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Abstract. We study the pseudo-local gravitoelectromagnetic stress–energy tensor for an arbitrary
gravitational field within the framework of general relativity. It is shown that there exists a current
of gravitational energy around a rotating mass. This gravitational analogue of the Poynting flux is
evaluated for certain classes of observers in the Kerr field.

PACS numbers: 0420C, 0420M, 0470

1. Introduction

Imagine a packet of long-wavelength gravitational waves incident on a Keplerian binary system.
In the lowest (quadrupole) approximation, the waves exchange energy and angular momentum
with the self-gravitating system. To describe this interaction in detail, it is evident that an
essentially local measure of the energy and stress carried by the waves is necessary. Therefore,
there must be a somewhat local way to describe the energy and momentum stored in the
gravitational field. A partial (i.e. gravitoelectromagnetic) solution of this general problem
within the framework of general relativity is essentially contained in a recent paper [1].
The present work is concerned with the extension of our approach and some of its general
consequences. Our paper on the gravitational superenergy tensor [1] should be consulted for
much of the background material; however, we have attempted to make the present paper
essentially self-contained.

The standard (Landau–Lifshitz) gravitational stress–energypseudotensoris useful in
general relativity only in a global sense for asymptotically flat spacetimes. For many
applications, however, alocalmeasure of the stress–energy content of an arbitrary gravitational
field would be helpful. It is possible to provide such a measure—though only as an
approximation—for the gravitoelectromagnetic part of the field as shown in our recent paper
[1]. As expected, the gravitoelectromagnetic stress–energy tensor has general properties that
are rather similar to those of the Maxwell stress–energy tensor in electrodynamics. For a Ricci-
flat spacetime, this approach provides an average measure of the gravitational stress–energy
content that is proportional to the Bel–Robinson tensor. Thus our derivation of the gravitational
stress–energy tensor provides a natural physical interpretation of the Bel–Robinson tensor that
has been used frequently in numerical relativity [2].

The curved spacetimes of general relativity are not asymptotically flat in general; therefore,
the usual concepts of energy, momentum and stress do not make sense in the standard
interpretation of general relativity. Nevertheless, it is possible to introduce a pseudo-local
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gravitoelectromagnetic (‘GEM’) stress–energy tensor via a certain averaging procedure. This
approach is discussed briefly in the next section and the general properties of the GEM tensor are
described. In sections 3 and 4, special gravitational fields are considered—such as the charged
Kerr–Taub-NUT spacetime—and their GEM stress–energy tensors are evaluated. Moreover,
the existence of a steady current of gravitational field energy around a rotating mass is predicted
and some of its properties are briefly studied in section 5. We employ units such that the speed
of light c = 1; furthermore, the spacetime metric has signature +2, Greek indices run from
0–3 and Latin indices run from 1–3.

2. GEM stress–energy tensor

Consider a free test observer in a gravitational field following a worldlineC and letτ be the
proper time alongC. In a Fermi coordinate systemXα = (τ,X) along the geodesic path
of the observer, the physical content of the spacetime interval can be described in terms of a
gravitoelectric potential8, a gravitomagnetic vector potentialA and a spatial tensor potential
S. In fact, the metric in the Fermi frame is given byFgµν = ηµν + Fhµν , whereFh00 = 28,
Fh0i = −2Ai andFhij = Sij . To the lowest order in spatial Fermi coordinates away fromC,

8 = − 1
2
FR0i0j (τ )X

iXj , (1)

Ai = 1
3
FR0jik(τ )X

jXk, (2)

Sij = − 1
3
FRikjl(τ )X

kXl, (3)

whereFRαβγ δ = Rµνρσλµ(α)λν(β)λρ(γ )λσ(δ) is the spacetime curvature measured by the observer, i.e.
it is the projection of the Riemann curvature tensor along the nonrotating tetrad systemλµ(α)(τ )

carried by the observer atCµ : (τ, 0) in the Fermi system. In general, the locally measured
components of the Riemann curvature tensor,Rµνρσλ

µ

(α)λ
ν
(β)λ

ρ

(γ )λ
σ
(δ), can be represented as

a symmetric 6× 6 matrix R = (RIJ ), where the indicesI and J range over the set
(01, 02, 03, 23, 31, 12). The symmetries of the Riemann tensor make it possible to write

R =
[
E B

BT D

]
, (4)

whereE andD are symmetric 3× 3 matrices andB is traceless. HereE andB represent
the ‘electric’ and ‘magnetic’ components of the spacetime curvature, respectively, andD

represents the ‘spatial’ components. The curvature of the gravitational field is thus determined
by the three matricesE, B andD. In a Ricci-flat spacetime,Rµν = 0,D = −E so that the
spatial components of the curvature are completely determined by the electric components;
moreover,E is traceless andB is symmetric

(
BT = B).

