecreasing function of u.
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Case 3.1. I(u) = +∞ for all small u, say 0 < u ≤ U . Consider such a u.
We observe that the following limit exists and is finite:

lim
vր∞

(1 − µ)(u, v) =: (1 − µ)(u, ∞) = 1 − 2̟(u, ∞)

r(u, ∞)
+

e2

r2(u, ∞)
− Λ

3
r2(u, ∞).

Equation (18) and
(

e2

r
+ Λ

3 r3 − ̟
)

(u, v) ≥ 0 imply that v 7→ ν(u, v) is a

nondecreasing function in J+(γ). So we may define

ν(u, ∞) = lim
vր+∞

ν(u, v).

Integrating (114) we get limvր∞
ν

1−µ
(u, v) = 0. Therefore, ν(u, ∞) = 0. Let

0 < δ < u ≤ U . Clearly,

r(u, v) = r(δ, v) +

∫ u

δ
ν(s, v) ds.

Thus, by Lebesgue’s Monotone Convergence Theorem,

r(u, ∞) = r(δ, ∞) +

∫ u

δ
ν(s, ∞) ds = r(δ, ∞).

Letting δ decrease to zero, due to (27), we obtain r(u, ∞) ≡ r−. This
contradicts Theorem 2.3.

Case 3.2. I(u) < +∞ for all small u, say 0 < u ≤ U . Arguing as in pages
495–496 of [5], we know limuց0 I(u) = 0. We will use this information to
improve our upper bound on −λ in the region J+(γ). Then we will obtain
a lower bound for θ in this region. Finally, we use these bounds to arrive at
the contradiction that I(u) = +∞.

Let ε > 0. As limuց0 I(u) = 0, we may choose U > 0 sufficiently small,
so that for all (u, v) ∈ J+(γ) with 0 < u ≤ U ,

e

1
r(U,∞)

∫ v

vř−
(ū)

[∣∣ θ
λ

∣∣|θ|
]
(ū,ṽ) dṽ

≤ 1 + ε, (104)

for ū ∈ [uγ(v), u].

uγ (v)

γ

u

v
Γř

−

u

v

vř
−

(u)

vř
−

(uγ (v))

(u, v)
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Next we use (114), (126) and (104). We may bound the integral of ν along
Γř−

in terms of the integral of ν
1−µ

on the segment
[
uγ(v), u

]
× {v} in the

following way:

−
∫ u

uγ(v)
ν(ũ, vř−

(ũ)) dũ ≤

− min
Γř−

(1 − µ)

∫ u

uγ(v)

ν

1 − µ
(ũ, vř−

(ũ)) dũ ≤

−(1 + ε) min
Γř−

(1 − µ)

∫ u

uγ(v)

ν

1 − µ
(ũ, v) dũ. (105)

Applying successively (105), (117), (123), and (130),

∫ u

uγ(v)

ν

1 − µ
(ũ, v) dũ

≥ 1
−(1+ε) minΓř

−

(1−µ)

∫ u

uγ(v)
−ν(ũ, vř−

(ũ)) dũ

= 1
−(1+ε) minΓř

−

(1−µ)

∫ vř−
(uγ (v))

vř−
(u)

−λ(uř−
(ṽ), ṽ) dṽ

≥
maxΓř

−

(1−µ)

(1+ε) minΓř
−

(1−µ)

∫ v
1+β

vγ (u)

1+β

κ(uř−
(ṽ), ṽ) dṽ

≥
(1−ε) maxΓř

−

(1−µ)

(1+ε) minΓř
−

(1−µ)

(v−vγ (u)
1+β

)
. (106)

Thus (see (132)),

e

∫ u

uγ (v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ e

[
maxJ+(γ) ∂r(1−µ)

] ∫ u

uγ (v)
ν

1−µ
(ũ,v) dũ

≤ e

[
max

J+(γ) ∂r(1−µ)
]

(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

(v−vγ (u)
1+β

)

≤ e

[
∂r(1−µ)(ř− ,̟0)+maxJ+(γ)

2(̟−̟0)

r2

]
(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

(v−vγ (u)
1+β

)

≤ e

[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
(1−ε)

(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

(v−vγ (u)
1+β

)
. (107)

We integrate (17) and we use (134) and (107) to obtain

− λ(u, v) = −λ(uγ(v), v)e

∫ u

uγ(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

(108)

≤ Ce
(1−δ̃)∂r(1−µ)(ř− ,̟0)

(
βv

1+β
+ v

1+β
−

vγ (u)

1+β

)

= C(u)e(1−δ̃)∂r(1−µ)(ř−,̟0)v . (109)

The value of δ̃ can be made small by choosing U sufficiently small. Here

C(u) = Ce
−(1−δ̃)∂r(1−µ)(ř− ,̟0)

vγ (u)

1+β . This is the desired upper estimate for
−λ.



