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Abstract The 2nd Law of thermodynamics was driven by the Big Bang being ex-

traordinary special, with hugely suppressed gravitational degrees of freedom. This

cannot have been simply the result of a conventional quantum gravity. Conformal

cyclic cosmology proposes a different picture, of a classical evolution from an aeon

preceding our own. The ultimate Hawking evaporation of black holes is key to the

2nd Law and requires information loss, violating unitarity in a strongly gravitational

context.
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There are aspects of the gravitization of quantum theory that are on a vastly differ-

ent scale from those described in the companion article (Quantum State Reduction),

namely cosmology. Figure 1 depicts the entire history of the universe, according to

current conventional cosmology. It is a space-time picture—as most of my pictures

will be here—with the passage of time taken in the upward vertical direction. Hor-

izontal sections through the picture would represent spatial dimensions, but to get

everything into the picture visually, I have suppressed two of the spatial dimensions

(as is a usual practice). In order not to prejudice the issue of whether the universe is

spatially closed or not (unknown at present), I have been a bit vague about what is

going on at the back of the picture, as this issue will play no role in what I wish to

say.

It will be noticed that there is an early phase of rapid expansion, which slowed

down after a while (during a period of some 1010 years!), but subsequently this ex-

pansion rate started to increase again, to become the period of exponential expansion

that we see beginning in the upper part of the picture. Such an ultimate exponential
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Fig. 1 Space-time picture of

universe history

expansion is actually a clear prediction of many solutions of the Einstein equations

with positive cosmological constant Λ, the term that Einstein introduced (admittedly

largely from a wrong reason) in 1917, although the tiny non-zero value that Λ is

found actually to have (initially by the 1998 measurements of distant supernovae

made by Perlmutter, Schmidt and their associates) was not anticipated. The observa-

tions remain perfectly consistent with this Λ-interpretation; yet many cosmologists

try to look for other interpretations, using the (in my view somewhat inappropriate)

terminology “dark energy” for the source of the repulsion.

Our current temporal location is somewhere around 3/4 of the way up the picture

of Fig. 1. At the bottom we find the Big Bang, shown as an initial point, represent-

ing what is taken to be the temporal origin of the universe. This is a singularity in

its space-time structure, whose physical description is normally argued to require a

detailed theory of quantum gravity.

There is one part of modern cosmology that I have not represented in this picture,

which is cosmic inflation. This is proposed to have occurred within an extremely

early period, between (say) 10−35 s and 10−32 s after the Big Bang. There are two

reasons that I have not represented this in Fig. 1, the first being that on the scale that

the picture is drawn, you would not be able to see the inflationary phase at all, as it

would all be happening well within the black spot at the bottom of the picture. The
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Fig. 2 A very powerful

magnifying glass!

second reason, which I shall be coming to shortly, is that I do not actually believe that

inflation ever occurred!

Setting aside my severe doubts, at the moment, let us try to see what inflation

would look like in this picture. To see it at all, we would need a very powerful magni-

fying glass (Fig. 2). What we would see (Fig. 3) would be an exponential expansion,

very much like the exponential expansion that is beginning to take place, on a hugely

larger scale, at the current epoch of the history of the universe (compare Fig. 1). There

are various reasons that most cosmologists appear to believe that inflation necessarily

did take place—some good reasons, some not so good.

The main good reason has to do with a detailed and somewhat remarkable feature

of the generation of the tiny spatial variations in the cosmic microwave background

(CMB), namely that they were (very closely) scale invariant and this could be ex-

plained by the basically self-similar exponential expansion of an early inflationary

phase. We recall that the CMB is a ubiquitous electromagnetic radiation that comes

to us from all directions in space, having an almost precisely thermal spectrum, of

temperature ∼2.7 K which is (when corrected from effects arising from the Earth’s

motion through it) uniform over the entire sky to about one part in 105. The not-so-

good reasons for believing in inflation are that it is supposed to explain this uniformity

in various respects, it being argued that a random irregular initial configuration in the
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Fig. 3 Inflation’s proposed

exponential expansion

Big Bang could be “stretched flat” to produce such uniformity as a result of such an

early exponential expansion.

