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Abstract. Considered herein is a generalized two-component Camassa-Holm system

modeling the shallow water waves moving over a linear shear flow. The existence of

the global weak solutions to the generalized two-component Camassa-Holm system is

established and the solution is obtained as a limit of approximate global strong solutions.

1. Introduction. In this paper we consider the following generalized two-component

Camassa-Holm system:⎧⎨
⎩

mt −Aux + σ(2uxm+ umx) + 3(1− σ)uux + ρρx = 0,

t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

(1.1)

where m = u−uxx and σ is a real parameter. System (1.1) was recently derived in [7] fol-

lowing Ivanov’s modeling approach [38]. It is a model from the shallow water theory with

nonzero constant vorticity, where u(t, x) is the horizontal velocity and ρ(t, x) is related

to the free surface elevation from equilibrium (or scalar density) with the boundary as-

sumptions u → 0, ρ → 1 as |x| → ∞. The scalar A > 0 characterizes a linear underlying

shear flow, and hence the system in (1.1) models wave-current interactions. It is noted

that flows with constant vorticity are ubiquitous in nature since tidal currents are of this

type [18]. The real dimensionless constant σ is a parameter which provides the competi-

tion, or balance, in fluid convection between nonlinear steepening and amplification due
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to stretching. System (1.1) can be written in terms of u and ρ:⎧⎨
⎩

ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx) + ρρx = 0,

t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R,

(1.2)

with u → 0, ρ → 1 as | x |→ ∞. System (1.2) has two Hamiltonians in the following:

H1 =
1

2

∫
R

(mu+ (ρ− 1)2)dx, (1.3)

H2 =
1

2

∫
R

(u3 + σuu2
x + 2u(ρ− 1) + u(ρ− 1)2 −Au2)dx. (1.4)

In the case ρ = 0, (1.2) becomes

ut − uxxt −Aux + 3uux = σ(2uxuxx + uuxxx),

which models finite length, small amplitude radial deformation waves in cylindrical hy-

perelastic rods [27]. In particular, when σ = 1, it is a standard Camassa-Holm (C-H)

equation; that is,

ut − uxxt −Aux + 3uux = 2uxuxx + uuxxx.

The standard Camassa-Holm equation models the unidirectional propagation of the

shallow water waves over a flat bottom. Here u(t, x) stands for the fluid velocity at

time t in the spatial x direction [4, 23, 39]. It has a bi-Hamiltonian structure [33] and

is completely integrable [4, 11]. Also there is a geometric interpretation of (1.1) in

terms of geodesic flow on the diffeomorphism group of the circle [22, 41]. Its solitary

waves are peaked [5]. They are orbitally stable and interact like solitons [1, 25]. The

peaked traveling waves replicate a characteristic for the waves of great height – waves of

largest amplitude that are exact solutions of the governing equations for water waves; cf.

[12, 17, 51]. Recently, it was claimed in [43] that the equation might be relevant to the

modeling of tsunami; see also the discussion in [21].

The Cauchy problem and initial-boundary value problem for the Camassa-Holm equa-

tion have been studied extensively [15, 28, 31, 32, 44, 48, 54]. It has been shown that

this equation is locally well-posed [14, 15, 28, 44, 48] for initial data u0 ∈ Hs(R), s > 3
2 .

More interestingly, it has global strong solutions [10, 14, 15] and also finite time blow-up

solutions [10, 13, 14, 15, 16, 28, 44, 48]. On the other hand, it has global weak solutions in

H1(R) [2, 3, 24, 53]. The advantage of the Camassa-Holm equation in comparison with

the KdV equation lies in the fact that the Camassa-Holm equation has peaked solitons

and models wave breaking [5, 13] (by wave breaking we understand that the wave profile

remains bounded while its slope becomes unbounded in finite time [52]).

Moreover, if σ = 1, the system in (1.2) recovers the standard two-component C-H

system, {
mt −Aux + 2uxm+ umx + ρρx = 0, t > 0, x ∈ R,

ρt + (uρ)x = 0, t > 0, x ∈ R.
(1.5)

System (1.5) was first derived in [47] (also see [49]), which is formally integrable.

Recently, Constantin and Ivanov [20] and Ivanov [38] showed a rigorous justification of

the derivation of the system in (1.5). Mathematical properties of this system have been

studied in many works; cf. [6, 30, 34, 45, 46]. Chen, Liu and Zhang [6] established a
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reciprocal transformation between the two-component Camassa-Holm system and the

first negative flow of the AKNS hierarchy. Escher, Lechtenfeld and Yin [30] argued the

well-posedness for the two-component periodic Camassa-Holm system in the Sobolev

space Hs ×Hs−1 with s ≥ 2 by applying Kato’s theory [40] and provided some precise

blow-up scenarios for strong solutions to the system. Guan and Yin [34] studied the

wave-breaking criterion, the global existence and blow-up phenomena of strong solutions

in Hs(R) × Hs−1(R), s ≥ 2. The local well-posedness is improved by Gui and Liu [36]

to the Besov spaces (especially in the Sobolev spaces Hs(R) × Hs−1(R) with s > 3
2 ).