Using the potentials8 andA, it is natural to define the gravitoelectric and gravitomagnetic
fields in complete analogy with electrodynamics. Keeping only the lowest-order terms in the
spatial Fermi coordinates, we find

Ei = FR0i0j (τ )X
j , (5)

Bi = − 1
2εijk

FRjk0l(τ )X
l. (6)

It turns out that these fields can be combined in a gravitoelectromagnetic ‘Faraday’ tensor
given by

Fαβ = −FRαβ0l(τ )X
l. (7)
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It is then natural to construct from the GEM field tensor (7) the corresponding ‘Maxwell’
stress–energy tensor

T αβ = 1

4π

(
FαγFβγ − 1

4η
αβFγ δFγ δ

)
(8)

which is symmetric and traceless by construction just as in electromagnetism. We can also
define the GEM angular momentum density tensor

J αβγ = (Xα − Cα)T βγ − (Xβ − Cβ)T αγ , (9)

whereCα : (τ, 0) denote the coordinates of the fiducial test observer at the centre of the Fermi
system (i.e. the spatial origin of Fermi coordinates). ThusJ αβγ vanishes at the spacetime
position of the test observer by construction. The GEM angular momentum tensor is then
defined by

J αβ =
∫
J αβγ d36γ (10)

as in standard field theory, except that the relevant three-dimensional (3D) volume must be
within the Fermi system and consistent with the approximation scheme under consideration
here.

The stress–energy tensor (8) has the property that it vanishes along the worldlineC by
Einstein’s principle of equivalence; however, it is in general nonzero on geodesic paths in the
neighbourhood of the fiducial worldline. Measurement of such field quantities does not occur
at a point in space; in fact, an averaging process is indispensable. An interesting and useful
measure of the gravitoelectromagnetic stress–energy in the immediate vicinity of the observer
may be obtained by averaging the stress–energy tensor over a sphere of radiusεL at each
instant of proper time along the fiducial path. Hereε, 0< ε � 1, is a small parameter andL is
an intrinsic length-scale characteristic of the gravitational field. The form of the tensor which
is averaged in the Fermi frame is such that the same result is in effect obtained whether one
averages over the surface or the volume of an infinitesimal sphere about the spatial origin of
Fermi coordinates, since the difference could be absorbed in the definition ofL. The resulting
average stress–energy tensor is then physically defined only up to an overall positive constant
scale factor.

It follows from these considerations that the average gravitoelectromagnetic stress–energy
content of the field as determined by the observer at the event under consideration is given by
the projection of a symmetric traceless stress–energy tensorT̃µν on the observer’s frame, i.e.

T̃(α)(β) = L2

G0
T̃µνρσ λ

µ

(α)λ
ν
(β)λ

ρ

(0)λ
σ
(0), (11)

whereL is the constant invariant length characteristic of the gravitational field,G0 is Newton’s
constant and̃Tµνρσ is given by

T̃µνρσ = 1
2

(
RµξρζR

ξ ζ
ν σ +RµξσζR

ξ ζ
ν ρ

)− 1
4gµνRαβργR

αβ γ
σ . (12)

This tensor is symmetric and traceless in its first pair of indices and symmetric in its second
pair of indices and reduces to the completely symmetric and traceless Bel–Robinson tensor,
Tµνρσ , for a Ricci-flat spacetime (cf appendix A). ThenT̃(α)(β) reduces in turn toT(α)(β), which
we call the ‘gravitational stress–energy tensor’ since the curvature is completely characterized
in this case by its GEM part.