Why is this early enormous inflationary expansion not a good reason to explain

this uniformity? I do not want to go into the details of this here, but see Penrose [8] for

the central argument. The basic problem has to do with the issue of what to expect for

a “randomly chosen” initial state. Such a state cannot be expected to be smoothed out

in the way intended, simply as a result of dynamical processes that are based on time-

symmetric field equations, as are those of the “inflaton field” underlying the dynamics

of inflation. This is basically a consequence of the second law of thermodynamics

(abbreviated 2nd Law), in a gravitational context, as we shall be seeing.

As is well known, this law tells us, roughly speaking, that the randomness of the

universe—i.e. entropy—increases with time. Equivalently, as we go back in time, this

entropy decreases, so that the Big Bang must have been an exceedingly special state.

In what way was it special? Well, the exceedingly closely thermal nature of the CMB

tells us that the matter and radiation must have been in a very high entropy state in

the early universe (at last scattering, at least). This seems like a paradox, but the clue

to the particular way in which the entropy was actually initially exceedingly low lies

in that other most evident feature of the CMB, namely its very closely uniform na-

ture over the whole sky, indicating a very spatially uniform early matter distribution.
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Without this spatial uniformity we would not have had a low entropy initial state,

and there would have been no 2nd Law! The spatially uniform initial state must have

been an initial condition. It could not have come about via ordinary physical pro-

cesses acting in accordance with the 2nd Law, because this would have represented

an enormous reduction in the entropy. i.e. a severe violation of the second Law.

Why does this spatial uniformity represent low entropy? Again this might at first

seem to be a paradox, as a gas in a box in its highest entropy state—i.e. thermal

equilibrium—would be expected to spread uniformly throughout the box as the en-

tropy increases. But when we bring gravity in we get a vastly different picture because

the universally attractive nature of gravity provides us with a strong tendency for mat-

ter to clump, leading to the high entropy states being highly non-uniform. Thus, we

see that with regard to the gravitational degrees of freedom, the entropy was indeed

exceedingly low at the state, since entropy is gained in gravitating systems by the in-

crease in clumpiness as gravitation takes over—leading to galaxies and stars, finally

resulting in stupendous entropy increases as black holes are formed. It is in the re-

markable absence of such clumpiness in the initial state (in particular, the absence of

“white holes”, the time-reverses of black holes) that the extreme lowness of the initial

entropy resides.

The singularities in black (or white) holes involve enormously high entropy, which

may be thought of as the extreme thermalization of gravitational degrees of freedom

at black-hole singularities. These degrees of freedom were what were patently not

activated in the early universe-and, simply by the 2nd Law their exceedingly high-

entropy input could not have been removed by inflation. In Fig. 4 I have improved

upon Fig. 1 by including the singularities in the black holes. We can now see how

the 2nd Law operates, overall, in our universe, where the initial singularity (the Big

Bang) was an exceptionally low-entropy singularity, to start things off, whereas the

black-hole singularities were states of extraordinarily high entropy. Moreover, in each

case it is in the gravitational degrees of freedom that are driving the whole entropy

story. The over-riding role of gravitation, in this story can be ascertained from the

Bekenstein-Hawking black-hole entropy formula, which tells us how enormous the

entropy in black holes must be. Accordingly, this formula can also be used to estimate

the extraordinary specialness of the Big-Bang state, as opposed to the extremely high-

entropy potential possibilities in black (or white) holes. We conclude (taking into

consideration only the region of space-time lying within our own past light cone-i.e.

within our particle horizon) that the probability of such a state coming about purely by

chance is: 1 part in something like 1010124
(where the upper exponent “124” includes

a dark-matter contribution to the material content of the universe). This figure makes

clear how enormously far from random the initial state must have been.

This is essentially the situation that we are presented with in the universe that we

perceive, basically from observation. It makes clear that there is a profound mystery

to be addressed, and it is one that is essentially untouched by bringing in an inflation-

ary phase to the very early universe. The mystery lies in the fact that the gravitational

degrees of freedom (and apparently only these degrees of freedom) are manifestly

time-asymmetrically represented in these singular temporal boundaries to space-time.