The blow-up criterion is made more precise in [55], where the authors showed that the

wave breaking in finite time only depends on the slope of u. This blow-up criterion is

further improved in [37]. Guan and Yin [35] recently obtained the result of the existence

of global weak solutions to (1.5) by approximation techniques.

Chen and Liu [7, 8] recently studied (1.2) and established the blow-up criterion and

determined the exact blow-up rate of solutions. In addition, They gave a sufficient

condition for global solutions in Hs(R) × Hs−1(R), s > 3
2 with 0 ≤ σ < 2. However,

the existence and uniqueness of global weak solutions to system (1.2) have not yet been

discussed.

Our main aim of the present paper is to establish existence of a global weak solution

to (1.2) with 0 ≤ σ < 2. The main result of this paper can be stated in the following.

Theorem 1.1. Let (u0, ρ0 − 1) ∈ (H1(R) ∩ W 1,∞(R)) × (L2(R) ∩ L∞(R)). If

ess infx∈R ρ0(x) > 0 and 0 ≤ σ < 2, then (1.2) has an admissible weak solution (u, ρ)

with the initial value (u0, ρ0). Moreover, we have

∫
R

(u2 + u2
x + (ρ− 1)2)dx =

∫
R

(u2
0 + u2

0,x + (ρ0 − 1)2)dx. (1.6)

Furthermore, we have

(u(t, ·), ρ(t, ·)− 1) ∈C(R+, H1(R)× L2(R)).

Remark 1.1. To establish the result of the existence of the global weak solution of

(1.2), we need the global strong solutions of (1.2) as the approximate solutions. As

we will see in Theorem 2.1 showed in [7, 8], the existence of global strong solutions is

obtained under the condition 0 ≤ σ < 2.

The motivation to obtain the global weak solution of (1.2) is inspired by the work in

[19, 53]. To prove the existence of a global weak solution, we first mollify the initial data

and get a sequence of approximate solutions in Hs(R)×Hs−1(R), s ≥ 3. Then we prove

that the limit of the approximate solutions in H1(R)×L2(R) is a weak solution of (1.2).

The difficulty in the proof is the interaction between two components of solution u and

ρ and the low integrability of u and ρ. To overcome this problem, we derive a condition

on ρ to improve the integrability of u and ρ so that we can choose an entropy function

to cancel the interaction.

The paper is organized as follows. In Section 2, we recall some useful properties for

the initial-value problem to the strong solution of (1.2). In Section 3, we prove the

global existence of the approximate solutions. Finally, we establish necessary properties
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of compactness in Section 4. Using the obtained compactness results, we prove that the

limit of the approximate solution is a global weak solution of (1.2).

Notation. In the following, we denote by ∗ the spatial convolution. Given a Banach

space X, we denote its norm by ‖ · ‖X .

2. Preliminaries. In this section, we will recall and present some useful lemmas

which will be used in the sequel.

Notice that in system (1.2) it is required that u(t, x) → 0 and ρ(t, x) → 1 as |x| → ∞,

at any instant t. Note also that if p(x) := 1
2e

−|x|, x ∈ R, then (1− ∂2
x)

−1f = p ∗ f for all

f ∈ L2(R). Then, we can rewrite the system (1.2) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut + σuux = −∂xp ∗ (−Au+ 3−σ
2 u2 + σ

2u
2
x + 1

2 (ρ− 1)2 + (ρ− 1)),

t > 0, x ∈ R,

(ρ− 1)t + (u(ρ− 1))x = −ux, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x)− 1 = ρ0(x)− 1, x ∈ R.

(2.1)

We now give some useful results of (2.1).

Lemma 2.1 ([8]). Let σ = 0 and (u, ρ) be the solution of the system (2.1) with initial

data (u0, ρ0 − 1) ∈ Hs(R) × Hs−1(R), s > 3/2, and T the maximal time of existence.

Then

sup
x∈R

ux(t, x) ≤ sup
x∈R

u0,x(x) +
1

2

(
sup
x∈R

ρ20(x) + C2
1

)
t, t ≤ T, (2.2)

inf
x∈R

ux(t, x) ≥ inf
x∈R

u0,x(x) +
1

2

(
inf
x∈R

ρ20(x)− C2
2

)
t, t ≤ T, (2.3)

where the constants above are defined as follows:

C1 =

√
3 +A2

2
‖(u0, ρ0 − 1)‖H1×L2 , (2.4)

C2 =
√
2 + C2

1 . (2.5)

Lemma 2.2 ([7]). Let 0 < σ < 2 and (u, ρ) be the solution of (2.1) with initial data

(u0, ρ0 − 1) ∈ Hs(R) ×Hs−1(R), s > 3
2 , and T the maximal time of existence. Assume

that infx∈R ρ0(x) > 0.