GLOBAL UNIQUENESS WITH A COSMOLOGICAL CONSTANT - PART 3 39

Now we turn to obtaining the lower estimate for θ. Combining (119)
with (120), for (u, v) ∈ Γr+−δ we have

− λ(u, v) ≥
(r+ − δ

r+

)∂r(1 − µ)(r+, ̟0)

1 + ε
u e[∂r(1−µ)(r+,̟0)−ε]v

≥ Cu e[∂r(1−µ)(r+ ,̟0)−ε]v. (110)

Note that C can be chosen independently of δ. Using (22), Lemma B.1
and (39),

ζ(u, v) ≥ cus for all (u, v). (111)

We take into account that (110) and (111) are valid for arbitrary δ, small,
and that J−(Γř+) is foliated by curves Γr+−δ for 0 < δ < r+ − ř+. Therefore,
integrating (21), for (u, v) ∈ Γř+ we have

θ(u, v) ≥ Cus+2e[∂r(1−µ)(r+ ,̟0)−ε]v

≥ Ce[−(s+1)∂r(1−µ)(r+ ,̟0)−ε̃]v. (112)

For the last inequality, we used (120). The constant C depends on ř+. The
value of ε̃ can be made small by choosing ř+ sufficiently close to r+. We
know that ∂uθ ≥ 0. Thus, (112) also holds in J+(Γř+). This is the desired
lower estimate for θ.

We can now obtain a lower bound for I(u) using (109) and (112):

I(u) ≥
∫ ∞

vγ (u)

[
θ2

−λ

]
(u, ṽ) dṽ

≥ C(u)

∫ ∞

vγ(u)

e[−2(s+1)∂r(1−µ)(r+,̟0)−2ε̃]ṽ

e(1−δ̃)∂r(1−µ)(ř− ,̟0)ṽ
dṽ.

This integral is infinite if

−2(s + 1)∂r(1 − µ)(r+, ̟0) − ∂r(1 − µ)(ř−, ̟0) > 0,

or, equivalently,

s <
1

2

−∂r(1 − µ)(ř−, ̟0)

∂r(1 − µ)(r+, ̟0)
− 1, (113)

provided that ε̃ and δ̃ are chosen sufficiently small (which we can achieve
by decreasing U and δ, if necessary). To complete the proof of Theorem 3.1
we just have to note that given s < ρ

2 − 1 we can always choose ř− so that
(113) holds, contradicting I(u) < ∞. �

Appendix C. Some useful formulas

Here we collect some formulas that were obtained in Part 2 and that are
needed to study the behavior of the solution at the Cauchy horizon.

The Raychaudhuri equations written in terms of κ and ν
1−µ

. Using

equations (16), (18), (20) and (24), we get

∂v

(
ν

1 − µ

)
=

ν

1 − µ

(
θ

λ

)2 λ

r
. (114)

The equations (23) and (114) are the Raychaudhuri equations.
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Evolution equations for θ
λ

and ζ
ν
.

∂u
θ

λ
= − ζ

r
− θ

λ

ν

1 − µ
∂r(1 − µ), (115)

∂v
ζ

ν
= − θ

r
− ζ

ν

λ

1 − µ
∂r(1 − µ). (116)

The integrals of ν and λ along a curve Γř.
∫ u

uř(v)
ν(ũ, vř(ũ)) dũ =

∫ v

vř(u)
λ(uř(ṽ), ṽ) dṽ. (117)

Estimates in J−(Γř+).
∣∣∣∣
ζ

ν

∣∣∣∣ (u, v) ≤ C max
ū∈[0,u]

|ζ0|(ū).

− λ

1 − µ
∂r(1 − µ) ≤ −

( ř+

r+

)δ̂2

min
r∈[ř+,r+]

∂r(1 − µ)(r, ̟0)

= −α < 0, (118)

where δ̂ is a bound for
∣∣ ζ
ν

∣∣ in J−(ř+).

Estimates for (u, v) ∈ Γr+−δ.