This mystery is left essentially untouched by considerations of inflation, since infla-

tion is supposed to be driven by a postulated field—the inflaton field—whose dy-
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Fig. 4 Black-hole singularities

added

namical equations are time symmetrical. (For more discussion of this point, see Pen-

rose [9], §28.4–§28.7.) Of course, Einstein’s equations are also time-symmetrical, so

we can see no resolution in classical general relativity. The singularities, on the other

hand are normally perceived to be things that must be addressed by quantum grav-

ity, and for many years I had taken the view that this profound time-asymmetry in

space-time singularity structure must be a result of the changes to the framework of

quantum mechanics that would be engendered by the putative scheme that I am here

calling “gravitization of quantum mechanics” (see bottom of Fig. 4 in the companion

paper Quantum State Reduction).

However, my current views on this issue have very significantly shifted rather re-

cently [10–12] and I shall give here a very brief account of my current viewpoint,

which I refer to as “conformal cyclic cosmology” (CCC). The first step is to re-

examine the geometry of Fig. 1 from a conformal perspective, by adopting two math-

ematical tricks (Fig. 5). These tricks are basically ones that have been familiar to

me since the 1960s (see Penrose [7]), and they can always be applied in the case

of the homogeneous isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) mod-

els. For such models which expand out to infinity in the remote future, a conformal

rescaling of the metric, can be applied to “squash down” the infinite future, so that

it becomes a finite future boundary ℑ to the space-time (regarded as a conformal
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Fig. 5 Future infinity

conformally squashed, Big Bang

conformally stretched

manifold) where ℑ is a smooth (conformal) 3-surface, which is null (lightlike) if the

cosmological constant Λ vanishes, and is spacelike if Λ > 0. This is a useful trick for

studying the asymptotic behavior of massless fields, which can be then examined as

finite geometric or algebraic quantities at ℑ. The other (opposite) trick is to “expand

out” the big bang of these cosmological models by another conformal rescaling of the

metric, so that it becomes a (normally spacelike) finite past boundary B to M. Both

B and ℑ are useful for understanding cosmological horizons, where the spacelike na-

ture of B tells us there are particle horizons and where a spacelike ℑ leads to event

horizons. (Note: I use the uncapitalized “big bang” for these initiating explosions, in

cosmology generally, and the capitalized “Big Bang” for that particular occurrence

that, according to current cosmology, started our own universe some 1.4 × 1010 years

ago.)

Figure 5 illustrates these procedures, where both mathematical tricks are being

adopted together, so we have two conformal boundaries to a space-time M, with

ℑ representing the (infinite) “end-point” M’s exponentially expanded future infinity

(spacelike, since Λ > 0), and with B representing M’s big-bang origin (also space-

like). There is, however, an important distinction between the logical status of these

two boundaries. There are general theorems (see Friedrich [1]) that tell us that under

very general circumstances, when Λ > 0, we can expect a smooth spacelike ℑ to ex-
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Fig. 6 Aeons of conformal

cyclic cosmology (CCC)

ist as future conformal boundary. On the other hand, the existence of a conformally

smooth past boundary B to M represents a hugely strong condition on the nature

of M’s big bang. Indeed, Tod [13] has proposed that the very existence of such a

smooth past boundary B is a plausible proposal for the mathematical restriction on

the Big Bang of our own universe, expressing the necessary huge restriction on the

initial gravitational degrees of freedom that gave us our 2nd Law in the way that it

appears to have occurred.

My CCC proposal adopts Tod’s very elegant point of view, but goes further in

suggesting that there was actually a conformal continuation of our own Big Bang B to

a previous universe phase prior to B, whose conformal infinity joined smoothly to B.

Moreover, CCC also maintains that “beyond” our ℑ, there will be a smooth conformal

continuation to the big bang of another universe phase. This is to continue indefinitely

in both temporal directions. Thus, CCC proposes that what current cosmology refers

to as “the entire history of the universe” (but without any early inflationary phase)

is just one aeon of a succession of such aeons, that continues indefinitely in both

temporal directions (Fig. 6).