(1) If 0 < σ ≤ 1, then

| inf
x∈R

ux(t, x) | ≤
1

infx∈R ρ0(x)
C2e

C1t, (2.6)

| sup
x∈R

ux(t, x) | ≤
1

infx∈R ρ
σ

2−σ

0 (x)
C

1
2−σ

2 e
C1t
2−σ , t ∈ [0, T ). (2.7)
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(2) If 1 ≤ σ < 2, then

| inf
x∈R

ux(t, x) | ≤
1

infx∈R ρ
σ

2−σ

0 (x)
C

1
2−σ

2 e
C1t
2−σ , (2.8)

| sup
x∈R

ux(t, x) | ≤
1

infx∈R ρ0(x)
C2e

C1t, t ∈ [0, T ). (2.9)

The constant C1 and C2 are defined as follows, where

C1 = 2 +
2 +A2+ | σ | +2 | 3− σ |

4
‖ (u0, ρ0 − 1) ‖2H1(R)×L2(R), (2.10)

C2 = 1+ ‖ u0,x ‖2L∞(R) + ‖ ρ0 ‖2L∞(R) . (2.11)

Lemma 2.3 ([7]). Let σ 
= 0 and (u, ρ) be the solution of (2.1) with initial data (u0, ρ0 −
1) ∈ Hs(R)×Hs−1(R), s > 3

2 , and let T be the maximal time of existence. Assume that

there is an M ≥ 0 such that

inf
(t,x)∈[0,T )×R

σux ≥ −M. (2.12)

(1) If σ > 0, then

‖ ρ(t, ·) ‖L∞(R)≤‖ ρ0 ‖L∞(R) e
Mt
σ , t ≤ T. (2.13)

(2) If σ < 0, then

‖ ρ(t, ·) ‖L∞(R)≤‖ ρ0 ‖L∞(R) e
Nt, t ≤ T, (2.14)

where

N =‖ u0,x ‖L∞(R) +(
C3

| σ | 12
),

C3 = (2 +
5 +A2 − 2σ

2
)

1
2 ‖ (u0, ρ0 − 1) ‖H1(R)×L2(R), for σ < 0.

We are now in the position to state a global existence theorem of [7, 8].

Theorem 2.1 ([7, 8]). Let 0 ≤ σ < 2 and (u, ρ) be the solution of (2.1) with initial data

(u0, ρ0 − 1) ∈ Hs(R)×Hs−1(R), s > 3
2 , and T the maximal time existence. If

inf
x∈R

ρ0(x) > 0, (2.15)

then T = ∞ and the solution (u, ρ) is global.

3. The approximate solutions. In this section, we construct the approximate so-

lution sequence (un(t, x), ρn(t, x)) as a solution to system (2.1) with initial data

(u0(x), ρ0(x)− 1) ∈ (H1(R) ∩W 1,∞(R))× (L2(R) ∩ L∞(R)).

Additionally, the initial data satisfies the condition ess infx∈R ρ0(x) > 0.

In the following, we denote by jε(x) the standard mollifiers. We first define

(un
0 (x), ρ

n
0 (x)) as follows:

un
0 (x) = j 1

n
∗ u0(x), (3.1)

ρn0 (x) = j 1
n
∗ ρ0(x), n ∈ N. (3.2)
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Since ess infx∈R ρ0(x) > 0, we obtain that

inf
x∈R

ρn0 (x) ≥ ess inf
x∈R

ρ0(x) > 0, n ∈ N. (3.3)

It is clear that

(un
0 , ρ

n
0 − 1) → (u0, ρ0 − 1) in H1(R)× L2(R), (3.4)

‖ un
0 ‖H1(R) ≤‖ u0 ‖H1(R), (3.5)

‖ ρn0 − 1 ‖L2(R) ≤‖ ρ0 − 1 ‖L2(R), n ∈ N, (3.6)

‖ un
0 x ‖L∞(R) ≤‖ u0x ‖L∞(R), (3.7)

‖ ρn0 ‖L∞(R) ≤‖ ρ0 ‖L∞(R), n ∈ N. (3.8)

Now, we can state the main result for the approximate solutions.

Theorem 3.1. Assume 0 ≤ σ < 2. Let (u0(x), ρ0(x) − 1) ∈ (H1(R) ∩ W 1,∞(R)) ×
(L2(R) ∩ L∞(R)) with the condition ess infx∈R ρ0(x) > 0, and let (un

0 , ρ
n
0 ) be defined

as in (3.1) and (3.2). Then, given any T > 0, there exists a sequence of solutions

(un, ρn − 1) ∈ C([0, T ], Hs(R)×Hs−1(R)) to the Cauchy problem (2.1) with the initial

data (un
0 , ρ

n
0 − 1). Furthermore, these solutions satisfy the following properties:

(1) There exists a constant M(T ) such that

‖ un
x(t, ·) ‖L∞(R) ≤ M(T ), (3.9)

‖ ρn(t, ·)− 1 ‖L∞(R) ≤ M(T ), n ∈ N. (3.10)

(2)

‖ un(t, ·) ‖2H1(R) + ‖ ρn(t, ·)− 1 ‖2L2(R) (3.11)

= ‖ un
0 (x) ‖2H1(R) + ‖ ρn0 (x)− 1 ‖2L2(R)

≤ ‖ u0(x) ‖2H1(R) + ‖ ρ0(x)− 1 ‖2L2(R) .

