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Abstract 
We model the edit distance as a function in a labelling space. A labelling space is an Euclidean 

space where coordinates are the edit costs. Through this model, we define a class of cost. A 

class of cost is a region in the labelling space that all the edit costs have the same optimal 

labelling. Moreover, we characterise the distance value through the labelling space. This new 

point of view of the edit distance gives as the opportunity of defining some interesting 

properties that are useful for a better understanding of the edit distance. Finally, we show the 

usefulness of these properties through some applications.  

Keywords: Graph Edit Distance, Graph Edit Costs, graph similarity, graph distance, error-

correcting graph isomorphism. 

 

1. Introduction 

Graphs are of crucial importance in pattern recognition. Graph structures are used to model 

several kinds of problems in several pattern recognition fields [1] such as general 2D/3D object 

recognition [2-7], object and scene view alignment [8-11], SLAM [12, 13], and graph 

prototyping [14-17].  

One of the most essential researched problems in the field of pattern recognition in 

relation to graph structures is the definition of a similarity measure between graphs. This is an 

important part of the error tolerant graph matching [18] problem. Error tolerant graph 

matching aims to compute a bijection between nodes of two graphs that minimizes some kind 

of objective function. The general case of this problem is known to be NP-complete [19]. 

Generally, the objective function is related to a graph distance. In the ideal case, graph 
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distances should be a metric and thus fulfil the four metric properties: (1) non-negativity, (2) 

identity of indiscernible, (3) symmetry, and (4) triangle inequality. Some graph distances 

appear in the literature [20-22], but probably the most well known distance is the Graph Edit 

Distance [23]. The application of graph edit distance is extensive [24] and therefore numerous 

algorithms to compute the Graph Edit Distance can be found in the literature, such as [25-29]. 

Moreover, some theoretical papers describe properties of a particular definition of the Graph 

Edit Distance [30, 31] and [32].  

The use of the Graph Edit Distance tailored to a particular problem requires some 

application-dependent functions to be defined. The optimal definition and specification of 

these functions is no trivially undertaken, and several works have addressed to this task. The 

most relevant of these are [5, 33, 34] and [35]. The main contribution of these works has been 

to prove that String Edit Distance and Graph Edit Distance contain several classes of cost. In 

this article, we define some un-described properties of the Graph Edit Distance. Our specific 

definition and interpretation of the Graph Edit Distance allows each class of cost to be 

described using a plane equation and allows the shape of each class of cost to be described as 

well. The use of these new properties is twofold. On the one hand they can be used to improve 

performance of existing algorithms and, on the other hand, they can be used to develop more 

efficient graph algorithms.  

An interesting survey summarizing the most important contributions on Graph Edit 

Distance has recently been published [24]. 

The aim of this paper is to go a step further about the findings related about edit costs 

presented by professor Horst Bunke and his colleagues. They presented some new ideas about 

the existence of classes of edit costs in strings [32] and graphs [30]. They show that the edit 

costs can be clustered in some classes, in which the edit distance behaves in a similar manner. 

We present here a new methodology to represent these classes of cost and some properties. 

We also show the usefulness of this methodology and properties through some applications.  



This article is structured as follows. Section 2 introduces the required definitions for the 

rest of the article. Section 3 describes several new properties of the Graph Edit Distance and 

gives some insights into the labellings that the distance can optimize. Section 4 describes some 

possible uses and applications of the previously described properties. Finally, section 5 

highlights the main contributions of the article and draws some conclusions. 

2. Basic definitions and Graph Edit Distance 

Attributed Graph 

Let    and    denote the domains of possible values for attributed vertices and arcs, 

respectively. An attributed graph AG (over    and   ) is defined by a tuple                , 

where                      is the set of vertices (or nodes),     {    |                   is the set of undirected arcs (or edges),           assigns attribute values to vertices and 

         assigns attribute values to arcs.  

