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Abstract. We study the pseudo-local gravitoelectromagnetic stress—energy tensor for an arbitrary
gravitational field within the framework of general relativity. It is shown that there exists a current
of gravitational energy around a rotating mass. This gravitational analogue of the Poynting flux is
evaluated for certain classes of observers in the Kerr field.

PACS numbers: 0420C, 0420M, 0470

1. Introduction

Imagine a packet oflong-wavelength gravitational waves incident on a Keplerian binary system.
In the lowest (quadrupole) approximation, the waves exchange energy and angular momentum
with the self-gravitating system. To describe this interaction in detail, it is evident that an
essentially local measure of the energy and stress carried by the waves is necessary. Therefore,
there must be a somewhat local way to describe the energy and momentum stored in the
gravitational field. A partial (i.e. gravitoelectromagnetic) solution of this general problem
within the framework of general relativity is essentially contained in a recent paper [1].
The present work is concerned with the extension of our approach and some of its general
consequences. Our paper on the gravitational superenergy tensor [1] should be consulted for
much of the background material; however, we have attempted to make the present paper
essentially self-contained.

The standard (Landau-Lifshitz) gravitational stress—en@gpudotensors useful in
general relativity only in a global sense for asymptotically flat spacetimes. For many
applications, however,lacal measure of the stress—energy content of an arbitrary gravitational
field would be helpful. It is possible to provide such a measure—though only as an
approximation—for the gravitoelectromagnetic part of the field as shown in our recent paper
[1]. As expected, the gravitoelectromagnetic stress—energy tensor has general properties that
are rather similar to those of the Maxwell stress—energy tensor in electrodynamics. For a Ricci-
flat spacetime, this approach provides an average measure of the gravitational stress—energy
content thatis proportional to the Bel-Robinson tensor. Thus our derivation of the gravitational
stress—energy tensor provides a natural physical interpretation of the Bel-Robinson tensor that
has been used frequently in numerical relativity [2].

The curved spacetimes of general relativity are not asymptotically flatin general; therefore,
the usual concepts of energy, momentum and stress do not make sense in the standard
interpretation of general relativity. Nevertheless, it is possible to introduce a pseudo-local
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gravitoelectromagnetic (‘GEM’) stress—energy tensor via a certain averaging procedure. This
approachis discussed briefly inthe next section and the general properties of the GEM tensor are
described. In sections 3 and 4, special gravitational fields are considered—such as the charged
Kerr—Taub-NUT spacetime—and their GEM stress—energy tensors are evaluated. Moreover,
the existence of a steady current of gravitational field energy around a rotating mass is predicted
and some of its properties are briefly studied in section 5. We employ units such that the speed
of light ¢ = 1, furthermore, the spacetime metric has signature +2, Greek indices run from
0-3 and Latin indices run from 1-3.

2. GEM stress—energy tensor

Consider a free test observer in a gravitational field following a worldfirzad letr be the

proper time along’. In a Fermi coordinate systei* = (r, X) along the geodesic path

of the observer, the physical content of the spacetime interval can be described in terms of a
gravitoelectric potentiab, a gravitomagnetic vector potentidland a spatial tensor potential

S. In fact, the metric in the Fermi frame is given By, = n,, + “h,,, wherefho = 29,

Fhoi = —2A; andfh;; = S;;. To the lowest order in spatial Fermi coordinates away féom
® = —3"Roioj (1) X' X7, D)
A; = 2 Rojik (1) X/ X, 2)
Sij = —%FRikjl(T) xkx!, 3)

WhereRupys = Ruupo My 252y 235 IS the spacetime curvature measured by the observer, i.e.
itis the projection of the Riemann curvature tensor along the nonrotating tetrad systse(n)
carried by the observer & : (z, 0) in the Fermi system. In general, the locally measured
components of the Riemann curvature tens!t)j,pa)»@)xﬁﬂ))»fy))\‘(’m, can be represented as

a symmetric 6x 6 matrix R = (R;;), where the indiced and J range over the set

(01, 02, 03, 23, 31, 12). The symmetries of the Riemann tensor make it possible to write