Proof. First, by (3.3) and Theorem 2.1, we deduce that there exists a sequence of

global solutions (un(t, x), ρn(t, x)) ∈ Hs(R) ×Hs−1(R), s ≥ 3. Second, notice that the

second equation of system (2.1) has characteristic{ ∂q
∂t = u(t, q), 0 < t < T,

q(0, x) = x, x ∈ R.

We have

dρ(t, q)

dt
= ux(t, q)ρ(t, q).

Using this equation, (3.7)-(3.8) and Lemmas 2.1-2.3, we get (3.9) and (3.10). In view of

(1.3) and (3.5)-(3.6), we get (3.11). �

4. Precompactness. With the basic energy estimates and uniform a priori estimates

in Section 3, we are now ready to obtain the necessary compactness of approximate so-

lutions (un(t, x), ρn(t, x)). We first recall two useful lemmas.
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Lemma 4.1 ([42]). LetX be a reflexive Banach space and let fn be bounded in L∞(0,T ;X)

for some T ∈ (0,∞). We assume that fn ∈ C(0, T ;Y ), where Y is a Banach space such

that X ↪→ Y , Y
′
is separable and dense in X

′
. Furthermore (φ, fn)Y ′×Y is uniform con-

tinuous in t ∈ [0, T ] and uniform in n ≥ 1. Then, fn is relative compact in Cw(0, T ;X),

the space of continuous functions from [0, T ] with values in X when the latter space is

equipped with its weak topology.

Lemma 4.2 ([42]). Let f ∈ W 1,p(R) and g ∈ Lq(R) with 1 ≤ q ≤ ∞. Then

‖ jε ∗ ∂x(fg)− ∂x(fjε ∗ g) ‖Lr(R)≤ C ‖ f ‖W 1,p(R)‖ g ‖Lq(R), (4.1)

jε ∗ ∂x(fg)− ∂x(fjε ∗ g) → 0 in Lr(R) as ε → 0, (4.2)

where 1
r = 1

p + 1
q .

Let us denote Pn(t, x) = p ∗ ( 3−σ
2 u2

n + σ
2u

2
nx +

1
2 (ρn − 1)2 + (ρn − 1)) in the following

text.

Lemma 4.3. Let 0 ≤ σ < 2. Then there exist subsequences {(unk , ρnk −1)} ⊂ {(un, ρn−
1)} and {Pnk} ⊂ {Pn} and a pair of functions (u, ρ− 1) ∈ L∞(R+;H1(R)×L2(R)) and

P̄ ∈ L∞(R+;H1(R)) such that

(unk , ρnk − 1) ⇀ (u, ρ− 1) in H1((0, T )× R)× L2((0, T )× R), ∀T > 0, (4.3)

unk → u uniformly on each compact subset of R
+ × R, (4.4)

Pnk → P̄ uniformly on each compact subset of R
+ × R. (4.5)

Proof. By (2.1), we have

‖ un
t ‖L2(R)≤ σ ‖ unun

x ‖L2(R) + | A |‖ ∂xp ∗ un ‖L2(R) + ‖ ∂xP
n ‖L2(R) . (4.6)

Using (3.11), Sobolev’s inequality and Young’s inequality, we get

‖ unun
x ‖L2(R)≤ ‖ un ‖L∞(R)‖ un

x ‖L2(R)≤‖ u0 ‖2H1(R) + ‖ ρ0 − 1 ‖2L2(R), (4.7)

‖ Pn
x ‖L2(R)≤ ‖ px ‖L2(R) (‖ un ‖2H1(R) + ‖ ρn − 1 ‖2L2(R)) (4.8)

+ ‖ px ‖L1(R)‖ ρn − 1 ‖L2(R)

≤(‖ u0 ‖2H1(R) + ‖ ρ0 − 1 ‖2L2(R)) + (‖ u0 ‖H1(R)

+ ‖ ρ0 − 1 ‖L2(R)),

‖ ∂xp ∗ un ‖L2(R)≤ ‖ px ‖L1(R)‖ un ‖L2(R) (4.9)

≤ ‖ u0 ‖H1(R) + ‖ ρ0 − 1 ‖L2(R),

where we used the fact that ‖ px ‖L1(R)≤ 1 and ‖ px ‖L2(R)≤ 1. From (4.6)-(4.9), we can

obtain that

‖ un
t ‖L2(R)≤ 3(‖ u0 ‖2H1(R) + ‖ u0 ‖H1(R) + ‖ ρ0 − 1 ‖2L2(R) + ‖ ρ0 − 1 ‖L2(R)). (4.10)

Using (3.11) and (4.10), we get that for any T > 0, there exists a pair of functions

(u, ρ− 1) ∈ L∞(0, T ;H1(R)× L2(R)) such that (4.3) holds.

