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Abstract

Given a set of n positive integers {a1, . . . , an} and an integer pa-

rameter H we study small additive shift of its elements by integers hi
with |hi| ≤ H, i = 1, . . . , n, such that the greatest common divisor of

a1 + h1, . . . , an + hn is very different from that of a1, . . . , an. We also

consider a similar problem for the least common multiple.

1 Introduction

Let a = (a1, . . . , an) ∈ Z
n be a nonzero vector. The approximate common

divisor problem, introduced by Howgrave-Graham [13] for n = 2, can gener-
ally be described as follows. Suppose we are given two bounds D > h ≥ 1.
Assuming that for some hi with |hi| ≤ H , i = 1, . . . , n, we have

gcd(a1 + h1, . . . , an + hn) > D, (1)

the task is to determine the shifts h1, . . . , hn. If it is also requested that
h1 = 0 then we refer to the problem as the partial approximate common

divisor problem (certainly in this case the task is to find the shifts faster
than via complete factorisation of a1 6= 0).
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This problem has a strong cryptographic motivation as it is related to
some attacks on the RSA and some other cryptosystems, see [4, 5, 13, 18]
and references therein for various algorithms and applications. In particular,
much of the current motivation for studying approximate common divisor
problems stems from the search for efficient and reliable fully homomor-

phic encryption, that is, encryption that allows arithmetic operations on
encrypted data, see [6, 11, 16].

Here we consider a dual question and show that for any a = (a1, . . . , an) ∈
Z
n, there are shifts |hi| ≤ H , i = 1, . . . , n, for which (1) holds with a relatively

large value of D. Throughout we use gcd(x) to mean gcd(x1, . . . , xn) for any
x ∈ Z

n.
We also denote the height of x with H(x) = max{|x1|, . . . , |xn|}.
The implied constants in the symbols ‘O’, ‘≪’ and ‘≫’ may occasionally,

where obvious, depend on the integer parameter n and the real positive
parameter ε, and are absolute otherwise. We recall that the notations U =
O(V ), U ≪ V and V ≫ U are all equivalent to the assertion that the
inequality |U | ≤ c|V | holds for some constant c > 0.

Our treatment of this question is based on some results of Baker and
Harman [2] (see also [1]). For an integer n ≥ 1 and real positive ε < 1, we
define κ(n, ε) as the solution κ > 0 to the equation

n(εκ− 1)

n− 1
=

1

22+max{1,κ} − 4
. (2)

The solution is unique as the left hand side of (2) is monotonically increasing
(as a function of κ) from −n/(n− 1) to +∞ on [0,∞) while the right hand
side of (2) is positive and monotonically non-increasing.

We also set

ϑ(n, ε) =
1

(n− 1)

(

1−
1

εκ(n, ε)

)

.

It easy to see from (2) that εκ(n, ε) < 1, so ϑ(n, ε) > 0.

Theorem 1. For any vector a ∈ Z
n, any real positive ε < 1 and

H ≥ H(a)ε

there exists a vector h = (h1, . . . , hn) ∈ Z
n of height

H(h) ≤ H
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such that

gcd(a+ h) ≫ H(h)Hϑ(n,ε).

Next we are interested in asking for which h the shifted set is pairwise
coprime.

For a ∈ Z
n we denote by L(a) the smallest H such that there is a h ∈ Z

n

with H(h) = H such that

gcd(ai + hi, aj + hj) = 1, 1 ≤ i < j ≤ n.

For n = 2, and thus a = (a1, a2) ∈ Z
2, Erdős [8, Equation (3)] has given the

bound

L(a) ≪
logmin{|a1|, |a2|}

log logmin{|a1|, |a2|}
.

However the method of [8] does not seem to generalise to n ≥ 3.

Theorem 2. For an arbitrary a ∈ Z
n we have

L(a) ≪ log2H(a).

Note in fact our argument allows to replace H(a) with a smaller qunatity

H
∗(a) = min

1≤i≤n
max
1≤j≤n
i 6=j

|ai|.

For a ∈ Z
n we denote by ℓ(a) the smallest H such that there is a vector

h ∈ Z
n with H(h) = H and

gcd(a1 + h1, . . . , an + hn) = 1.

A very simple argument, based on the Chinese Remainder Theorem, im-
plies the following result, which generalises [8, Equation (2)].

Theorem 3. For infinitely many a ∈ Z
n we have

ℓ(a) ≫

(

logH(a)

log logH(a)

)1/n

.
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Note that Theorem 3 is essentially an explicit version of a result of Huck
and Pleasants [14].

It is clear that for non-zero vector a ∈ Z
n and arbitrary vectors x,y ∈ Z

n

we have
gcd(a1, . . . , am) | gcd(a · x, a · y),

where

a · x =

n
∑

i=1

aixi and a · y =

n
∑

i=1

aiyi.