Error correcting graph isomorphism between graphs 

Let                      and                      be two attributed graphs of order    and   . To allow maximum flexibility in the matching process, graphs can be extended with null 

nodes [36] to be of order        . We will refer to null nodes of    and    by  ̂       and  ̂       respectively. Let   be a set of all possible bijections between two vertex sets     and    . Bijection             , assigns every vertex of    to only one vertex of   . The bijection 

between arcs, denoted by      
, is defined accordingly to the bijection of their terminal nodes. 

In other words:       (    )           (   )          (   )                   ̂    and              ̂   

(1) 

We define non-existent or null edges by  ̂       and  ̂      . 

 

 



Graph Edit Distance between two graphs 

One of the most widely used methods to evaluate an error correcting graph isomorphism is 

the Graph Edit Distance [23]. The basic idea behind the Graph Edit Distance is to define a 

dissimilarity measure between two graphs. This dissimilarity is defined as the minimum 

amount of distortion required to transform one graph into the other. To this end, a number of 

distortion or edit operations, consisting of insertion, deletion and substitution of both nodes 

and edges are defined. Then, for every pair of graphs (   and   ), there is a sequence of edit 

operations, or an edit path                           (where each    denotes an edit 

operation) that transforms one graph into the other. In general, several edit paths may exist 

between two given graphs. This set of edit paths is denoted by  . To quantitatively evaluate 

which edit path is the best, edit cost functions are introduced. The basic idea is to assign a 

penalty cost to each edit operation according to the amount of distortion that it introduces in 

the transformation.  

Each                   can be related to a univocal graph isomorphism        

between the involved graphs. In this way, each edit operation assigns a node of the first graph 

to a node of the second graph. Deletion and insertion operations are transformed to 

assignations of a non-null node of the first or second graph to a null node of the second and 

first graph. Substitutions simply indicate node-to-node assignations. Using this transformation, 

given two graphs,    and     and a bijection between their nodes,     , the Graph Edit cost is 

given by (Definition 7 of [30]): 



                    
 ∑    (       )         ̂           ̂  

 ∑    (       )         ̂       ̂  
 ∑    (       )     ̂           ̂   ∑    (         )          ̂            ̂  

 ∑    (         )          ̂        ̂  
 ∑    (         )      ̂            ̂  

 

    (   )      and      (    )       

(2) 

where     is the cost of substituting node     of the    for node     (   ) of    ,     is the 

cost of deleting node     of    and     is the cost of inserting node     of   . And for edges:     is the cost of substituting edge      of graph    for edge      (    ) of   ,     is the cost of 

assigning edge      of    to a non-existing edge of    and     is the cost of assigning edge      

of    to a non-existing edge of   . 

Finally, the Graph Edit Distance is defined as the minimum cost under any bijection in  : 

                                                     (3) 

Using this definition, Graph Edit Distance depends essentially on                     and     functions. Several definitions of these functions exist. We focus first on the definition of 

the functions     and    . The most common approaches are the following. The first and 

simplest approach considers cost             where                  if  (                 )            otherwise      ,   is defined as a distance function over 

the domain of the attributes. A specific example of this cost can be found in fingerprint 

verification [37] where           or in [30, 31]. The second and most frequently used 

approach corresponds to the case in which    (          )   , and node substitution cost 

depends on the attributes of the nodes and possibly on some other parameters   , as shown 

in [34],[26] and [8], among others. Similar approaches can be used to define    . With regard 

to             and    , these functions usually simply assign a constant cost. However, they 

can also depend on node or edge attributes [36] [38, 39].  



Nodes and edges can be mapped, by functions     and    , to several types of data: nominal, 

ordinal or modulo. Depending on the data type a particular distance function is required (see 

section 3 of [40]). 

Several specific joint definitions for                     and     functions have been 

theoretically studied. We highlight  [31] and  [30] which are described in Table 1. 

Reference                         
[31], [30]                             

[30]                                                       

Table 1: graph edit cost defined in [31] and  [30]. 

The specific cases studied in [30] and [31] yield to several interesting properties. The costs 

of first row of Table 1 relate the Graph Edit Distance with the maximal common sub-graph. In 

this way computing the graph edit distance with this specific costs leads to the computation of 

the maximal common sub-graph. The cost given in the second row has been studied in [30]. 