Next, we turn to the compactness of un. It follows from (3.11) that {un(t, x)}
is uniformly bounded in L∞(R+;H1(R)). Also, {un

t (t, x)} is uniformly bounded in
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L2(0, T ;L2(R)) for any T > 0, due to (4.10). Thus, by the classical Lions-Aubin lemma,

there exist u ∈ L∞(R+;H1(R)) and a subsequence {unk} that is weakly compact in

L∞(R+;H1(R)); furthermore, {unk} converges to u(t, x) uniformly on each compact

subset of R+ × R as k → ∞. In addition, u(t, x) is a continuous function.

Finally, we show the compactness of {Pn}. As in the proof of (4.8), the similar

computation shows that ‖ Pn ‖L2(R) is uniformly bounded. Thus, we have that {Pn}
is uniformly bounded in L∞(R+;H1(R)). Next, we give the estimate of ‖ Pn

t ‖L2(R).

Notice that

∂tP
n =(3− σ)p ∗ un∂tu

n + σp ∗ un
x∂tu

n
x (4.11)

+ p ∗ (ρn − 1)∂t(ρ
n − 1) + p ∗ ∂t(ρn − 1).

Differentiating the first equation in (2.1), we obtain

un
tx + σunun

xx +
σ

2
(un

x)
2 =

1

2
(ρn − 1)2 + (ρn − 1) +

3− σ

2
(un)2 (4.12)

+A∂2
xp ∗ un − Pn.

Using the identity (1− ∂2
x)p ∗ f = f and unun

xu
n
xx + 1

2 (u
n
x)

3 = 1
2 (u

n(un
x)

2)x, we have

p ∗ (un
x∂tu

n
x) (4.13)

=− σp ∗ (unun
xu

n
xx +

1

2
(un

x)
3) +

1

2
p ∗ (un

x(ρ
n − 1)2)− p ∗ (un

xP
n)

+
3− σ

2
p ∗ ((un)2un

x) +Ap ∗ (un
xp ∗ un)−Ap ∗ (unun

x)

=− σ

2
px ∗ (un(un

x)
2) +

1

2
p ∗ (un

x(ρ
n − 1)2)− p ∗ (un

xP
n)

+
3− σ

2
p ∗ ((un)2un

x) +Ap ∗ (un
xp ∗ un)−Ap ∗ (unun

x).

By (3.9)-(3.11), Sobolev’s inequality and Young’s inequality, we get

‖ p ∗ un
x∂tu

n
x ‖L2(R)≤CM(T )(‖ u0 ‖2H1(R) + ‖ ρ0 − 1 ‖2L2(R) (4.14)

+ ‖ u0 ‖H1(R) + ‖ ρ0 − 1 ‖L2(R)), ∀T > 0.

The similar computations show that

‖ ∂tP
n ‖L2(R)

≤C(‖ p ∗ (un∂tu
n) ‖L2(R) + ‖ p ∗ ∂t(ρn − 1) ‖L2(R) (4.15)

+ ‖ p ∗ ((ρn − 1)∂t(ρ
n − 1)) ‖L2(R) + ‖ p ∗ un

x∂tu
n
x ‖L2(R))

≤CM(T )(‖ u0 ‖2H1(R) + ‖ ρ0 − 1 ‖2L2(R)

+ ‖ u0 ‖H1(R) + ‖ ρ0 − 1 ‖L2(R)), ∀T > 0.

Thus, {Pn
t } is uniformly bounded in L2([0, T ]×R) for any T > 0. Using the Lions-Aubin

lemma, there exists P̄ ∈ L∞(R+, H1(R)) such that {Pnk} converges to P̄ (t, x) uniformly

on each compact subset of R+×R as k → ∞. This completes the proof of the lemma. �
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Now we can consider the pair of functions (u, ρ − 1) which is the weak limit of

(unk , ρnk − 1). By Theorem 3.1 and Lemma 4.3, we have for given any T > 0 that

unkunk
x ⇀ uux in L2([0, T ]× R), (4.16)

unk(ρnk − 1) ⇀ u(ρ− 1) in L2([0, T ]× R). (4.17)

In addition, by Theorem 3.1 and the interpolation theory, we obtain that for any T > 0

and 1 < p < ∞,

‖ (un
x)

2 ‖Lp([0,T ]×R) + ‖ (ρn − 1)2 ‖Lp([0,T ]×R)≤ C(T ). (4.18)

Thus, there exists a pair of functions (u2
x, (ρ− 1)2) such that

(unk
x )2 ⇀ u2

x and (ρnk − 1)2 ⇀ (ρ− 1)2 in Lp([0, T ]× R), (4.19)

where 1 < p < ∞. Furthermore, we have that

u2
x(t, x) ≤ u2

x and (ρ(t, x)− 1)2 ≤ (ρ− 1)2(t, x) a.e. on R
+ × R. (4.20)

In the following, if there is no ambiguity, we still write the superscript {nk} as {n}.
Now we give the system which (ux, ρ− 1) satisfies.