Equations (11) and (12) originate from local dynamical considerations [1]. In a Fermi
frame established along the worldline of a geodesic observer, the measured gravitoelectric and
gravitomagnetic fields to linear order in the spatial distance away from the fiducial path can
be combined to form a gravitoelectromagnetic Faraday tensor and the corresponding GEM
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Maxwell stresses and angular momentum densities. If equation (9) is integrated over the
volume of the infinitesimal sphere, i.e. if in equation (10) we integrate at a givenτ over the
sphere of centreCµ : (τ, 0) and radiusεL, then we find thatJ αβ = 0. This means that the
local centre of mass of the sphere is indeedCµ : (τ, 0) as expected; moreover, the field angular
momentumJ ij contained in this sphere vanishes at the linear order of approximation for the
fields (5) and (6) under consideration here.

We find that, in general,

T̃(0)(0) = L2

2G0
tr(E2 +BT B), (13)

T̃(0)(i) = L2

G0
εijk(EB)jk, (14)

T̃(i)(j) = L2

2G0
[−2(E2 +BT B)ij + δij tr(E2 +BT B)], (15)

so thatT̃(α)(β) only contains the ‘electric’ and ‘magnetic’ parts of the spacetime curvature
and not the ‘spatial’ part. It is immediately clear from equation (13) thatT̃(0)(0) is positive
definite; henceT̃(0)(0) = 0 implies thatE = 0 andB = 0 and the spacetime curvature is
thus purely ‘spatial’ for the observer in this case. Moreover, by writing the matricesE and
B in equations (13)–(15) in component form and repeated application of the simple relations
|η+ν| 6 |η|+ |ν| and|ην| 6 1

2(η
2 +ν2) for arbitrary real numbersη andν, it is straightforward

to show that

|T̃(0)(i)| 6 T̃(0)(0) (16)

and

|T̃(i)(j)| 6 T̃(0)(0). (17)

Thus the gravitational Poynting vector is always timelike or null and the absolute magnitude of
a gravitoelectromagnetic stress is always bounded above by the local average density. These
relations are reminiscent of Maxwell’s electrodynamics.

It is interesting to note that, in general,

1
4RµνρσR

µνρσ = tr(E2 − 2BT B +D2), (18)

and

1
16R

µν
αβ Rαβρσ eµνρσ = tr(EB − BD), (19)

whereeµνρσ is the alternating tensoreµνρσ = (−g)1/2εµνρσ with ε0123≡ 1.
It is possible, in principle, to study the GEM stress–energy tensor for the known exact

solutions of the gravitational field equations; in particular, astrophysically relevant solutions
for stars, collapsing configurations, radiative spacetimes and cosmological models should be
investigated. Only a beginning is made in this paper; a full discussion is beyond the scope of
the present work.

Let us now assume thatRµν = 0. In this case,D = −E,E is traceless andB is symmetric.
ThusE andB characterize the whole gravitational field in this case. This is illustrated in the
next section via approximate gravitational field solutions that are Ricci flat. Moreover, in the
Ricci-flat case, as noted already by Matte [4], the curvature invariants (18) and (19) divided by
2 take the forms tr(E2−B2) and tr(EB), respectively, that are familiar from electrodynamics.
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The gravitoelectromagnetic stress–energy tensorT̃µν reduces in the Ricci-flat case to the
gravitational stress–energy tensorTµν discussed previously [1]. The Riemann tensor reduces
to the Weyl tensor in the latter case; therefore, the connection betweenT̃µν andTµν can be
worked out in general using

Rµνρσ = Cµνρσ + 1
2

(
Rµρgνσ +Rνσgµρ − Rµσgνρ − Rνρgµσ

)− 1
6R
(
gµρgνσ − gµσgνρ

)
, (20)

whereRµν andR are given in terms of the stress–energy tensor of the source of the field via
the gravitational field equations. It is more interesting, however, to work outTµν explicitly for
certain approximate solutions of the gravitational field equations in which nonlinearities are
neglected for the sake of simplicity. This is done in the next section.