R=[§} lﬂ (4)

where E and D are symmetric 3x 3 matrices andB is traceless. Her& and B represent
the ‘electric’ and ‘magnetic’ components of the spacetime curvature, respectively) and
represents the ‘spatial’ components. The curvature of the gravitational field is thus determined
by the three matriceB, B andD. In a Ricci-flat spacetime®,,, = 0, D = —E so that the
spatial components of the curvature are completely determined by the electric components;
moreoverE is traceless an@ is symmetric(B” = B).

Using the potential® and A, itis natural to define the gravitoelectric and gravitomagnetic
fields in complete analogy with electrodynamics. Keeping only the lowest-order terms in the
spatial Fermi coordinates, we find

& = "Roioj (1) X/, ()
Bi = —%eijk "R (1) X' (6)

It turns out that these fields can be combined in a gravitoelectromagnetic ‘Faraday’ tensor
given by

Fup = —"Ropor(t) X'. (7)
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It is then natural to construct from the GEM field tensor (7) the corresponding ‘Maxwell’
stress—energy tensor
1 1 8
7% = E(P;fw — 2P F,s F7°) (8)
which is symmetric and traceless by construction just as in electromagnetism. We can also
define the GEM angular momentum density tensor

TP = (X% — )T — (X — CP)T*, )
whereC* : (z, 0) denote the coordinates of the fiducial test observer at the centre of the Fermi
system (i.e. the spatial origin of Fermi coordinates). TH#4” vanishes at the spacetime

position of the test observer by construction. The GEM angular momentum tensor is then
defined by

J = / TP &*s, (10)

as in standard field theory, except that the relevant three-dimensional (3D) volume must be
within the Fermi system and consistent with the approximation scheme under consideration
here.

The stress—energy tensor (8) has the property that it vanishes along the watlt§ne
Einstein’s principle of equivalence; however, it is in general nonzero on geodesic paths in the
neighbourhood of the fiducial worldline. Measurement of such field quantities does not occur
at a point in space; in fact, an averaging process is indispensable. An interesting and useful
measure of the gravitoelectromagnetic stress—energy in the immediate vicinity of the observer
may be obtained by averaging the stress—energy tensor over a sphere okiadiusach
instant of proper time along the fiducial path. Hey® < € « 1, is a small parameter atidis
an intrinsic length-scale characteristic of the gravitational field. The form of the tensor which
is averaged in the Fermi frame is such that the same result is in effect obtained whether one
averages over the surface or the volume of an infinitesimal sphere about the spatial origin of
Fermi coordinates, since the difference could be absorbed in the definitlanldfe resulting
average stress—energy tensor is then physically defined only up to an overall positive constant
scale factor.

It follows from these considerations that the average gravitoelectromagnetic stress—energy
content of the field as determined by the observer at the event under consideration is given by
the projection of a symmetric traceless stress—energy téhscom the observer’s frame, i.e.

2 L2 7 “oqv P so

T = G- Twwo it 0 0 (1)
whereL is the constant invariant length characteristic of the gravitational figjds Newton’s
constant and’,,,,, is given by

Tyvpo = %(RMEPIRon{ + RuéalRusp{) - %,guvRDtﬂpVRaﬁay' 12)

This tensor is symmetric and traceless in its first pair of indices and symmetric in its second
pair of indices and reduces to the completely symmetric and traceless Bel-Robinson tensor,
T,..p0, for a Ricci-flat spacetime (cf appendix A). Thég, s, reduces in turn td@,s), which

we call the ‘gravitational stress—energy tensor’ since the curvature is completely characterized
in this case by its GEM part.