Note that the cost of inserting and deleting an edge is always zero. In the definition of [30] 

authors assume that the graphs are complete graphs and a non-existing edge is an edge with 

“null” label. In this case the cost of deleting and inserting and edge can be encoded in the edge 

substitution cost. With this definition authors describe several classes of costs that optimize at 

the same final labelling. In this article, we aim to follow the same direction and give a deepest 

characterization of these classes of costs. To this aim we slightly modify the graph edit 

definition of Table 1 second row. This new definition is given in Table 2.                                                                       

Table 2: particularization of Graph Edit Distance. 

Note that we are able to codify the same information, however edge insertion and edge 

deletions are considered in a separate cost function. Besides, we impose the requirement that                     and                    . This requirement is necessary for 



our development and moreover for the Graph Edit Distance to fulfil the symmetric property of 

a metric. 

3. Class of Costs and Edit Surface 

A Labelling Space is an Euclidean space where the coordinates are the edit costs. Given a pair 

of graphs, we can select some regions in this space such that all points in the labelling space 

obtain the same optimal labelling (the labelling that obtains the edit distance). We call each 

region as Class of Costs. Moreover, given the labelling space and two graphs, we can define a 

function defined over all the labelling space that its value in each point is the distance value 

between both graphs and given some specific edit costs. We call this function Edit Surface. 

In this section, we first give some basic definitions and then we present two properties of the 

Class of Costs and one property of the Edit Surface. From now to the rest of the paper, we use 

the particular specification of the Graph Edit Distance given in Table 2. Therefore, the labelling 

space is a bi-dimensional space with the axis kn and ke. 

3.1 Basic Definitions 

Definition 1: Edit Cost 

Given two graphs,    and   , an isomorphism     between them and two constant values            
, the graph edit cost is given by:                                     (4)    refers to the number of inserted and deleted nodes and can be computed as: 

   ∑ ∑   (       ){         ̂  }{             ̂  }  ∑ ∑   (       ){             ̂  }{         ̂  }  (5) 

   refers to the number of inserted and deleted edges and can be computed as: 

   ∑ ∑   (         ){          ̂  }{              ̂  }  ∑ ∑   (         ){              ̂  }{          ̂  }  
(6) 

   refers to the cost of substituting nodes and edges, this last cost can be computed as: 



   ∑ ∑   (       )               {             ̂  }{             ̂  }
 ∑ ∑   (         ){              ̂  }{              ̂  }                  

(7) 

            and               are computed as: 

  (       )   {      (   )                     ,   (         )  {       (    )                       (8) 

Using this particular definition, the Graph Edit Cost function can be represented in a 3-

dimensional space where x-axis corresponds to   , y-axis corresponds to    and z-axis 

corresponds to         . Note that          depends linearly on    and   . 

Definition 2: Edit Distance 

Given two graphs    and    and two constant values            
, the graph edit distance 

is defined as:                                {                      }       {            } 

(9) 

In other words, the Graph Edit Distance is the minimum cost that can be obtained for concrete 

values of    and   . 

Definition 3: Class of Cost 

Given two graphs,    and   , and an isomorphism     between them, a class of cost         is the sub-set of values in    
 in which    is the isomorphism whereby the minimum 

graph edit cost is obtained,         {           |             {            }} (10) 

We write      instead of         when no confusion is possible. We denominate the set of all 

classes of cost given to graphs    and    by  ̂   . 

 

 



Definition 4: Edit Surface 

Given two graphs,    and   , and a bi-dimensional space composed of values         in    
, 

we define the Edit Surface as,                         ,                                                        {            } 

 (11) 

3.2 Properties of the Class of Costs 

Property 1. Given two graphs,    and   , any class of cost      is either empty or its values 

form a convex polygon in the bi-dimensional space composed of            
. 