3. Linear gravitational fields

Let us first imagine linear gravitational waves given bygµν = ηµν + hµν , where a gauge is
chosen such thath0µ = 0, hij,j = 0 and tr(hij ) = 0. All static observers follow geodesics of
this gravitational field. The gravitational wave amplitudeshij (t,x) satisfy the wave equation;
therefore, we consider for the sake of simplicity a plane monochromatic wave of frequency
ωg propagating along thex-direction. Then, the gravitoelectric and gravitomagnetic fields, as
measured by geodesic observers at fixed spatial positions, can be expressed in this case as

E = 1
2ω

2
g

 0 0 0
0 h+ h×
0 h× −h+

 , B = 1
2ω

2
g

 0 0 0
0 h× −h+

0 −h+ −h×

 , (21)

where 2Eij = ω2
g hij , so thath+ andh× represent the two independent linear polarization

states of the wave. It is clear that a wavepacket may be formed by a simple superposition of the
fields given by equation (21). It follows from equations (13)–(15) that for each monochromatic
component

(
T (α)(β)

) = L2ω4
g

2G0
(h2

+ + h2
×)


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 , (22)

which should be compared and contrasted with the corresponding result obtained using the
Landau–Lifshitz pseudotensortL–L

µν (cf the appendix of [5]). In fact,tL–L
µν is in general gauge

dependent and its trace,

tr(tL–L
µν ) =

1

32πG0
hαβ,γ h

αβ,γ , (23)

is nonzero [5]; that is, equation (23) is nonzero for a general wavepacket, but vanishes for a
plane wave. On the other hand, the local gravitational stress–energy tensor is gauge invariant
and traceless just as in Maxwell’s electrodynamics.

Let us next imagine the post-Newtonian field of a system with massM and angular
momentumJ given in the linear approximation by the standard metric

−ds2 = −
(

1− 2
G0M

|x|
)

dt2 − 4
G0 dt

|x|3 εijkJ
ixj dxk +

(
1 + 2

G0M

|x|
)
δij dxi dxj . (24)

An observer that is initially at rest in this field will not remain at a constant positionx;
however, this motion can be neglected in the linear order of approximation under discussion
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in this section. It follows that [6]

Eij = G0M

|x|3
(
δij − 3x̂i x̂j

)
, (25)

Bij = −3
G0J

|x|4
[
x̂i Ĵ j + x̂j Ĵ i +

(
δij − 5x̂i x̂j

)
x̂ · Ĵ], (26)

wherex̂ = x/|x| is the unit position vector of the static observer under consideration here.
We find that

T (0)(0) = 3G0L
2

|x|6
{
M2 + 3

J 2

|x|2
[
1 + 2(x̂ · Ĵ)2]}, (27)

T (0)(i) = 9G0L
2MJ

|x|7
(
Ĵ × x̂)i , (28)

T (i)(j) = 3G0L
2M2

|x|6
(

2
3δij − x̂i x̂j

)
+

9G0L
2J 2

|x|8
[
δij − x̂i x̂j − Ĵ i Ĵ j

+2(x̂ · Ĵ)(x̂i Ĵ j + x̂j Ĵ i) + (x̂ · Ĵ)2(δij − 5x̂i x̂j )
]
. (29)

The gravitational Poynting vector (28) is in this case analogous to the familiar circumstance
in electrodynamics involving the exterior field of a static nearly spherical system with a net
electric charge and a constant magnetic dipole moment. The analogous gravitational properties
would be massM and spinJ , respectively. The Poynting vector, which is the cross product
of a radial electric field and a dipolar magnetic field, indicates a steady energy flux around
the source just as equation (28) indicates a steady gravitational energy current around a mass
flowing in the same sense as the rotation of the body. Let us briefly digress here and mention
that in the electromagnetic case, the Poynting energy flux produces a gravitoelectromagnetic
field even when the material source itself does not rotate [7]. That is, the gravitational field
is caused by the total stress–energy tensor, which in this case would originate from the static
electromagnetic source together with the electromagnetic field that involves the steady energy
flux.

The local average stress–energy tensor (27)–(29) should be useful in the post-Newtonian
investigation of the dynamics of particles in the exterior gravitational field of a rotating mass.

4. Kerr field

To investigate further the nature of the steady gravitational energy flux around a rotating mass,
it proves interesting to study the GEM stress–energy tensor for the Kerr field. Indeed, the
study of the generalized Kerr spacetime is important due to its possible physical significance
in connection with the complete gravitational collapse of matter [8]; however, we limit our
treatment here to the charged Kerr–Taub-NUT spacetime for the sake of simplicity. To this
end, let us imagine a set of observers following geodesic paths with nonrotating tetrads along
their paths. Suppose that at some initial instant of time, the tetrad frames coincide with the
natural tetrad systemλµ(α) of the charged Kerr–Taub-NUT spacetime. We are interested in
the measured GEM stress–energy tensor at this initial time. It turns out that in terms of
Schwarzschild-like coordinates(t, r, θ, φ), ω(α) = λ (α)µ dxµ are given by