−
( r+

r+ − δ

)(∂r(1 − µ)(r+, ̟0)

1 − ε
+

4δ̃

r2
+

)
δ ≤ λ (119)

≤ −
(r+ − δ

r+

)∂r(1 − µ)(r+, ̟0)

1 + ε
δ,

δ e−[∂r(1−µ)(r+,̟0)+ε] v ≤ u ≤ δ e−[∂r(1−µ)(r+,̟0)−ε] v. (120)

Estimate in J−(Γř−
) ∩ J+(Γř+).

( ř−

r+

)δ̂2 1 − ε

∂r(1 − µ)(r+, ̟0) u
≤ ν

1 − µ
(u, v) ≤ 1 + ε

∂r(1 − µ)(r+, ̟0) u
. (121)

Estimate in J−(Γř−
).

lim
(u,v)→(0,∞)

(u, v) ∈ J−(ř
−

)

∣∣∣
θ

λ

∣∣∣(u, v) = 0. (122)

Relation between the integrals of λ and κ along the curve Γř−
.

− max
Γř−

(1 − µ)

∫ v

vř−
(u)

κ(uř−
(ṽ), ṽ) dṽ (123)

≤ −
∫ v

vř−
(u)

λ(uř−
(ṽ), ṽ) dṽ ≤

− min
Γř−

(1 − µ)

∫ v

vř−
(u)

κ(uř−
(ṽ), ṽ) dṽ. (124)
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Relation between the integrals of ν and ν
1−µ

along the curve Γř−
.

− max
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−

(ũ)) dũ (125)

≤ −
∫ u

uř−
(v)

ν(ũ, vř−
(ũ)) dũ ≤

− min
Γř−

(1 − µ)

∫ u

uř−
(v)

ν

1 − µ
(ũ, vř−

(ũ)) dũ. (126)

Relation between the integrals of ν
1−µ

and κ along the curve Γř−
.

maxΓř
−

(1−µ)

(1+ε) minΓř
−

(1−µ)

∫ v

vř−
(u)

κ(uř−
(ṽ), ṽ) dṽ (127)

≤
∫ u

uř−
(v)

ν

1 − µ
(ũ, v) dũ ≤

minΓř
−

(1−µ)

maxΓř
−

(1−µ)

∫ v

vř−
(u)

κ(uř−
(ṽ), ṽ) dṽ. (128)

Estimates in J−(γ) ∩ J+(Γř−
).

∣∣∣
ζ

ν

∣∣∣(u, v) ≤ C sup
[0,u]

|ζ0|e−
(

α

1+β+ +∂r(1−µ)(r−−ε0,̟0)β
)

v
, (129)

∣∣∣
θ

λ

∣∣∣(u, v) ≤ C sup
[0,u]

|ζ0|e
−

(
α

1+β+ +∂r(1−µ)(r−−ε0,̟0)
minΓř

−

(1−µ)

maxΓř
−

(1−µ)
β

)
v

,(130)

e

1
r−−ε0

∫ v

vř−
(ū)

[∣∣ θ
λ

∣∣|θ|
]
(ū,ṽ) dṽ

≤ 1 + ε. (131)

Estimates for (u, v) ∈ γ.

e

∫ u

uř−
(v)

[
ν

1−µ
∂r(1−µ)

]
(ũ,v) dũ

≤ e

[
∂r(1−µ)(ř− ,̟0)+ ε

(r
−

−ε0)2

]
(1−ε)
(1+ε)

maxΓř
−

(1−µ)

minΓř
−

(1−µ)

β

1+β
v

, (132)

c̃e
(1+δ)∂r(1−µ)(r−−ε0,̟0) β

1+β
v (133)

≤ −λ(u, v) ≤
C̃e

(1−δ)∂r(1−µ)(ř− ,̟0) β
1+β

v
, (134)

ce
−∂r(1−µ)(r+,̟0) v

1+β− (135)

≤ u ≤
Ce

−∂r(1−µ)(r+ ,̟0) v

1+β+ . (136)

The bound (136) is actually valid in J−(γ) ∩ J+(Γř−
).
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Estimates in J+(γ).

− λ(u, v) ≤ Ce
(1−δ)∂r(1−µ)(ř− ,̟0) β

1+β
v
, (137)

−ν(u, v) ≤ Cu
− 1+β−

1+β+

∂r (1−µ)(ř
−

,̟0)

∂r (1−µ)(r+ ,̟0)
β −1

. (138)
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