Lemma 4.4. If σ ∈ [0, 2), then we have

∂tux + σ∂x(uux) =
σ

2
u2
x +

1

2
(ρ− 1)2 + (ρ− 1) (4.21)

+
3− σ

2
u2 +A∂2

xp ∗ u− P̄ ,

∂t(ρ− 1) + ∂x(u(ρ− 1)) =− ux (4.22)

in the sense of distributions on R
+ × R.

Proof. In view of (2.1) and (4.12), we deduce that

∂tu
n
x + σ∂x(u

nun
x) =

σ

2
(un

x)
2 +

1

2
(ρn − 1)2 + (ρn − 1) (4.23)

+
3− σ

2
(un)2 +A∂2

xp ∗ un − Pn,

∂t(ρ
n − 1) + ∂x(u

n(ρn − 1)) =− un
x . (4.24)

Using Lemma 4.3, (4.19) and (4.16)-(4.17), we get (4.21) and (4.22). �
The next lemma contains renormalized formulations of (4.21) and (4.22).

Lemma 4.5. Let σ ∈ [0, 2). For any b(z) ∈ C1(R) and b(0) = 0, we have that

∂tb(ux) + σ∂x(ub(ux)) (4.25)

=σuxb(ux)− σu2
xb

′(ux) +
σ

2
b′(ux)u2

x +
1

2
b′(ux)(ρ− 1)2 − b′(ux)P̄

+
3− σ

2
b′(ux)u

2 + b′(ux)(ρ− 1) +Ab′(ux)∂
2
xp ∗ u

and

∂tb(ρ− 1) + ∂x(ub(ρ− 1)) (4.26)

=uxb(ρ− 1)− uxb
′(ρ− 1)− ux(ρ− 1)b′(ρ− 1)
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hold in the sense of distributions on R
+ × R.

Proof. Denote 〈f〉ε = jε ∗ f . Mollifying (4.21) and (4.22), we get

∂t〈ux〉ε + σ∂x(u〈ux〉ε) =
σ

2
〈u2

x〉ε +
1

2
〈(ρ− 1)2〉ε + 〈(ρ− 1)〉ε (4.27)

+
3− σ

2
〈u2〉ε +A〈∂2

xp ∗ u〉ε − 〈P̄ 〉ε + r1ε ,

∂t〈(ρ− 1)〉ε + ∂x(u〈ρ− 1〉ε) =− 〈ux〉ε + r2ε , (4.28)

where

r1ε =σ∂x(u〈ux〉ε)− σ〈∂x(uux)〉ε, (4.29)

r2ε =∂x(u〈ρ− 1〉ε)− 〈∂x(u(ρ− 1))〉ε. (4.30)

Multiplying (4.27) by b′(〈ux〉ε) and taking ε → 0, we get (4.25) due to Lemma 4.2.

Multiplying (4.28) by b′(〈ρ − 1〉ε) and taking ε → 0, we have (4.26) due to Lemma 4.2.

We should point out that since ux and ρ − 1 are uniformly bounded in L∞([0, T ] × R)

for any given T > 0, the boundedness of b′(z) is not necessary. This completes the proof

of Lemma 4.5. �
The next lemma is important to cancel the interaction between un

x and ρn − 1 in the

process of taking the weak limit.

Lemma 4.6. If σ ∈ [0, 2), then we have

∂t(u2
x + (ρ− 1)2) + ∂x(σuu2

x + u(ρ− 1)2) (4.31)

=(3− σ)u2ux + 2Aux∂
2
xp ∗ u− 2uxP̄

in the sense of distributions on R
+ × R.

Proof. Since (un, ρn − 1) is a solution of the system (2.1) in Hs(R) ×Hs−1(R) with

s > 3
2 , we have

∂tu
n
x + σunun

xx +
σ

2
(un

x)
2 (4.32)

=
1

2
(ρn − 1)2 +

3− σ

2
(un)2 + (ρn − 1) +A∂2

xp ∗ un − Pn,

∂t(ρ
n − 1) + ∂x(u

n(ρn − 1)) = −un
x . (4.33)

In view of the boundedness of ux and ρ− 1, multiplying (4.32) by 2un
x , we get

∂t(u
n
x)

2 + σ∂x(u
n(un

x)
2) (4.34)

=un
x(ρ

n − 1)2 + (3− σ)un
x(u

n)2 + 2un
x(ρ

n − 1)

+ 2Aun
x∂

2
xp ∗ un − 2un

xP
n.

Multiplying (4.33) by 2(ρn − 1), we have

∂t(ρ
n − 1)2 + ∂x(u

n(ρn − 1)2) = −un
x(ρ

n − 1)2 − 2un
x(ρ

n − 1). (4.35)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



GENERALIZED TWO-COMPONENT CAMASSA-HOLM SYSTEM 671

Adding (4.34) and (4.35), we obtain

∂t((u
n
x)

2 + (ρn − 1)2) + ∂x(σu
n(un

x)
2 + un(ρn − 1)2) (4.36)

=(3− σ)un
x(u

n)2 + 2Aun
x∂

2
xp ∗ un − 2un

xP
n.