ω(0) =
(
1

6

)1/2

[dt − (a sin2 θ − 2l cosθ) dφ], (30)

ω(1) =
(
6

1

)1/2

dr, (31)
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ω(2) = 61/2 dθ, (32)

ω(3) = 6−1/2[(r2 + a2 + l2) dφ − a dt ] sinθ, (33)

1 = r2 + a2 − l2 − 2mr + q2, (34)

6 = r2 + (a cosθ + l)2. (35)

Herem, a, l andq are, respectively, the mass parameter, angular momentum per unit mass,
Taub-NUT parameter and the charge parameter of the source. Onlypositivesquare roots are
intended throughout this paper.

The components of the GEM stress–energy tensor in this tetrad system can be determined
from the components of the curvature tensor. It is convenient to express the latter in the
SO(3, C) representation given byM + P − i(N + Q), whereM,N,P andQ are 3× 3
matrices in the bivector representation of the curvature tensor (4):

R =
[
M N

N −M
]

+

[
P Q

Q −P
]
. (36)

For the tetrad given above, we find [9]

M − iN =
[
m + il

(r + iχ)3
− q2

6(r + iχ)2

]
diag(−2, 1, 1), (37)

P − iQ = q2

62
diag(1, 0, 0), (38)

whereχ = a cosθ + l. The resulting GEM stress–energy tensor is then given by

G0

L2

(
T̃ (µ)(ν)

)= m2 + l2

63
diag(3,−1, 2, 2) +

q2

64
diag(2α, 2β, α − β, α − β)

+
γ q2

65
diag(1,−1, 1, 1), (39)

where

α = 3
4q

2 − 2lχ, (40)

β = 1
4q

2 − 2mr, (41)

γ = 4r2(q2 − 2lχ − 2mr). (42)

The diagonal form of the stress–energy tensor turns out to be consistent with our approximate
treatment in section 3; in fact, this point will be discussed further in section 5.

Let us next consider the pure Kerr geometry(l = 0, q = 0) and evaluate the gravitational
stress–energy tensor for specific test observers. To this end, we first consider a free observer
moving along the axis of axial symmetry such that far from the source(r →∞) the observer
has speedβ0. The equations of motion of the observer are given by

dt

dτ
= γ0

32

1
, (43)

dr

dτ
= ±

(
γ 2

0 − 1 +
2mr

32

)1/2

, (44)

whereγ0 is the Lorentz factor at infinityγ0 = (1− β2
0)
−1/2, and

3 = (r2 + a2)1/2 . (45)
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The spatial triad is chosen so thatλµ(1) is along the radial direction (i.e. thez-axis) and is given
by

λ
µ

(1) =
[
ṙ
32

1
, γ0, 0, 0

]
, (46)

whereṙ = dr/dτ . Due to rotational symmetry about the direction of motion, there is a simple
degeneracy in the choice ofλµ(2) andλµ(3), which are independent directions on a sphere of
radius3. It suffices thatλµ(α) should be an orthonormal tetrad system, then the curvature as
measured by the observer is given by

E = mr(r2 − 3a2)

36
diag(−2, 1, 1), B = ma(3r2 − a2)

36
diag(−2, 1, 1), (47)

so that the gravitoelectric and the gravitomagnetic parts of the curvature areparallel. The
gravitational stress–energy tensor in this case turns out to be

(T(α)(β)) = L2m2

G036
diag(3,−1, 2, 2) (48)

just as in (39) along the axis of symmetry forl = 0 andq = 0. This diagonal tensor is always
regular since the observer can simply pass through the ring singularity.

It is important to recognize that equations (47) and (48) do not depend onβ0 at all. This
important circumstance is a consequence of the fact that the axis of symmetry provides two
special tidal directionsof the Kerr field so that the curvature is independent of any Lorentz
boosts along the ingoing and outgoing directions [6]. It follows thatT(α)(β) would then be
independent ofβ0 as well. This situation has a direct analogue in electrodynamics; that is,
for an electromagnetic field that is not null one can always find a Lorentz frame in which the
electric and magnetic fields are parallel. Any boost along the common direction of the fields
leaves the fields as well as the corresponding electromagnetic stress–energy tensor invariant.
It follows that (48) is an example of a general result: there exist special tidal directions at each
event in a vacuum spacetime of typeD in the Petrov classification such that the curvature as
well as the GEM stress–energy tensor remain invariant under boosts along these directions
[10, 11].