In this scheme, although there is never any “inflation”, as such, in any of the aeons,

the exponential expansion in the remote future of each aeon plays a role that would,

in many respects, be very similar to that of an inflationary phase occurring in the
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Fig. 7 Light cones (null cones)

in special and general relativity

succeeding aeon. As I shall be explaining shortly, it is possible for information in

each aeon to pass through into the succeeding one, and will influence the spatial

variations in the CMB of that aeon. Thus, we see that in CCC there is indeed a kind

of “inflation” entering into the structure of each aeon, but rather than occurring very

soon after a big bang, it occurs before the big bang of that aeon and, according to

CCC, it was the remote-future exponential expansion in the previous aeon that leads

to effects-such as a scale-invariant early input-that would be, in many respects, similar

to those of inflation. This idea of placing the inflationary phase before our Big Bang

is close to one put forward previously by Gasperini and Veneziano [2].

In order to get a better picture of the role of these conformal rescalings, let us first

address the important role of light cones (or, more correctly, null cones, when we

are really considering structures in the tangent spaces) at the various points of space-

time; see Fig. 7. As is familiar in relativity theory, these represent the space-time

directions of world lines of (idealized classical) photons. The causality structure of

space-time is defined by them, in that massive particles must have their world-lines

constrained to be directed within the cones and massless particles, along the cones.

The metric structure of space-time is largely determined by these cones, but not en-

tirely. They actually determine space-time’s conformal structure—in other words the

metric tensor gab up to proportionality—this being given by 9 independent compo-
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Fig. 8 Planck’s and Einstein’s

formulae: particles as clocks

nents per point, which are the independent ratios of the 10 metric components at each

point.

The full metric, upon which Einstein’s general relativity depends, requires all 10

components, and for this we need something to determine the scale of the metric.

Although it is fairly usual to think of metrics in terms of distances, it is more appro-

priate not to specify distance measures directly, but to use time measures, as this is

closer to the underlying physics. Indeed, Nature provides us with an excellent notion

of primitive clock through the combination of the two most important basic equations

of 20th century physics, Planck’s E = hν and Einstein’s E = mc2, which along a sta-

ble particle’s world line gives us a precisely determined frequency ν = m × (c2/h),

where m is the rest-mass of the particle (top of Fig. 8). The “ticks” of various iden-

tical clocks through a space-time point define, at that point, the degree of crowding

of the hyperboloidal surfaces (bottom of Fig. 8) there which, in addition to the light-

cone structure, defines the full metric of the space-time. In Fig. 9, I have added the

crowdings of these (infinitesimal) surfaces to the light-cone structures that we had

previously in Fig. 7. This gives a representation of the full metric that is the structure

needed for full general relativity.

We observe from Fig. 8 that massless particles such as photons play no role in ac-

cessing the scale of the metric, since their world-lines never encounter even the first
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Fig. 9 Cones and scalings give

the full space-time metric

of the hyperboloidal surfaces. Accordingly, massless particles alone cannot be used to

determine the space-time metric, and appear to need only the conformal (light-cone)

structure for their dynamics. This is made a little more precise, in the case of pho-

tons, by the fact that the Maxwell equations are completely invariant under conformal

rescalings, where not only are the free Maxwell equations invariant, but so also is the

way that the Maxwell field is influenced by its sources. The same actually applies to

the (classical) Yang-Mills equations (of strong or weak interactions), provided that

we are not concerned with the masses of the various particles involved.

It is, indeed, with the physics that directly involves mass in one way or another

that we find breaking of conformal invariance. We see from Fig. 8, that it is particles

with rest-mass that seem to be needed in order to build a clock, and without rest-mass

we appear to have a basically conformally invariant physics. The other obvious place

where the full metric gab is needed, rather than just the conformal structure, is in

the gravitational theory of Einstein’s general relativity. Here the crucial role of mass

lies in the fact that mass is the source of the gravitational field (analogous to electric

charge being the source of the electric field).

Now, near the “Big Bang”, perhaps at a time a good deal earlier than the “Higgs

time” when the temperature of the universe was so extreme that particles’ rest-masses

became irrelevant, their energies far exceeding the mass-energy of the Higgs particle,
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then the relevant physics was that of massless particles. Accordingly, one might well

expect that the conformal invariance of rest-mass-free physics would be appropriate

to describe what was going on near the Big Bang. With gravitational degrees of free-

dom hugely suppressed (which is what we appear to find in the neighborhood of the

Big Bang) a conformal picture does appear to be an appropriate one and, if so, we can

extend this description right back to the initial (conformal) 3-surface B—and perhaps

to even behind it, into the remote future of the previous aeon.