Equations (11) and (12) originate from local dynamical considerations [1]. In a Fermi
frame established along the worldline of a geodesic observer, the measured gravitoelectric and
gravitomagnetic fields to linear order in the spatial distance away from the fiducial path can
be combined to form a gravitoelectromagnetic Faraday tensor and the corresponding GEM
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Maxwell stresses and angular momentum densities. If equation (9) is integrated over the
volume of the infinitesimal sphere, i.e. if in equation (10) we integrate at a giv@rer the
sphere of centr€* : (r, 0) and radius:L, then we find that*# = 0. This means that the
local centre of mass of the sphere is indé#d: (z, 0) as expected; moreover, the field angular
momentum/¥ contained in this sphere vanishes at the linear order of approximation for the
fields (5) and (6) under consideration here.

We find that, in general,

2

Toy0) = 2L_G0 tr(E2+ BT B), (13)
. L2
Toyi) = G—Oéijk(EB)jk, (14)
. L?
Tiyj) = Z—GO[—z(E2 + BT B);; + 6, tr(E2+ B" B)], (15)

o) thatT(a)(ﬁ) only contains the ‘electric’ and ‘magnetic’ parts of the spacetime curvature
and not the ‘spatial’ part. It is immediately clear from equation (13) ﬂh@go) is positive
definite; hencel| 0, = O implies thatE = 0 andB = 0 and the spacetime curvature is
thus purely ‘spatial’ for the observer in this case. Moreover, by writing the matficasd

B in equations (13)—(15) in component form and repeated application of the simple relations
[n+v| < |n|+|v]and|py| < %(n2+v2) for arbitrary real numbergandy, it is straightforward

to show that

1Ton! < Too (16)
and
Tiri| < Too- (17)

Thus the gravitational Poynting vector is always timelike or null and the absolute magnitude of
a gravitoelectromagnetic stress is always bounded above by the local average density. These
relations are reminiscent of Maxwell’s electrodynamics.

It is interesting to note that, in general,

IR,upe R*° = tr(E* — 2B" B + D?), (18)
and
75 R, R e,ps =tr(EB — BD), (19)

wheree,,,,, is the alternating tensef,,,, = (—g)Y/%€,.p0 With 9123 = 1.

It is possible, in principle, to study the GEM stress—energy tensor for the known exact
solutions of the gravitational field equations; in particular, astrophysically relevant solutions
for stars, collapsing configurations, radiative spacetimes and cosmological models should be
investigated. Only a beginning is made in this paper; a full discussion is beyond the scope of
the present work.

Letus now assume th&i,, = 0. Inthis caseD = —E, E istraceless anft is symmetric.
ThusE and B characterize the whole gravitational field in this case. This is illustrated in the
next section via approximate gravitational field solutions that are Ricci flat. Moreover, in the
Ricci-flat case, as noted already by Matte [4], the curvature invariants (18) and (19) divided by
2 take the forms (i£? — B?) and ti(E B), respectively, that are familiar from electrodynamics.
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The gravitoelectromagnetic stress—energy tefispreduces in the Ricci-flat case to the
gravitational stress—energy tendgy, discussed previously [1]. The Riemann tensor reduces
to the Weyl tensor in the latter case; therefore, the connection betiygeand 7,,, can be
worked out in general using

R;vao‘ = C;wpa + %(Rupgua + Rvagup - R/ufgvp - Rvpg/ur) - %R(gupgva - g;wgvp)s (20)

whereR,,, andR are given in terms of the stress—energy tensor of the source of the field via
the gravitational field equations. It is more interesting, however, to workgugxplicitly for
certain approximate solutions of the gravitational field equations in which nonlinearities are
neglected for the sake of simplicity. This is done in the next section.