Using Lemma 4.3 and (4.19), and then taking n → ∞, we get (4.31). �

Lemma 4.7. If σ ∈ [0, 2), there hold

lim
t→0+

∫
R

u2
xdx = lim

t→0+

∫
R

u2
xdx =

∫
R

u2
0,xdx, (4.37)

lim
t→0+

∫
R

(ρ− 1)2dx = lim
t→0+

∫
R

(ρ− 1)2dx =

∫
R

(ρ0 − 1)2dx. (4.38)

Proof. By Theorem 3.1 and (4.10), for any T > 0, we have that un is uniformly

bounded in L∞(0, T ;H1(R)) and un
t is uniformly bounded in L∞(0, T ;L2(R)). Using

Lemma 4.1 and Lemma 4.3, we get

un → u in Cw([0, T ], H1(R)) as n → ∞. (4.39)

Similarly, by Theorem 3.1 and (4.33), we have that ρn − 1 is uniformly bounded in

L∞([0, T ], L2(R)) and (ρn − 1)t is uniformly bounded in L∞([0, T ], H−1(R)). Thus, we

obtain that

ρn − 1 → ρ− 1 in Cw([0, T ], L2(R)) as n → ∞ (4.40)

due to Lemma 4.1 and Lemma 4.3.

From (4.39) and (4.40), we get

ux ⇀ u0,x and ρ− 1 ⇀ ρ0 − 1 in L2(R) as t → 0+. (4.41)

It then follows that

lim inf
t→0+

∫
R

u2
xdx ≥

∫
R

u2
0,xdx, (4.42)

lim inf
t→0+

∫
R

(ρ− 1)2dx ≥
∫
R

(ρ0 − 1)2dx. (4.43)

Therefore, we deduce that

lim inf
t→0+

∫
R

(u2
x + (ρ− 1)2)dx ≥ lim inf

t→0+

∫
R

u2
xdx+ lim inf

t→0+

∫
R

(ρ− 1)2dx (4.44)

≥
∫
R

u2
0,x + (ρ0 − 1)2dx.
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On the other hand, from (3.11) we have that∫
R

(u2 + u2
x + (ρ− 1)2)dx (4.45)

≤ lim inf
n→∞

∫
R

((un)2 + (un
x)

2 + (ρn − 1)2)dx

= lim inf
n→∞

∫
R

((un
0 )

2 + (un
0,x)

2 + (ρn0 − 1)2)dx

=

∫
R

((u0)
2 + (u0,x)

2 + (ρ0 − 1)2)dx.

Using the continuity of u and limt→0+
∫
R
u2dx =

∫
R
u2
0dx, we have

lim sup
t→0+

∫
R

(u2
x + (ρ− 1)2)dx ≤

∫
R

(u2
0,x + (ρ− 1)2)dx. (4.46)

In view of (4.42)-(4.44) and (4.46), we get (4.37) and (4.38). �
Now we state the main theorem of this section.

Theorem 4.1. There hold

u2
x = u2

x and (ρ− 1)2 = (ρ− 1)2, a.e. on R
+ × R. (4.47)

Proof. Taking b(z) = z2 in Lemma 4.5 and adding (4.25) and (4.26), we get

∂t(u
2
x + (ρ− 1)2) + ∂x(σuu

2
x + u(ρ− 1)2) (4.48)

=σux(u2
x − u2

x) + ux((ρ− 1)2 − (ρ− 1)2)

+(3− σ)uxu
2 + 2Aux∂

2
xp ∗ u− 2uxP̄ .

Subtracting (4.48) from (4.31), we get

∂t(u2
x − u2

x) + ∂t((ρ− 1)2 − (ρ− 1)2) (4.49)

− ∂x(σu(u2
x − u2

x) + u((ρ− 1)2 − (ρ− 1)2))

=σ(−ux)(u2
x − u2

x) + (−ux)((ρ− 1)2 − (ρ− 1)2).

Using (3.9) and (4.3), we have that for any T > 0,

ux(t, x) ≤ M(T ) on [0, T ]× R.

Then, integrating (4.49) by parts we obtain∫
R

(u2
x − u2

x) + ((ρ− 1)2 − (ρ− 1)2)dx (4.50)

≤2M(T )

∫ t

0

∫
R

(u2
x − u2

x) + ((ρ− 1)2 − (ρ− 1)2)dx.

Using Gronwall’s inequality and Lemma 4.7, we conclude that∫
R

(u2
x − u2

x) + ((ρ− 1)2 − (ρ− 1)2)dx ≤ 0. (4.51)
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On the other hand, it follows from (4.20) that

0 ≤
∫
R

(u2
x − u2

x) + ((ρ− 1)2 − (ρ− 1)2)dx ≤ 0. (4.52)

Thus, ∫
R

(u2
x − u2

x)dx =

∫
R

((ρ− 1)2 − (ρ− 1)2)dx = 0. (4.53)

This implies (4.47). �

5. Global weak solutions. Before giving the precise statement of the main result,

we first introduce the definition of an admissible weak solution to the Cauchy problem

(2.1).