Let R(a, h) be the number of vectors x,y ∈ Z
n with positive components

and of height H(x),H(y) ≤ h for which

gcd(a1, . . . , am) = gcd(a · x, a · y). (3)

By [10, Theorem 3] we have

|R(a, h)− ζ(2)−1h2n| ≤ h2n−1/n(hH(a))o(1),

where ζ(s) is the Riemann zeta function.

Theorem 4. Let n ≥ 2 and let a ∈ Z
n. Then, for max{h,H(a)} → ∞,

|R(a, h)− ζ(2)−1h2n| ≤ h2n−n/(n2−n+1)(hH(a))o(1).

2 Proof of Theorem 1

We use the following [2, Theorem 1], see also [2, Equation (2.1)] that gives
an explicit formula for constant γ(K) below.

Lemma 5. Suppose that for some fixed K > 0 and some sufficiently large

real positive Q and R we have

(

n
∑

i=1

a2i

)1/2

≤ RK

and

C1(K, n) ≤ Q ≤ Rγ(K),

where

γ(K) =
1

22+max{1,K} − 4
.
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Let ψ1, . . . , ψn be positive integers with

ψi ≤ c2(K, n)(logQ)
−n, i = 1, . . . , n,

and

ψ1 · · ·ψn = Q−1.

Then
∥

∥

∥

ai
r

∥

∥

∥
≤ ψi, i = 1, . . . , n,

R ≤ r ≤ 2QR.

where C1(K, n) and c2(K, n) depend at most on K and n.

To prove Theorem 1, we choose some parameters Q and R that satisfy
Lemma 5 with K = κ(n, ε), where κ(n, ε) is given by (2), and then we set
ψi = Q−1/n, i = 1, . . . , n. Then by Lemma 5, there exist an integer r with
R ≤ r ≤ 2QR such that

∥

∥

∥

ai
r

∥

∥

∥
≤ Q−1/n, i = 1, . . . , n,

where ‖ξ‖ is distance between a real ξ and the closest integer. So for some
integers hi with |hi| ≤ rQ−1/n we have

ai + hi ≡ 0 (mod r), i = 1, . . . , n.

Suppose that for some constant A > 0 we choose R such that for Q =
(0.5)n/(n−1)A−1Rγ(K), we have

2Q1−1/nR = H. (4)

Then
R = A(n−1)/(nγ(K)+n)Hn/(nγ(K)−γ(K)+n).

Then, taking A to satisfy

A(n−1)/(nγ(K)+n) = n1/2K

due to our choice of K = κ(n, ε), we have

R = n1/2KHn/(nγ(K)−γ(K)+n) = n1/2KH1/εK . (5)
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Hence for h = (h1, . . . , hn) we have

H(h) ≤ rQ−1/n ≤ 2Q1−1/nR = H

and
gcd(a+ h) ≥ r ≥ H(h)Q1/n. (6)

Using (5), we derive

(

n
∑

i=1

a2i

)1/2

≤ n1/2H1/ε = RK .

Thus Lemma 5 indeed applies. We also have

Q1/n ≫ Rγ(K)/n ≫ Hγ(K)/εnK . (7)

We now see from (2) that

γ(K)

εnK
=

εK − 1

ε(n− 1)K
,

which together with (6) and (7) completes the proof.

3 Proof of Theorem 2

We recall the following well-known result of Iwaniec [15] on the Jacobsthal

problem. For a given r, let C(r) be the maximal length of a sequence of
consecutive integers, each divisible by one of r arbitrarily chosen primes.
Then Iwaniec [15] gives the following bound on C(r):

Lemma 6. For a given r > 1 we have,

C(r) ≪ (r log r)2.

We are now ready to prove Theorem 2.
We now set h1 = 0 and chose hi, i = 2, . . . , n as the smallest non-negative

integer with

gcd

(

i−1
∏

j=1

(aj + hj), ai + hi

)

= 1.
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We show that if n is a positive integer and a = H(a) then

H(h) ≪ log2 a. (8)

For n = 2 we note that a1 has ω(a1) distinct prime factors, where ω(a) is
the number of distinct prime divisors of an integer a ≥ 1.

So, by Lemma 6,

C(ω(a1)) ≪ (ω(a1) log(ω(a1))
2 ≪ log2 a1 = log2 a

for all a1, and from the trivial bound ω(k)! ≤ k and the Stirling formula we
have

ω(k) ≪
log k

log(2 + log k)

for any integer k ≥ 1. Now a straight forward inductive argument, after
simple calculations, implies (8) and concludes the proof.

4 Proof of Theorem 3

Let us choose a sufficiently large parameter H and the first (2H+1)n primes
pi1,...,in > H for −H ≤ i1, . . . , in ≤ H .

For each k = 1, . . . , n we define ak as the smallest positive integer with

ak ≡ ik (mod pi1,...,in), −H ≤ i1, . . . , in ≤ H.