3. Linear gravitational fields

Let us first imagine linear gravitational waves givend)y, = n,, + h,.,, where a gauge is
chosen such that, = 0, h"{']. = 0 and t(h;;) = 0. All static observers follow geodesics of
this gravitational field. The gravitational wave amplitudesz, ) satisfy the wave equation;
therefore, we consider for the sake of simplicity a plane monochromatic wave of frequency
w, propagating along the-direction. Then, the gravitoelectric and gravitomagnetic fields, as
measured by geodesic observers at fixed spatial positions, can be expressed in this case as

0O O 0 0O O 0
E = %a)g 0 hs hx s B = %wg 0 hx —h, ’ (21)
0 hy —hy 0 —hsy —hy

where Z;; = a)g? hij, so thath, andh, represent the two independent linear polarization
states of the wave. ltis clear that a wavepacket may be formed by a simple superposition of the
fields given by equation (21). It follows from equations (13)—(15) that for each monochromatic
component

1100
L*w; 1100

@By _ =Yg g2 52
0 00O

which should be compared and contrasted with the corresponding result obtained using the
Landau-Lifshitz pseudotensgy,” (cf the appendix of [5]). In fact,';* is in general gauge
dependent and its trace,

L-L
tr(tw ) = 327Gy
is nonzero [5]; that is, equation (23) is nonzero for a general wavepacket, but vanishes for a
plane wave. On the other hand, the local gravitational stress—energy tensor is gauge invariant
and traceless just as in Maxwell’s electrodynamics.
Let us next imagine the post-Newtonian field of a system with midsand angular
momentum/ given in the linear approximation by the standard metric

hap  hPY (23)

GoM Godt . . GoM o
—ds? = —<1— 2 |° | )er - 4#6,,,{”1 dxk + <1 + 2%)5,, dx’ dx/. (24)
T € Zr

An observer that is initially at rest in this field will not remain at a constant postipn
however, this motion can be neglected in the linear order of approximation under discussion
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in this section. It follows that [6]
GoM

Eij = W((S,’j - 3)?)’5"‘), (25)
Bﬁ==—3%%§[ﬂff+fﬁﬁ+(&j— 23 - J], (26)
X

wherexz = z/|z| is the unit position vector of the static observer under consideration here.
We find that

3G0L2 J? ~
0)(0 2 A 2
T““:W{M +3W[1+2(m.J)]}, (27)
o 9GoL*MJ .
7O _ |w|7_(J x &), (28)
ooy 3GoL?M? , aini . 9GoL2J? UV
T( )U) = W(§8U — X )Cj) + W[(SU —x'x)=JJ’
+2(% - JYER T+ R T + (& - J)?(8;; — 557 (29)

The gravitational Poynting vector (28) isin this case analogous to the familiar circumstance
in electrodynamics involving the exterior field of a static nearly spherical system with a net
electric charge and a constant magnetic dipole moment. The analogous gravitational properties
would be mas3/ and spinJ, respectively. The Poynting vector, which is the cross product
of a radial electric field and a dipolar magnetic field, indicates a steady energy flux around
the source just as equation (28) indicates a steady gravitational energy current around a mass
flowing in the same sense as the rotation of the body. Let us briefly digress here and mention
that in the electromagnetic case, the Poynting energy flux produces a gravitoelectromagnetic
field even when the material source itself does not rotate [7]. That is, the gravitational field
is caused by the total stress—energy tensor, which in this case would originate from the static
electromagnetic source together with the electromagnetic field that involves the steady energy
flux.

The local average stress—energy tensor (27)—(29) should be useful in the post-Newtonian
investigation of the dynamics of particles in the exterior gravitational field of a rotating mass.

4. Kerr field

To investigate further the nature of the steady gravitational energy flux around a rotating mass,
it proves interesting to study the GEM stress—energy tensor for the Kerr field. Indeed, the
study of the generalized Kerr spacetime is important due to its possible physical significance
in connection with the complete gravitational collapse of matter [8]; however, we limit our
treatment here to the charged Kerr—Taub-NUT spacetime for the sake of simplicity. To this
end, let us imagine a set of observers following geodesic paths with nonrotating tetrads along
their paths. Suppose that at some initial instant of time, the tetrad frames coincide with the
natural tetrad systeri*,, of the charged Kerr—Taub-NUT spacetime. We are interested in
the measured GEM stress—energy tensor at this initial time. It turns out that in terms of
Schwarzschild-like coordinatés, r, 6, ¢), o' = A @ dx* are given by

o A2 .
0@ = (f) [df — (asin?6 — 21 cosd) dg], (30)