Demonstration 

Given two graphs,    and      and the labelling  . We see that for   to yield the Graph Edit 

Distance at a concrete point          its cost must be less than or equal to the cost which can 

be obtained with any other labelling     . That is, the following system of inequalities must 

hold:                                         (12) 

Each of the above inequalities (each   ) divides     into two parts by means of a linear 

equation. It is known that the intersection of any set of linear inequalities is a convex polygon 

[41]. Consequently, each optimal labelling appears only in a single convex polygon □ 

Property 2. Given two graphs,    and   , and a class of cost        , any class of cost           where         ,        ,        and        is optimal at the same set of 

points as     . 

Demonstration 

This property is easily deduced through equation (12) □ 

 

 

 



Discussion of property 1 and 2 

Using Property 1, we see that                 , divides    
 into convex polygons, where 

each polygon defines a class of cost     . A class forms a convex polygon with finite area if its 

values of     and    are finite. Otherwise, the area is infinite. 

 

 

 

Figure 1.a: two graphs. 

Figure 1.b: example of a 

finite area. 

Figure 1.c: example of 

infinite area. 

Fig. 1.b and 1.c show an example of Property 1. Fig. 1.a shows two graphs of the well known 

graph dataset [42]. Examples correspond to graph 35 and 72 of class A. Fig. 1.b and 1.c show 

how two labellings are described by the intersection of a set of inequalities, each line 

corresponding to a concrete inequality of (12). Fig. 1.b shows a finite polygon and Fig. 1.c 

shows an infinite area of a class. 

Note that the above formulation allows dividing      into convex polygons, each of which 

corresponds to an optimal labelling. Note also that it is possible for (12) to produce an empty 

intersection, in which case the tested labelling   is never optimal at any        . 

Knowing that the labelling space is tessellated with labellings it is interesting to see how these 

labellings tend to be distributed and their relation to the values and meaning of    and   , 

specially for the extreme values of                                    . 



 
 

Figure 2.a: diagram of classes of cost. Figure 2.b: labellings related to of classes of cost. 

Consider, as an example, graphs    and     of letter dataset [42] of class A. Fig. 2.a 

presents the classes of cost in the range of         [     ] for these graphs. The vertical axis 

corresponds to    values and    values are shown in the horizontal axis. In addition, Fig. 2.b 

shows the labellings that each class of cost produces.  

We first analyze the labellings computed at              . At this special point every 

node insertion has a cost of zero, therefore, from the node point of view, the less costly 

assignation is to delete all nodes of the first graph and insert all nodes of the second graph. 

From the edge point of view, note that, if we assign all nodes to null the cost of edges will be 

eider substituted if the edge was not initially in the graph or deleted if the edge was initially on 

the graph; in both cases the edges cost will be zeros. Consequently, we can ensure that at 

point              , either because all nodes from both graphs will be assigned to null 

nodes of the other graph or because both graphs are isomorphic. 

Analyzing Labellings attached to the vertical axis, that is                  , it is clear 

that from high to low values of    
labellings associated with each class (Fig. 2.b) go from 

substituting all nodes (      
) to only performing insertions and deletions (      

). However, an 

interesting fact is that not all node substitutions are sub-contained in the adjacent label with 

lower   . We see that this happens in some classes                                   
 



 but not in others       
. Note that even the insertion and deletion of edges is not considered, 

edge substitution it is.  

In the considered special case where      , notice that if edges do not have attributes,          , the problem of computing the graph edit distance turns from the quadratic 

assignment problem to the linear assignment problem.  

An interesting special value when moving over the    axis is the value of              . 

The labelling computed using this value maximizes assignation from nodes of the first graph to 

nodes of the second graph considering the minimum number of null assignations required 

which is          . 
We now consider the labellings we obtain when moving over the    axis. That is, we 

consider values                 . It is obvious that different values of    force the result 

to be more structurally correct. However, forcing in addition      , it does not necessarily 

mean that the node attributes are not considered. In fact they are, due to node substitution 

cost is considered. In the example of Fig. 2 see that as we move    towards     the classes 

change to force the labellings to be more structurally consistent. Note again how node 

substitutions are sometimes not sub-contained adjacent labels, e.g.                     
. 