This brings us to the question of what the very remote future of an aeon might

actually be like. The first issue to address is the presence of numerous black holes

in that aeon, since they all have singularities within them that act as future space-

time boundaries for observers unfortunate enough to fall in through their horizons.

These boundaries, however, are conformally a complete mess, and there is no way

that they could be considered to be conformally extended into the future in a smooth

way—for the clear reason that (in time-reversed form) such extendibility was taken

as a criterion for the low-gravitational-entropy nature of the Big Bang, in accordance

with Tod’s proposal. However, since we are looking into the very far future indeed,

we need to take into account that when the expansion of the aeon cools it down to a

temperature lower, even, than the Hawking temperatures of the largest (and therefore

coldest) supermassive black holes, the black holes will then be the “hottest things

around” and will gradually lose their energy—and therefore mass—by Hawking ra-

diation. This mass-loss continues, the hole getting hotter as it gets smaller, until the

hole itself disappears with a final “pop” (which, though a substantial explosion in

ordinary terms, is pretty insignificant on the astrophysical/cosmological scale). See

Fig. 10, which also illustrates the “trapping” character of the hole’s horizon, accord-

ing to the light-cone geometry of Fig. 7.

In view of the sort of sizes of some supermassive black holes, already observed

(around 2 × 1010 solar masses) we must expect that time scales of the order of 10100

(a googol) years, or more, may well be needed for the final disappearance of all black

holes. Almost the entire mass-energy of these black holes will be released in the

form of exceedingly low-energy photons, and we may anticipate that by far the major

contribution to the contents of the universe-at least in terms of particle numbers-will

be in photons. Photons are massless, and subject to conformally invariant laws so

that, as was the case for the contents of the very early universe, conformal physics

will dominate, and can accordingly be extended to the future conformal boundary ℑ.

For the philosophical standpoint of CCC to hold more strictly, however, we do

need to address the issue of the ultimate (conformally non-invariant) presence of par-

ticles of finite rest-mass, most seriously “rogue” electrons, that escape from galax-

ies (and are thus not swallowed by their supermassive black holes), to roam freely

throughout the vast almost empty reaches of our universe-aeon’s very remote fu-

ture. Electrons (and their anti-particles, the positrons) are the most serious problem

for CCC’s massless philosophy because one might imagine that protons and other

more massive charged particles could ultimately decay to less massive ones, and that

conceivably there is a massless neutrino among the three versions known (still an ob-

servational possibility). Assuming charge conservation to be an absolute law (and if it

were not, we would have a difficulty with the photon itself acquiring mass), then we

would be ultimately stuck with the least massive charged particles, namely electrons
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Fig. 10 Hawking-evaporating

black hole

and positrons. Present-day observations (particularly in relation to pair annihilation)

assures us that no massless charged particles exist now, so the remaining possibility

for eliminating all rest-mass in the very remote future of each aeon, appears to be the

ultimate evaporation of rest-mass.

That rest-mass might ultimately evaporate away, over periods that might well be

far longer than even the ∼10100 years needed for the disappearance of all black holes

(by perhaps some kind of eventual inverse Higgs process) is perhaps not unreason-

able, in the presence of a positive Λ, in view of the fact that the Poincaré group—for

which rest-mass is a Casimir operator—would have to be replaced by the de Sitter

group, when Λ > 0, for which rest-mass is not a Casimir operator and so not neces-

sarily absolutely conserved for a stable particle.