1/2
dD=<§) dr, (31)
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w? =3xY2dg, (32)
0® =Y [(r? +a? +1%) dp — a dr] sing, (33)
A=r?+a®—1?—2mr+q>? (34)
¥ =r?+ (acosh +1)°. (35)

Herem, a,! andq are, respectively, the mass parameter, angular momentum per unit mass,
Taub-NUT parameter and the charge parameter of the source.pOsilvesquare roots are
intended throughout this paper.

The components of the GEM stress—energy tensor in this tetrad system can be determined
from the components of the curvature tensor. It is convenient to express the latter in the
SO(3, C) representation given by + P — i(N + Q), whereM, N, P and Q are 3x 3
matrices in the bivector representation of the curvature tensor (4):

M N P 0
R_[N —M}+[Q —P] (36)
For the tetrad given above, we find [9]
. m+il q°? .
M — = — -2,1,1 7
w [(r+ix)3 2<r+ix>2}d'ag( b G0

2
P—iQ= % diag(1, 0, 0), (38)

wherey = acosf +1. The resulting GEM stress—energy tensor is then given by
2

Go , ~ m2+12 q°
L—S(T(“)(”): —55— diag3. ~1.2.2) + —; diag2w. 28.@ — . — )
2
+Vzis diagl, 1,1, 1), (39)
where
a=3q42-2y, (40)
B = %qz — 2mr, (42)
y = 4r?(q% — 2lx — 2mr). (42)

The diagonal form of the stress—energy tensor turns out to be consistent with our approximate
treatment in section 3; in fact, this point will be discussed further in section 5.

Let us next consider the pure Kerr geomeiry= 0, ¢ = 0) and evaluate the gravitational
stress—energy tensor for specific test observers. To this end, we first consider a free observer
moving along the axis of axial symmetry such that far from the sotree oo) the observer
has spee@,. The equations of motion of the observer are given by

dt A?
E = VOK’ (43)
dr 2mr\ Y2

wherey is the Lorentz factor at infinityo = (1 — A3)~%2, and
A= +a®V? . (45)



1144 B Mashhoon et al

The spatial triad is chosen so thé‘}) is along the radial direction (i.e. theaxis) and is given
by

A

wherer = dr/dt. Due to rotational symmetry about the direction of motion, there is a simple
degeneracy in the choice mfz) and kﬁ‘3), which are independent directions on a sphere of
radiusA. It suffices that}»’(fx) should be an orthonormal tetrad system, then the curvature as
measured by the observer is given by
mr(ré — 3a?) ma3ré —a?® |
E = Y diag—2, 1, 1), B = 5 diag(—2,1, 1), 47
so that the gravitoelectric and the gravitomagnetic parts of the curvatugaealtel. The
gravitational stress—energy tensor in this case turns out to be
L2m2
T« = ——diag®3, -1,2,2 48
(Twyp) GoAd o ) (48)

A2
Ay = [r—, 70, 0, 0}, (46)

just asin (39) along the axis of symmetry for 0 andg = 0. This diagonal tensor is always
regular since the observer can simply pass through the ring singularity.

It is important to recognize that equations (47) and (48) do not depepd anall. This
important circumstance is a consequence of the fact that the axis of symmetry provides two
special tidal directionsf the Kerr field so that the curvature is independent of any Lorentz
boosts along the ingoing and outgoing directions [6]. It follows thaf, would then be
independent offy as well. This situation has a direct analogue in electrodynamics; that is,
for an electromagnetic field that is not null one can always find a Lorentz frame in which the
electric and magnetic fields are parallel. Any boost along the common direction of the fields
leaves the fields as well as the corresponding electromagnetic stress—energy tensor invariant.
It follows that (48) is an example of a general result: there exist special tidal directions at each
event in a vacuum spacetime of typein the Petrov classification such that the curvature as
well as the GEM stress—energy tensor remain invariant under boosts along these directions
[10, 11].