Set a = (a1, . . . , an). Clearly, for any h ∈ Z
n with H(h) ≤ H , we have

ph1,...,hn
| gcd(a1 + h1, . . . , an + hn).

This implies that ℓ(a) ≥ H .
It remains to estimate H(a). Clearly, we have pi1,...,in ≪ Hn logH for

−H ≤ i1, . . . , in ≤ H . Therefore,

H(a) ≤
∏

−H≤i1,...,in≤H

pi1,...,in = exp(O(Hn logH)) = exp(O(ℓ(a)n log ℓ(a))),

which completes the proof.
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5 Proof of Theorem 4

Clearly, it is enough to consider the case where gcd(a1, . . . , an) = 1.
We can certainly assume that n ≤ log h for otherwise the bound is trivial.
Let µ denote the Möbius function, that is µ(1) = 1, µ(d) = 0 if d ≥ 2 is

not squarefree, and µ(d) = (−1)ω(d) otherwise, where ω(d), as before, is the
number of prime divisors of an integer d ≥ 1.

As in the proof of [10, Theorem 3], by the inclusion exclusion principle
we have

R(a, h) =
∑

d≥1

µ(d)Ud(a, h)
2,

where for an integer d ≥ 1, we denote by Ud(a, h) the number of vectors
x ∈ Z

n with positive components and of height H(x) ≤ h for which d | a · x.
We now recall from [10] some estimates on Ud(a, h).
More precisely, for 1 ≤ d ≤ 2h/3n we have

∣

∣

∣

∣

Ud(a, h)
2 −

h2n

d2

∣

∣

∣

∣

≤ 8nd−1h2n−1. (9)

see [10, Equation (8)]. The proof of (9) also relies on the bound

Ud(a, h) ≤ dn−1 (h/d+ 1)n . (10)

that holds for any integer d ≥ 1.
Furthermore, for any squarefree d ≥ 1 we also have the bound

Ud(a, h) ≤ hn−1
(

hd−1/n + 1
)

. (11)

see [10, Equation (10)].
Therefore, choosing some parameter D, we write

R(a, h) =M +O(∆1 +∆2) (12)

where

M =
∑

d≤2h/3n

µ(d)Ud(a, h)
2,

∆1 =
∑

2h/3n<d≤D

µ(d)Ud(a, h)
2,

∆2 =
∑

d>D

µ(d)Ud(a, h)
2.
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Using (9), we derive

M =
∑

d≤2h/3n

µ(d)

(

h2n

d2
+O

(

h2n−1d−1
)

)

= h2n
∑

d≤2h/3n

µ(d)

d2
+O

(

h2n−1 log h
)

.

Since

∑

d≤2h/3n

µ(d)

d2
=

∞
∑

d=1

µ(d)

d2
+O

(

D−1
)

= ζ(2)−1 +O
(

D−1
)

,

see [12, Theorem 287], we derive

M = h2nζ(2)−1 +O
(

h2n−1 log h
)

. (13)

To estimate ∆1 we apply the bound (10), which for d ≥ 2h/3n can be
simplified as Ud(a, h) = O(dn−1). Therefore,

∆1 ≪
∑

2h/3n<d≤D

dn−1Ud(a, h) ≤ D2n−1
∑

2h/3n<d≤D

Ud(a, h). (14)

Using the same argument as the proof of [10, Theorem 3], based on a bound
of the divisor function τ(k), we obtain

∑

d>D

Ud(a, h) =
∑

d>D

∑

H(x)≤h
d|a·x

1

=
∑

h(x)≤h

∑

d>D
d|a·x

1 ≤
∑

h(x)≤h

τ(a · x) ≤ hn(hH(a))o(1),
(15)

where x runs through integral vectors with positive components. Hence, we
see that (14) yields the estimate

∆1 ≪ Dn−1hn(hH(a))o(1). (16)

Finally, to estimate ∆2 we apply the bound (11) and, as before derive

∆2 ≪ hn−1
(

hD−1/n + 1
)

∑

d>D

Ud(a, h) ≤ h2n−1
(

hD−1/n + 1
)

(hH(a))o(1).

(17)
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Substituting the bounds (13), (16) and (17) into (12), we obtain

R(a, h) = h2nζ(2)−1 +O
((

h2n−1 +Dn−1hn + h2nD−1/n
)

(hH(a))o(1)
)

.

Now, choosing
D = hn

2/(n2−n+1),

we conclude the proof.

6 Comments

We remark that it is also interesting to study analogous questions for poly-
nomials with integer coefficients or over finite fields, see [7, 17, 9] for some
polynomial versions of the approximate common divisor problem. Some of
out techniques can be extended to this case, however some important ingre-
dients, such as the results of Baker and Harman [1, 2] are missing.
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