Finally, I address two important questions raised by CCC. The first is the issue of

the 2nd Law, in the context of a cyclic universe. In fact CCC can accommodate this

Law provided that one adopts what I have always regarded as the reasonable stance

with regard to “black-hole information loss”, namely that Hawking, in his powerful

original analysis [4] was correct in arguing that there is indeed a loss of information—

or, as I would prefer to put it, a loss of degrees of freedom—in the black-hole evap-

oration process. These degrees of freedom would eventually be “swallowed” by the

singularity, which represents a future boundary to the space-time internal to the black
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Fig. 11 Black-hole

evaporation: entropy zero re-set

hole. It seems that many (most?) physicists—and including Hawking himself in his

later reversal of his earlier position [5]—would take the view that the loss of unitar-

ity (U) that would be entailed by this “information loss” is unacceptable, so they try

to argue that this information is somehow regained in subtle correlations outside the

hole. However, my own position (see Fig. 11) has long been that U cannot in any

case be a firm law in the context of quantum gravity or, rather, that the gravitization

of quantum mechanics must inevitably involve U-violation in some form (see Fig. 4

of companion paper Quantum State Reduction).

The loss of degrees of freedom results in a “collapsing down” of the phase space

(see Fig. 12), into a space of lower dimension, and the evolution curve gets cor-

respondingly projected into this lower-dimensional space. This is not the way that

phase space is normally treated in physics, where standard procedure would be to

take the phase space as a given thing, and the description of the dynamics of the

system in question would be given entirely in terms of a particular evolution curve,

representing the history of the system, lying within that fixed phase space. But when

the phase space itself gets smaller, as a result of the particular evolution that is tak-

ing place, we have a new situation, not part of standard physics, and this is what is

expressed in Fig. 12.
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Fig. 12 Phase-space shrinkage

with information loss

This strange situation is softened somewhat when we realize that the loss of de-

grees of freedom is not something “abrupt”, because there is a (very long) period of

ambiguity, during the lifetime of the evaporating black hole, concerning the issue of

“when” the degrees of freedom are considered to have disappeared. This comes about

because there is much choice about how one might wish to draw the spacelike surface

on which the relevant degrees of freedom are to be determined; see bottom two fig-

ures in Fig. 12 (both of which represent the same history of an evaporating black hole,

the second being a conformal diagram). We may choose to use a spacelike surface

that works its way down, when inside the horizon to before the singularity is formed

(represented by the broken line), and if we stick to such spacelike surfaces until the

hole is gone, then the disappearance is indeed abrupt, but it might be felt that a more

natural description would be to use horizontal lines in the left-hand figure, in which

case the disappearance would be considered to be extremely gradual, spread out over

the entire history of the evaporating hole. Since what happens within the horizon has

no effect on the external physics, we see that these ambiguities are really completely

irrelevant to the external evolution of the system. Accordingly, in the projection rep-

resented in the top part of Fig. 12, there is a great deal of choice about when it is

considered that the projection has taken place.
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Although this is actually a reduction in phase-space dimension, The issue with re-

gard to entropy is the volume reduction involved. Each degree of freedom accounts

for two dimensions of phase space, these two dimensions, taken together, being mea-

sured in units of action, the dimension of Planck’s constant. In quantum mechanics,

we have a natural measure of phase-space volumes, where we can take � = 1, so

phase-space volumes of different dimension can be compared. Boltzmann’s defini-

tion of entropy S, namely S = k logV , where V is the volume of the coarse-graining

region of the phase space volume relevant to the system under consideration (and k is

Boltzmann’s constant) simply has a constant subtracted from it when the degrees of

freedom disappear. This results in a renormalization of the definition of entropy, that

takes place when a black hole evaporates away.

It is this re-setting of the zero of entropy, which continues until all the Black holes

are gone (over a period of some 10100 years) that allows the entropy to be reduced

to the small value needed, so that when the aeon’s ℑ is reached, the entropy value

is back down to the low value needed to start off the succeeding aeon (where we

recall the enormous entropy values in black holes, easily dominating the entropy

values from all other physical processes). We must not think of the renormalization

of entropy that occurs when a black hole disappears as a violation of the 2nd Law.

The entire Hawking evaporation process is fully consistent with the 2nd Law; indeed,

it can be considered to be driven by it, but the loss of phase-space volume from the

destruction of degrees of freedom by the black-hole singularities allows the 2nd law

to be transcended, rather than violated. Following the crossover into the next aeon,

there is the potential for new degrees of freedom to be activated, in the gravitational

degrees of freedom that become available, and things can start all over again. It is a

subtle point, but it appears to be this that allows the 2nd Law to operate throughout the

continuing succession of aeons, in the picture that CCC presents (see Penrose [12]).