Definition 5.1. Let (u0, ρ0 − 1) ∈ H1(R) × L2(R). If there is a pair of functions

(u, ρ−1) ∈ L∞([0,∞);H1(R)×L2(R)) such that the system in (2.1) holds in the sense of

distributions and (u(t, x), ρ(t, x)−1) → (u0, ρ0−1) as t → 0+ in the sense of distributions,

and if the energy inequality

‖ u ‖2H1(R) + ‖ ρ− 1 ‖2L2(R)≤‖ u0 ‖2H1(R) + ‖ ρ0 − 1 ‖2L2(R) (5.1)

holds, then (u, ρ− 1) is called an admissible weak solution to the system in (2.1).

Proof of Theorem 1.1. Let (u, ρ− 1) be a pair of functions which we have obtained in

Lemma 4.3. Then, we have⎧⎪⎪⎨
⎪⎪⎩

ut + σuux = A∂xp ∗ u− P̄ , t > 0, x ∈ R,

(ρ− 1)t + (u(ρ− 1))x = −ux, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

ρ(0, x)− 1 = ρ0(x)− 1, x ∈ R.

(5.2)

By Theorem 4.1 and Lemma 4.3, we obtain

P̄ =p ∗ (3− σ

2
u2 +

σ

2
u2
x +

1

2
(ρ− 1)2 + (ρ− 1)) (5.3)

=p ∗ (3− σ

2
u2 +

σ

2
u2
x +

1

2
(ρ− 1)2 + (ρ− 1)).

Thus (u, ρ − 1) satisfies system (2.1). By (3.4) and (4.39)-(4.40), we get that (u(t, x),

ρ(t, x)− 1) → (u0, ρ0 − 1) as t → 0+ in the sense of distributions. The energy inequality

(5.1) is the straight conclusion of (3.11), due to the weak lower-semicontinuity of the

norm.

We are now in the position to prove equality (1.6). Firstly, multiplying (4.27) by 〈ux〉ε
and multiplying (4.28) by 〈ρ− 1〉ε, we deduce by (4.47) that

∂t
1

2
〈ux〉2ε (5.4)

=〈ux〉ε(−σ∂x(u〈ux〉ε) +
σ

2
〈u2

x〉ε +
1

2
〈(ρ− 1)2〉ε + 〈(ρ− 1)〉ε

+
3− σ

2
〈u2〉ε +A〈∂2

xp ∗ u〉ε − 〈P̄ 〉ε + r1ε)
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and

∂t
1

2
〈(ρ− 1)〉2ε = 〈ρ− 1〉ε(−∂x(u〈ρ− 1〉ε)− 〈ux〉ε + r2ε). (5.5)

Second, mollifying the first equation in (2.1) and multiplying by 〈u〉ε, we have

∂t
1

2
〈u〉2ε = 〈u〉ε(−σ〈uux〉ε −A〈∂xp ∗ u〉ε − 〈∂xP̄ 〉ε). (5.6)

Given any T > 0, adding (5.4)-(5.6) and integrating by parts, we obtain that for 0 < t ≤
T , ∫

R

(〈u〉2ε + 〈ux〉2ε + 〈ρ− 1〉2ε)(t, x)dx−
∫
R

(〈u〉2ε + 〈ux〉2ε + 〈ρ− 1〉2ε)(0, x)dx (5.7)

=2

∫ t

0

∫
R

(−σ〈ux〉ε∂x(u〈ux〉ε) +
σ

2
〈ux〉ε〈u2

x〉ε +
1

2
〈ux〉ε〈(ρ− 1)2〉ε

+
3− σ

2
〈ux〉ε〈u2〉ε − 〈ρ− 1〉ε∂x(u〈ρ− 1〉ε)− σ〈u〉ε〈uux〉ε

+ 〈ux〉εr1ε + 〈ρ− 1〉εr2ε)dx.

Since ‖ ux ‖L∞(R)≤ M(T ) and ‖ ρ− 1 ‖L∞(R)≤ M(T ), we infer that

‖ 〈ux〉ε ‖L∞(R)≤ M(T ),

‖ 〈ρ− 1〉ε ‖L∞(R)≤ M(T ),

uniformly for ε. Using Lemma 4.2 and taking ε → 0, and then applying the Lebesgue

dominated convergence theorem, we infer that∫
R

(u2 + u2
x + (ρ− 1)2)(t, x)dx =

∫
R

(u2
0 + u2

0,x + (ρ0 − 1)2)(x)dx. (5.8)

By the arbitrariness of T , we obtain that equality (1.6) holds. Now, we prove the strong

continuity of (u, ρ− 1). Given any T > 0, (4.39)-(4.40) imply that

(u, ρ− 1) ∈ Cw([0, T ];H1(R)× L2(R)). (5.9)

Then, (5.8) yields that ‖ (u(t), ρ(t)− 1) ‖H1(R)×L2(R) is continuous. The weak continuity

and the continuity of norm yields the strong continuity. Thus, for the arbitrary of T , we

obtain that

(u, ρ− 1) ∈ C(R+;H1(R)× L2(R)). (5.10)

This completes the proof of Theorem 1.1. �
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