In the extreme case              , we can affirm that the resulting optimal 

isomorphism, if enough null nodes are provided and edges do not have attributes, corresponds 

to the maximal common sub-graph as demonstrated in [30]. If we aim to obtain the maximal 

common sub-graph when attributes are present in edges, the edge substitution cost must 

restrict edges to have the same attribute and so the edge substitution cost must be defined as 

Table 1 row 1. 

The final extreme value to analyze corresponds to              . In most of the cases 

while using these costs, the resulting labelling maximizes the node substitutions and edge 

substitutions at the same time. However, this double maximization can be troublesome in 

several cases. Considering this issue, we differentiate between two types of  ̂ (Def. 3) sets. 



The first corresponds to graphs where for values of                the optimal labelling is 

equivalent to the optimal labelling for values of              . That is, the structurally 

optimal and the semantically optimal labellings are equivalent. This is shown in Fig. 2.a. We 

consider this situation to be the desired case when applying graph matching to pattern 

recognition, because two optimally labelled similar objects should maximize structural and 

syntactical relations in the same labelling. The second type of labelling spaces corresponds to 

functions in which the optimal semantic labelling differs from optimal structural labelling. An 

example is shown in Fig. 3.a and 3.b which show graphs     and     of the letter dataset [42] 

of class A. See that optimal labellings when               and               differ. 

When this situation occurs in the application at hand, we must decide which labellings we 

prefer to optimize, structural or semantic. 

 

 

 

Figure 3.a: diagram of classes of cost. Figure 3.b: labellings related to of classes of cost. 

Note that property 2 implies that the graph edit cost is not an injective function due to several 

labelling can give the same optimal cost. 



3.3 Property of the Edit Surface 

Property 3. Given two graphs,    and   , the function                  monotonically 

increases. In other words,                                           where              ,             ,           and        . 

Demonstration 

We know from Property 1 that the         bi-dimensional space can be divided into several 

classes of cost,         . Each class of cost       is represented by its plane equation (10). We 

know from Definition 1 that values          and     are positive. Thus, we can conclude that 

within each class of cost      , costs monotonically increase. 

It is important to demonstrate that where two classes of cost intersect, costs do not decrease 

but remain equal or increase. Two labellings change their optimality when costs for both 

classes are equal, that is, when the equation (12) for two different labellings,   and     is equal. 

Using this     operator ( ), cost cannot decrease and so when two classes intersect, costs 

keep increasing □ 

 
 

Figure 4.a: two graphs. Figure 4.b: example of Edit Surface. 

4. Applications of the Class of Costs and Edit Surface 

In this section we illustrate how the given properties can aid some graph matching problems 

and describe three applications where the described properties can be used. 



4.1 Interactive and Adaptive Graph Recognition 

The aim of the application we present is to learn a model that represents a set of graphs such 

that the labelling obtained by the graph matching algorithm is as similar as possible to the 

labelling between graph nodes imposed by a human expert. Part of the definitions, methods 

and algorithms commented here have been published in [43, 44]. 

In most of the applications, the labelling between nodes is only partially considered. This is 

because it is considered in the first stages of the pattern recognition process, in which it is 

desired to find a similarity measure between graphs. But, when this similarity value is obtained 

(the final distance value between graphs given the labelling), the knowledge of the labelling is 

not considered any more. Nevertheless, we consider that although the graph is properly 

classified or identified, the result of the comparison (the final distance value) has not sense if 

the labelling between their local parts is far from the labelling proposed by the human 

specialist. 

We defined in [43] an interactive and adaptive graph recognition model with the aim of 

increasing the quality of the labelling between the graph to be identified and the reference 

graphs of the database. To that aim, we have extended the graph recognition model to 

consider the labelling between nodes proposed by a human specialist. This new knowledge is 

incorporated into the system and used to modify the weights of the model (such as    and   ) 

that tune the similarity function between graphs. 

 

Figure 5. Scheme of the Interactive and Adaptive Graph Recognition Model. 