It is interesting to consider a free test observer falling from rest at infinity in the equatorial
plane of a Kerr system(β0 = 0, θ = π/2) with zero orbital angular momentum (‘radial
motion’). The geodesic path of the observer is given in(t, r, θ, φ) coordinates by

ṫ = 1

1

(
32 +

2ma2

r

)
, (49)

ṙ2 = 2m32

r3
, (50)

φ̇ = 2ma

r1
. (51)

Both incoming as well as outgoing geodesics are described by these equations. We consider
a nonrotating spatial triad along the path given by

λ
µ

(1) =
[
3

1
rṙ,

3

r
, 0,

arṙ

13

]
, (52)

λ
µ

(2) =
[
0, 0,

1

r
, 0

]
, (53)

λ
µ

(3) =
[
−2ma3

r1
,−aṙ

3
, 0,

3

1

(
1− 2m

r

)]
, (54)
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such that asr → ∞ they correspond to the spherical coordinate axes [12]. The Riemann
tensor as measured by the (ingoing or outgoing) observer is given by

E = m

r3
diag(−2, 1, 1) +

3ma2

r5
diag(−1, 1, 0), B = 3ma3

r5

 0 1 0
1 0 0
0 0 0

 . (55)

Similarly, the nonzero components of the gravitational stress–energy tensor are independent
of the direction of motion of the observer and are given by

T (0)(0) = 3L2m2

G0r10

(
r4 + 6r2a2 + 6a4

)
, (56)

T (1)(1) = −L
2m2

G0r8

(
r2 + 3a2

)
, (57)

T (2)(2) = L2m2

G0r8

(
2r2 + 3a2

)
, (58)

T (3)(3) = 2L2m2

G0r10

(
r4 + 9r2a2 + 9a4

)
, (59)

together with the gravitational energy flux given by

T (0)(3) = 9L2m2a3(r2 + 2a2)

G0r10
. (60)

The observer encounters the singularity atr = 0, where the curvature components as well as
the components of the gravitational stress–energy tensor all diverge.

The above stress–energy tensors for the pure Kerr geometry reduce to thespherically
symmetricSchwarzschild case fora = 0; then, there is no energy flux for the radial motion
of the observer and the gravitational stress–energy tensor is diagonal with elements that are
proportional tom2/r6, as would be expected in analogy with electrodynamics. Moreover, the
radial pressure is negative while the other two pressures are equal and positive in agreement
with simple physical considerations based on the fact that the gravitational tidal accelerations
are repulsive (i.e. they tend to pull test particles apart) along the radial direction and attractive
(i.e. they tend to push test particles together) along the other two orthogonal directions in this
case.

5. Discussion

An interesting result of this paper is the theoretical elucidation of the existence of a steady flux
of gravitational energy around a rotating mass. It follows from equations (27) and (28) that

T (0)(i)/T (0)(0) ∼ 3
J

M|x| (Ĵ × x̂)
i (61)

for large|x|. This means that the current of gravitational energy has speedvg = 3a sinθ/r
far from the source, as can also be seen from the results of the last section. In particular, for
equatorial geodesics the ratio of equations (60) and (56) behaves as 3a/r whenr � a. On the
other hand, the other results of the previous section, e.g. the diagonal form of equation (39),
are not in conflict with this conclusion since a detailed examination of the natural tetrad system
(30)–(33) of the Kerr spacetime indicates that the observer moves in theφ-direction with speed
a/r far from the source, i.e.

dφ

dτ
= a

(61)1/2
(62)
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Figure 1. Plot of vg versusr/a as given by equation (63), which represents the speed of the
steady gravitational energy current in the equatorial plane of the Kerr system as perceived by
observers falling freely from rest at spatial infinity. It is important to note thatvg 6 1 just as in
electrodynamics.

is the initial angular speed of the observer. Moreover, the flow velocityvgφ̂must vanish along
the axis of symmetry and this is consistent with the diagonal gravitational stress–energy tensor
(48) for the test observer moving along thez-axis.