Itis interesting to consider a free test observer falling from rest at infinity in the equatorial
plane of a Kerr systenifp = 0,6 = m/2) with zero orbital angular momentum (‘radial
motion’). The geodesic path of the observer is giverrjm, 6, ¢) coordinates by

2
P= %(M 4 2ma ) (49)
r
. 2m A2
;"2 = r3 ) (50)
. 2ma
¢ = A (51)

Both incoming as well as outgoing geodesics are described by these equations. We consider
a nonrotating spatial triad along the path given by

(A . A _ arr
. TA
= |5 50 55 ) 2
[ 1
My = |0, o,;,o}, (53)

[ 2maA  ar A 2m
Mo =|""a ’_X’O’Z<1__>}’ (54)
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such that ag — oo they correspond to the spherical coordinate axes [12]. The Riemann
tensor as measured by the (ingoing or outgoing) observer is given by

m 3ma? 3maA 0 10
E = = diag(—2,1,1) + z diag—1, 1, 0), B = = 1 0 0. (55)
r r r 00 0

Similarly, the nonzero components of the gravitational stress—energy tensor are independent
of the direction of motion of the observer and are given by

3L2m?

0O _ 4 2.2 4
T _(%ﬂﬁr+@wz+w), (56)
ww _ _Lm® 5, o

TO® =-55 (r? +34?), (57)
L%m?

T@@ — 272 + 342 , 58
G0r8( d ) ( )
2L%m?

3B _ 4 2.2 4
r = GorlO (r* +9r°a® + 9a%), (59)
together with the gravitational energy flux given by
2.2 2 2
706 _ 9L“mcaA(rc + 2a%) (60)
Gorlo

The observer encounters the singularity at 0, where the curvature components as well as
the components of the gravitational stress—energy tensor all diverge.

The above stress—energy tensors for the pure Kerr geometry reduce dphigrgcally
symmetricSchwarzschild case fer = 0; then, there is no energy flux for the radial motion
of the observer and the gravitational stress—energy tensor is diagonal with elements that are
proportional tan?/r8, as would be expected in analogy with electrodynamics. Moreover, the
radial pressure is negative while the other two pressures are equal and positive in agreement
with simple physical considerations based on the fact that the gravitational tidal accelerations
are repulsive (i.e. they tend to pull test particles apart) along the radial direction and attractive
(i.e. they tend to push test particles together) along the other two orthogonal directions in this
case.

5. Discussion

An interesting result of this paper is the theoretical elucidation of the existence of a steady flux
of gravitational energy around a rotating mass. It follows from equations (27) and (28) that

7O, 7O0 3L(f x ) (61)
M|

for large|x|. This means that the current of gravitational energy has spged3a sing/r
far from the source, as can also be seen from the results of the last section. In patrticular, for
equatorial geodesics the ratio of equations (60) and (56) behavega®Benr > a. On the
other hand, the other results of the previous section, e.g. the diagonal form of equation (39),
are not in conflict with this conclusion since a detailed examination of the natural tetrad system
(30)—(33) of the Kerr spacetime indicates that the observer movesdndirection with speed
a/r far from the source, i.e.

dp a

dr ~ (ZA)2 (62)



1146 B Mashhoon et al

10 20 30 40 50

Figure 1. Plot of v, versusr/a as given by equation (63), which represents the speed of the
steady gravitational energy current in the equatorial plane of the Kerr system as perceived by
observers falling freely from rest at spatial infinity. It is important to note that 1 just as in
electrodynamics.

is the initial angular speed of the observer. Moreover, the flow velmgﬁwust vanish along
the axis of symmetry and this is consistent with the diagonal gravitational stress—energy tensor
(48) for the test observer moving along thexis.