The batch training process of our application, shown in Fig. 5,  generates the first knowledge of 

the system that forms the model given a set of pairs (graph, class) and other parameters, such 



as    and   . The Interactive Recognition process generates a first hypothesis                given an input graph   and using the model. This hypothesis is composed by a 

class  , a graph with the minimum distance      and a labelling f between both graphs. When 

the human proposes a new labelling  , the interactive process generates the final hypothesis    using the model and also the human interaction  . Note that,    can be completely different 

from  . Not only the graph and labelling can be different but also the class. Finally, the 

Adaptive Learning process updates the parameters in the model. Specifically, two of these 

parameters are    and   . Computing the new values of these parameters is a process related 

to the aim of this paper since the new values are obtained through the labelling space. 

Moreover, the following algorithm needs property 1 to perform properly. 

The inputs of the algorithm used to update    and    are the input graph  , the labelling 

imposed by the user   and the final output graph      
. The outputs of the algorithm are the 

new values of    and    which maximize the labellings proposed by the expert. The main idea 

of the algorithm is to build a histogram of the classes of costs that appeared while using the 

general model. That is, each time the algorithm receives a new input, the class of costs is 

obtained,            , and added to the histogram. Thus, the peak of the histogram (there 

could be several peaks) represents the values of    and    that maximize the similarity of the 

human labellings with the labellings proposed by the system. 

Figure 6 (reprinted from [43]) shows the evolution of values of Kn and Ke when new graphs are 

added into the system. The system has been initialised by four different values of Kn and Ke. 

The initial values are the most external points. We see that when the algorithm converges, the 

four experiments converge to the same final value of Kn and Ke. 



 

Figure 6. Evolution of Kn and Ke in four different initialisations. 

4.2 Analysis of the behaviour of human similarity measures 

Given a pair of images that represent objects (pictures, handwritten characters...), humans can 

decide if they are similar or not or even they can decide certain degree of similarity. This is 

because we have an inherent similarity function (difficult to be mathematically defined) that 

may be application dependent. When we aim to solve the problem of automatically describing 

this similarity through automatic structural pattern recognition, it is usual to convert these 

images to graphs and apply a distance measure between graphs.  

Graph edit distance has some application dependent weights that can be manually tuned. 

Some research has been done to automatically obtain these weights such that the overall 

recognition ratio is maximised given a database [33,34] or the difference between the node 

bijection between both graphs imposed by the specialist and the node bijection obtained by 

the machine is reduced [43]. If we have enough theoretical information to understand the 

behaviour about the graph distance at hand, it is possible to go a step further. It is possible to 

investigate if the inherent distance measure between nodes or between arcs that the user has, 

given an application, approaches the one that the method defines. Property 2 says that there 

could be two different labellings between nodes that are optimal at the same class of costs. 

These two labellings can be seen as different interpretation of the representation. 

 Suppose we want to compare pictures and we have extracted a region adjacency graph from 

each image. A region adjacency graph is a graph in which nodes represent important regions of 

the images. The attribute of the regions may be the average colour, the area, the circularity of 



the region and so on. There is a graph arc if regions are adjacent. There could be some 

attributes on the arcs such as the length of the border between regions. 

Suppose we compute the cost class given the labelling imposed by a human specialist for all 

the graph comparisons.  

Then, some different situations can happen. 

- The average value of     of all the cost class is low given all the graph comparisons. In 

this case, the specialist believes the semantic information on the nodes is very important. 

Therefore, the specialist considers two images are similar if they have similar regions but 

independently of the position of these regions. 

- The average value of    of all the cost class is low given all the graph comparisons. This 

case is the opposite of the last one. The user believes the most important aspect while 

comparing two images is the relation between regions (i.e. their relative position) although 

these regions seem to be very different (i.e. different area or colour) 

- The area of the union of the cost classes of all the comparisons is big although the 

intersection is small. This means that the specialist has different perceptions of the importance 

of the relations (arcs) respect the semantic information (nodes) depending on the images. This 

situation appears when the representation of the images does not include the feeling of the 

specialist. 

- An opposite case appears when the area of the union of the cost classes of all the 

comparisons is small. This case appears when the node bijections between both graphs that 

the user proposes are never the optimal ones or are only optimal in a small domain of    and   . In the case that the general cost class is elongated through the    axis, the inherent 

distance between image regions of the user performs in a different way than the distance 

between graph nodes of the system. On the contrary, in the case that the general cost class is 

elongated through the    axis, the system captures in a different way the relations between 

these regions. 



