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ON THE GREATEST COMMON DIVISOR OF THE

VALUE OF TWO POLYNOMIALS

PÉTER E. FRENKEL AND JÓZSEF PELIKÁN

Abstract. We show that if two monic polynomials with integer
coefficients have square-free resultant, then all positive divisors of
the resultant arise as the greatest common divisor of the values of
the two polynomials at a suitable integer.

Throughout this paper, f, g ∈ Z[x] are monic polynomials with in-
teger coefficients:

(1) f(x) = a0x
k + a1x

k−1 + · · ·+ ak

and

(2) g(x) = b0x
l + b1x

l−1 + · · ·+ bl,

where a0 = b0 = 1. Our interest is in the range of the greatest common
divisor gcd(f(n), g(n)) as n varies in the ring Z of integers. Such gcd’s
can behave in intriguing ways.

Example 1. (a) A problem in a Hungarian mathematics competition
in 2015 asked for the range of gcd (n2 + 3, (n+ 1)2 + 3). The answer is
{1, 13}. The gcd is 1 for n = 1, . . . , 5 but is 13 for n = 6.

(b) The Prime Glossary page [4] explaining the “law of small num-
bers” of R. K. Guy [2] points out that the gcd (n17 + 9, (n+ 1)17 + 9)
is 1 for n = 1, . . . , N − 1, but is greater than 1 for n = N , where

N = 8424432925592889329288197322308900672459420460792433.

This number N has 52 digits, and the gcd for n = N is the 52-digit
prime

p = 8936582237915716659950962253358945635793453256935559.

Turning to the general case, let r = R(f, g) ∈ Z be the resultant of
the two polynomials. Recall that, by definition, r is the determinant
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of the Sylvester matrix

(3) M =























a0 a1 . . . ak
a0 a1 . . . ak

. . . . . . . . . . . .
a0 a1 . . . ak

b0 b1 . . . bl
b0 b1 . . . bl

. . . . . . . . . . . .
b0 b1 . . . bl























of the two polynomials. Note that M is an (l + k)-square matrix; the
first l rows are built from the coefficients of f , and the last k rows are
built from the coefficients of g, padded with zeros.

The most widely applied fact about the resultant is that it is zero
if and only if the two polynomials have a common complex root, or,
equivalently, a non-constant common divisor in C[x]. This holds true
even if the coefficients are arbitrary complex numbers. In our case,
however, the coefficients are integers. In this setting, the resultant is
zero if and only if the two polynomials have a non-constant common
divisor in Z[x].

We start with two easy observations relating the resultant r to the
gcd of the polynomial values.

Proposition 2. (a) For any integer n, gcd(f(n), g(n)) divides r.
(b) As a function of n, the value gcd(f(n), g(n)) is periodic with

period r.

Note that r can be zero. By definition, any function is periodic with
period 0.

Proof. (a) Let d = gcd(f(n), g(n)). Each coordinate of the column
vector

M · (nk+l−1, nk+l−2, . . . , n, 1)⊤

is divisible by either f(n) or g(n), and therefore by d. Thus, the last
column of M is congruent modulo d to a linear combination, with inte-
gral coefficients, of the previous columns. It follows that r = detM ≡ 0
mod d, as claimed.

(b) We have f(n+ r) ≡ f(n) and g(n+ r) ≡ g(n) mod r. It follows
that

gcd(f(n+ r), g(n+ r), r) = gcd(f(n), g(n), r).

In view of statement (a), the third argument can be omitted from the
gcd on both sides, proving statement (b). �

Recall that r = 0 if and only if f and g have a non-constant common
divisor h in the ring Z[x]. In this case, gcd(f(n), g(n)) is divisible by
h(n) for all n and therefore has an infinite range and no nonzero period.
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Do all nonnegative divisors of r arise as gcd(f(n), g(n)) with suitable
integral n? In particular, does |r| itself arise as such a gcd? Not
necessarily.

Example 3. Let f(x) = g(x) = x2+x+1. Then r = 0, so all integers
divide r, but not all nonnegative integers arise as gcd(f(n), g(n)) =
n2 + n+ 1. In fact, no even numbers arise. In particular, 0 itself does
not arise.

What if we assume r 6= 0? The answer is still no.

Example 4. Let f(x) = x2 − 1 and g(x) = x2 + 1. Then r = 4, but
the range of gcd(f(n), g(n)) is {1, 2}.

This example also shows that when r 6= 0, |r| need not be the smallest
positive period of gcd(f(n), g(n)). In Example 4, we have r = 4, but
the smallest positive period is 2.

Our main result, Theorem 6 below, says that when r is square-free,
Proposition 2(a) is the only restriction on the values attained by the
gcd, and the smallest positive period of the gcd is |r|.

For this, we shall need a basic fact about integer matrices: they can
be brought to Smith normal form. For any matrix M with integral
entries, there exist matrices U and V , also with integral entries and
invertible over Z, such that UMV is a diagonal matrix with diagonal
entries d1, d2, . . . , where the so-called invariant factors di satisfy di|di+1

for all i. See Smith’s original paper [5], or see, e.g., [1, Section 5.3] for a
textbook presentation. Note that U and V , being invertible over Z, are
necessarily square matrices with determinant ±1. If M is also square,
it follows that

(4)
∏

di = det(UMV ) = ± detM.

In the proof of our main result, we shall have to leave the realm of
polynomials with integer coefficients and consider polynomials over the
field Fp of prime cardinality p. Given two polynomials f and g over
any field F , of degree k and l respectively, with coefficients as in (1)
and (2), their Sylvester matrix M is defined by the formula (3). We
shall need

Theorem 5. [3, Theorem 1.19] The corank (or kernel dimension)
k + l − rankM of M over F equals the degree of the gcd of the two
polynomials f and g as elements of the polynomial ring F [x].