In electrodynamics, the speed of the Poynting current is always less than or equal to the
speed of light in vacuum and the analogous result holds for the GEM tensor by equation (16).
Therefore, it is interesting to investigate here howvg behaves as a function ofr in the equatorial
plane of the Kerr black hole as measured by the free ‘radially’ infalling test observers. As
figure 1 demonstrates,

vg = 3a(r2 + a2)1/2(r2 + 2a2)

r4 + 6r2a2 + 6a4
(63)

increases monotonically with decreasingr and reaches the speed of light at ther = 0
singularity.

Finally, it is interesting to note that for a charged rotating mass—such as a Kerr–Newman
system—there exists both an electromagnetic Poynting flux and a gravitational flux of energy
moving in essentially the same way about the rotating mass. For instance, for the Kerr–Newman
system we have that far from the sourcevem ∼ 2a sinθ/r asr →∞. The investigation of the
physical consequences of the existence of gravitational energy currents around rotating masses
is beyond the scope of this work.

Appendix A. Bel–Robinson tensor

The gravitational superenergy tensor was first introduced independently by Bel and Robinson
in close formal analogy with Maxwell’s stress–energy tensor [1, 3, 13]. In this regard, an
important consideration was the invariance of the Maxwell stress–energy tensor under duality
rotations; therefore, a gravitational superenergy tensor was conceived that would be similarly
invariant under duality rotations involving the gravitoelectric and gravitomagnetic fields. Some
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aspects of the early work in this direction can be found in [14]. Further work on the Bel–
Robinson tensor is contained in [15–18], while other approaches to the stress–energy tensor
for gravitation are discussed in [19]. The Bel–Robinson tensor is also related to certainquasi-
local definitions of mass in curved spacetime (see [20] and the references cited therein).

Originally, spacetimes were considered with only a cosmological constant and in this
case the tensor (12) already appears in the work of Bel [3]. Robinson proved that only in the
Ricci-flat case would this tensor be totally symmetric and traceless. Thus later work has been
restricted toRµν = 0 and the Bel–Robinson tensor is thus defined by

Tµνρσ = 1
2

(
RµξρζR

ξ ζ
ν σ +RµξσζR

ξ ζ
ν ρ

)− 1
16gµνgρσK. (A1)

That is,T̃µνρσ → Tµνρσ since

RαβργR
αβ γ
σ = 1

4gρσK (A2)

for Rµν = 0. HereK is the Kretschmann scalar, i.e.K = RµνρσRµνρσ . In a recent paper [21],
however, the Bel–Robinson tensor and the corresponding GEM Poynting vector—constructed
via the Weyl part of the spacetime curvature—have been studied in a general context for
arbitrary curved spacetimes.

Appendix B. Landau–Lifshitz pseudotensor in Riemann normal coordinates

The energy of a gravitational field—if it can be defined at all—is nonlocal according to general
relativity. On the other hand, the Bel–Robinson tensor is locally defined. A connection
could perhaps be established between these concepts if the energy–momentum pseudotensor
of the gravitational field is expressed in Riemann normal coordinates about a typical event in
spacetime (cf [22]).

Let xµ be the Riemann normal coordinates in the neighbourhood of some point (‘origin’)
in spacetime; then,

gµν = ηµν − 1
3Rµανβ x

αxβ + · · · , (B1)

0µνρ = − 1
3(R

µ
νρσ +Rµρνσ )x

σ + · · · . (B2)

The Landau–Lifshitz pseudotensor is quadratic in the connection coefficients by construction;
therefore,tL–L

µν is—at the lowest order—quadratic in Riemann normal coordinates. Hence,

tL–L
µν,αβ =

c4

144πG0
2µναβ + · · · , (B3)

where2µναβ is symmetric in its first and second pairs of indices by construction and is given
by

2µναβ = 1
2(R

ρσ
µαRνσρβ +RρσµβRνσρα) + 7

2(RµρσαR
ρσ
ν β +RµρσβR

ρσ
ν α)

− 3
8ηµνηαβRρσκδR

ρσκδ. (B4)

This expression should be compared and contrasted with equation (A1) that expresses the
Bel–Robinson tensor in a similar form. There is no simple relationship between2µναβ and
Tµναβ ; however, one can show that

2µναβ − 7Tµναβ = 1
16ηαβηµνK + 1

4(R
ρσ
µαRρσνβ +RρσµβRρσνα) (B5)

in Riemann normal coordinates.
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