In this way, by analyzing the application at hand and how the Graph Edit Distance behave over 

the graph representation and the data itself, we are able to adapt, change or replace the 

distance measure we are using.  

4.3 Reducing the distance error of sub-optimal graph matching algorithms 

Property 3 defines that the edit surface must increase when    and    increases. This 

certainly occurs when using optimal algorithms to compute the labellings given the values of    and   . However, we cannot assume these properties hold true if we compute the labelling 

space using suboptimal algorithms. Two examples are shown in Fig. 7.a and 7.b, which show  ̂ 

obtained by the Graduated Assignment [45] using the graphs in Fig. 2.b and 3.b. We see that 

most of the regions computed by the Graduated Assignment are not convex. A good approach 

for improving sub-optimal algorithms that minimize Graph Edit Distance would be to modify 

them to hold for Property 1 while predicting the labelling given some certain point in the 

labelling space. 

 
 

Figure 7.a: example of class of cost 

computation using a suboptimal algorithm. 

Graphs used are shown in Fig. 2.b. 

Figure 7.b: example of class of cost 

computation using a suboptimal algorithm. 

Graphs used are shown in Fig. 3.b. 

Moreover, the application of Property 3 could help suboptimal algorithms to achieve better 

performance in graph distance computations. Fig. 8.a and 8.b show the EditSuface for a range 

of    and    values. Fig. 8.a is computed using the graphs of Fig. 2.b and Fig. 8.b using the 



graphs of Fig. 3.b. Both figures show two surfaces. The first, printed in solid gray scale, is 

computed using an optimal A* algorithm. The second, printed using transparency is computed 

using the Graduated Assignment [45] algorithm. We see how the Graduated Assignment does 

not provide a good approximation for high    and relatively low    values. This means that 

the graduated assignment is able to compute very good edge labellings but fail in computing 

node assignments. We see that Property 3 does not hold true for surfaces computed by the 

Graduated Assignment algorithm. A simple way of improving graph distance computations 

could be to compute several costs for different    and    values and average the results to 

force Property 3 to hold. We assume that the computational cost of computing few sub-

optimal algorithms is lower than one optimal algorithm. 

  

Figure 8.a: edit surfaces given by an optimal 

and a sub-optimal graph matching 

algorithm. Used graphs are shown in Fig 2.b. 

Figure 8.b: edit surfaces given by an optimal 

and a sub-optimal graph matching algorithm.  

Used graphs are shown in Fig 3.b. 

5. Conclusions 

Most of the applications based on graphs algorithms rely mainly on a precise definition of a 

distance between two graphs. There are several definitions in use. However, the most used is 

probably the Graph Edit Distance or some variations of it. In this sense, a well known 

theoretical study of the distance is required. In this article, we presented some advances on 

the theoretical study of the Graph Edit Distance. We characterized the shape of the classes of 



costs presented previously in [30]. In addition, we described the shape of the Graph Edit 

Distance for the use of every possible graph edit constant. These advances are summarized in 

form of 3 properties which are adequately proven. To demonstrate the practical utility of the 

properties, we have presented three applications where these properties are used. 

From the presented work, we can summarize several conclusions. We see by means of two 

examples that the number of labellings in the labelling space is relatively low with respect all 

possible labellings we should be able to obtain between two graphs. We see that variations of    and    constants do not give enough flexibility to learn a great amount of distinct 

isomorphism between two graphs. Different values of    define how much we trust a possible 

assignation. However, this value is not locally tested but globally and so resignations of nodes 

are possible in consecutive labellings in the    axis.    define how structurally correct we 

desire the solution to be. The combination of these two constants allows computing some 

different labellings but the modification of node-to-node and edge-to-edge distances are 

required to provide to the Graph Edit Distance flexibility in learning every possible node-to-

node bijection. Besides, the shape of the edit surface is clearly determined. This knowledge is 

important to evaluate the quality of suboptimal algorithms and in addition to aid in improving 

its results.  
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