For two proofs of this well-known fact, the reader may consult [3].
As this is an Internet reference, and we were unable to find a textbook
or journal reference, we include a third proof.

Proof. Let us identify the vector space F k+l with the vector space of
polynomials of degree less than k + l. Let any such polynomial cor-
respond to the list of its coefficients, starting with the coefficient of
xk+l−1 and ending with the constant term.
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Under this correspondence, the row space of the Sylvester matrix M
is identified with the set of polynomials of the form φf + ψg, where
φ, ψ ∈ F [x] have degree less than l and k, respectively. Any polynomial
of this form is divisible by gcd(f, g). Conversely, any polynomial that is
divisible by gcd(f, g) and has degree less than k+ l is in the row space.
To see this, we first write such a polynomial as φ0f + ψ0g, where we
know nothing about the degree of φ0, ψ0 ∈ F [x], but then we write
φ0 = qg + φ with φ of degree less than l, and we define ψ = qf + ψ0.
Then φ0f + ψ0g = φf + ψg; moreover, this polynomial and φf both
have degree less than k + l, whence so does ψg, showing that ψ has
degree less than k.

The rank of M is the dimension of the row space. The theorem
follows. �

We are now ready for the main result of this paper.

Theorem 6. Let f and g be monic polynomials with integer coeffi-
cients. Assume that their resultant r is square-free. Then all positive
divisors of r arise as gcd(f(n), g(n)) with suitable integral n. More-
over, any d|r arises exactly

∏

(p−1) times in each period of length |r|,
where the product is taken over all (positive) prime divisors p of r/d.
In particular, |r| itself arises once.

Proof. Let P be the set of all prime divisors of r, so that

r = ±
∏

p∈P

p.

We shall prove that for all subsets S of P, the product d =
∏

p∈S p

arises as gcd(f(n), g(n)) for a suitable integer n; moreover, in each
period of length |r|, it arises exactly

∏

p∈P−S(p− 1) times.

For each p ∈ P, the gcd(f(n), g(n), p) is periodic with period p. It
suffices to prove that in each period of length p, this gcd is p exactly
once. Indeed, the Chinese remainder theorem will then finish the proof:
in each period of length |r|, the integers n such that gcd(f(n), g(n)) = d
can be found by specifying their value mod p for each p ∈ P. For each
p ∈ S, there is a unique possibility for n mod p, and for each p ∈ P−S,
there are p− 1 possibilities.

It suffices to prove that for any prime p ∈ P, the polynomials f and
g, when viewed mod p, have a unique common root in Fp; equivalently,
the gcd of f and g as elements of Fp[x] has a unique root in Fp. In fact,
we shall prove that this gcd is a polynomial of degree exactly 1.

It suffices to prove that the mod p corank of the Sylvester matrix
M of f and g is 1. But the determinant of M over Z is r, which is
divisible by p but not by p2. Now M can be brought to Smith normal
form, and from (4), we see that the last invariant factor dk+l is divisible
by p, but the previous one is not. The mod p corank of the diagonal
matrix UMV , and therefore also of M , is 1, as claimed. �
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Remark 7. When |r| is prime, the gcd is |r| for n in a unique residue
class mod r and is 1 for all other n. This sheds some light on the
seemingly peculiar behavior in Example 1, since r = 13 for (a) and
r = p for (b).

When r is not square-free, we know very little about the range of
the gcd. At least, we can give a sufficient condition for 1 to appear in
the range. This condition, however, is not necessary; see Example 4.

Proposition 8. Let f and g be monic polynomials with integer coeffi-
cients and resultant r.

(a) Suppose that p is prime and r is not divisible by pp. Then there
exists an integer n such that gcd(f(n), g(n)) is not divisible by p.

(b) If r has no divisor of the form pp with p prime, then there exists
an integer n such that f(n) and g(n) are coprime.

Proof. (a) Again we exploit the fact that r = ±d1 · · ·dk+l, where the
di are the invariant factors of the Sylvester matrix M . Since di|di+1 for
all i, and pp 6 |r, it follows that at most the last p− 1 invariant factors
di can be divisible by p. In other words, the mod p corank of M is less
than p, so the degree of the gcd of f and g as elements of Fp[x] is less
than p, and therefore this gcd cannot vanish as a function Fp → Fp.
But this gcd can be written as φf + ψg with φ, ψ ∈ Fp[x], so it follows
that f and g cannot both vanish as functions Fp → Fp.

(b) For all prime divisors p of r, we can use statement (a) to get an
integer np such that gcd(f(np), g(np)) is not divisible by p. The Chinese
remainder theorem gives us an integer n such that n ≡ np mod p for
all p. This n will have the desired property. �

Remark 9. Throughout this paper, we have studied two monic poly-
nomials over the ring Z of integers. However, Z can be replaced by
an arbitrary principal ideal domain A. Our results and their proofs
remain valid, with trivial modifications.

For example, Proposition 2(b) should be interpreted as saying that
(f(n), g(n)) = (f(n′), g(n′)) whenever n, n′ ∈ A and r|n−n′ in A. Note
that this is an equality of ideals of A.

In this general setting, the conclusion of Theorem 6 is replaced by
the following. There exist constants cP ∈ A, one for each prime ideal
P containing r, such that for any divisor d of r, and any n ∈ A, we
have (f(n), g(n)) = (d) if and only if n− cP ∈ P for each P containing
d but n− cP 6∈ P for each P that does not contain d. Such elements n
exist for any divisor d of r. When d = r, they form a coset c+ (r).

The pp in Proposition 8 should be interpreted as p|A/(p)|. This can
be p∞, which, by definition, divides only 0.
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