The second important question concerning CCC that I wish to raise here is that

of observational consequences of this proposal. The most clear-cut signal that I have

been able to think of would be the result of collisions of the supermassive black holes

that we would expect to inhabit galactic centres, in the aeon prior to ours. Each such

collision would result in a stupendous release of energy in the form of gravitational

waves, which would be effectively instantaneous on the scale of things under con-

sideration. These gravitational waves would continue out to the ℑ of that aeon and,

according to the equations of CCC would continue as an impulse of energy conveyed

to the initial form of dark matter that, according to CCC’s equations, is necessarily

created at the birth of the succeeding aeon (namely ours), and would make its mark

on the slight temperature variations that we see in the CMB. In fact, the expectations

of CCC are that the major contribution to the temperature variations in the CMB on

a small scale would indeed be due to causes of this nature. Each such black-hole en-

counter would provide a circular “ripple” in the CMB around which the temperature

variance would be rather low, and the average temperature would be raised or lowered

slightly (raised for particularly distant sources and lowered for relatively near ones).

There appears to be some definite evidence that such signals are actually present in

our CMB, as revealed in the WMAP data; see Gurzadyan and Penrose [3] and Meiss-

ner et al. [6]). It is to be hoped that when the somewhat more precise data from the

Planck satellite becomes publically available, it will be possible to ascertain whether

or not these findings are confirmed at this more refined level.
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Fig. 13 Questioning

(a) Λ-entropy

(b) Λ-temperature

We see that CCC provides a completely different picture of the physics that is

appropriate at the Big Bang from that which has been suggested by current investiga-

tions into quantum gravity. According to CCC, the relevant physics can be studied by

means of entirely classical equations, these being derived from a study of conformal

invariance and, from a natural-looking assumption concerning the relation between

the pre- and post-crossover conformal factors, as we pass from aeon to aeon (see Pen-

rose [12], Appendix B and Gurzadyan and Penrose [3], Appendix A). Remarkably, in

view of the viewpoint that has held for many decades that the Big Bang represents the

ideal laboratory for examining the effects of quantum gravity, the picture presented

by CCC is utterly different, where the classical dynamics of massless fields holds

sway, instead.

In Fig. 13, I raise a final further question thrown up by the presence of a positive Λ

in a quantum context. It appears to be a common belief (see Gibbons and Perry 1978,

Gibbons and Hawking 1993) that the cosmological horizons that arise in cosmologies

with Λ > 0 are directly analogous to those of a black hole and, accordingly, there

ought to be a cosmological temperature and entropy analogous to the Bekenstein-

Hawking entropy and the Hawking temperature of a black hole. I have difficulties

with accepting the reality of either of these cosmological notions. In the case of the

cosmological entropy there is the problem that if the analogy is taken completely
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seriously, we must carefully examine the space-time regions to which this entropy

value is to be assigned. In Fig. 13(a), we see that the relevant region with regard to

the black hole is that lying within the horizon, which is what lies to the “future” of

the horizon, namely that region towards which the future cones at the horizon point.

For the cosmological horizon, this would refer to the outside of the horizon of an

observer’s world-line. In the case of a spatially infinite universe, this is almost the

entire universe, so that the “entropy density” for this entire region would be zero,

despite the fact that the cosmological entropy is often considered to be particularly

huge—and dominating the final entropy for the universe as a whole. For a closed

universe, this entropy density would depend on the spatial extent of the universe,

which seems to make little physical sense.

In the case of the “cosmological temperature” (Fig. 13(b)), whether or not such

an (albeit absurdly tiny) temperature is to be considered as “real” depends on what

vacuum is chosen and, in turn, this depends on which space-time coordinates are

used. Perhaps a reasonable approach might be to consider the temperature to be the

result of an “Unruh effect” due to the acceleration in the world line of an observer.

This would presumably be zero if that world line is that of one of the “fundamental

observers” of conventional cosmology, since these lines are geodesics, and do not

experience any acceleration.
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