In electrodynamics, the speed of the Poynting current is always less than or equal to the
speed of light in vacuum and the analogous result holds for the GEM tensor by equation (16).
Therefore, itis interesting to investigate here hgwehaves as a function ofn the equatorial
plane of the Kerr black hole as measured by the free ‘radially’ infalling test observers. As
figure 1 demonstrates,

3a(r? +a®)V2(r2 + 24?)
Vg = V4 + 6}"2@2 + 6614 (63)
increases monotonically with decreasingand reaches the speed of light at the= 0

singularity.

Finally, itis interesting to note that for a charged rotating mass—such as a Kerr—Newman
system—there exists both an electromagnetic Poynting flux and a gravitational flux of energy
moving in essentially the same way about the rotating mass. Forinstance, forthe Kerr—Newman
system we have that far from the sourgg ~ 2a siné/r asr — oo. The investigation of the
physical consequences of the existence of gravitational energy currents around rotating masses
is beyond the scope of this work.

Appendix A. Bel-Robinson tensor

The gravitational superenergy tensor was first introduced independently by Bel and Robinson
in close formal analogy with Maxwell's stress—energy tensor [1, 3, 13]. In this regard, an
important consideration was the invariance of the Maxwell stress—energy tensor under duality
rotations; therefore, a gravitational superenergy tensor was conceived that would be similarly
invariant under duality rotations involving the gravitoelectric and gravitomagnetic fields. Some
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aspects of the early work in this direction can be found in [14]. Further work on the Bel-
Robinson tensor is contained in [15-18], while other approaches to the stress—energy tensor
for gravitation are discussed in [19]. The Bel-Robinson tensor is also related to cgraain
local definitions of mass in curved spacetime (see [20] and the references cited therein).
Originally, spacetimes were considered with only a cosmological constant and in this
case the tensor (12) already appears in the work of Bel [3]. Robinson proved that only in the
Ricci-flat case would this tensor be totally symmetric and traceless. Thus later work has been
restricted taR,, = 0 and the Bel-Robinson tensor is thus defined by

1 1
Tyvpo = E(RM,EPI Ran{ + RufoiRuép{) — 168m8po K. (A1)

That is,T,,ps — Tyuwpe SiNCE
Ruspy RV =g, K (A2)

for R,, = 0. HereK is the Kretschmann scalar, i.€.= R, R*"?. In arecent paper [21],
however, the Bel-Robinson tensor and the corresponding GEM Poynting vector—constructed
via the Weyl part of the spacetime curvature—have been studied in a general context for
arbitrary curved spacetimes.

Appendix B. Landau-Lifshitz pseudotensor in Riemann normal coordinates

The energy of a gravitational field—if it can be defined at all—is nonlocal according to general
relativity. On the other hand, the Bel-Robinson tensor is locally defined. A connection
could perhaps be established between these concepts if the energy—momentum pseudotensor
of the gravitational field is expressed in Riemann normal coordinates about a typical event in
spacetime (cf [22]).

Letx* be the Riemann normal coordinates in the neighbourhood of some point (‘origin’)
in spacetime; then,

8uv = Nuv — %R;uxvﬁ xxP 4. , (Bl)
Tl = —3(R,p + RY )7+ (B2)

The Landau—Lifshitz pseudotensor is quadratic in the connection coefficients by construction;
thereforesL-* is—at the lowest order—quadratic in Riemann normal coordinates. Hence,

nv

4
L-L ¢

e Ot B3
Wb = 1 44r G P B3

where® .4 is symmetric in its first and second pairs of indices by construction and is given
by

Ovap = %(sza Ryopp + sz,s Riopa) + %(Rupoa Rup(js + Rypop Rvp(tf)z)
_gnuvnaﬂRpmcs RpaK6~ (B4)

This expression should be compared and contrasted with equation (Al) that expresses the
Bel-Robinson tensor in a similar form. There is no simple relationship bet®eep and
T,..ep; however, one can show that

®,uvot/3 - 7Tuvaﬂ = %67704377/41)1( + %(RpZaRpavﬁ + RpZﬂRpava) (BS)

in Riemann normal coordinates.
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